

2 -

Marco Cantù

Mastering Delphi 5
 2025 Annotated Edition

Original Edition: Sybex, 1995

2025 Annotated Edition: Marco Cantu, 2025

Release 0.2 – February 17th, 2025

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

 - 3

Author: Marco Cantù

Publisher: Sybex (original edition), Marco Cantù (2025 edition)

Copyright 1995-2025 Marco Cantù, Piacenza, Italy. World rights reserved.

The author created example code in this publication expressly for the free use by its readers.
Source code for this book is copyrighted freeware, distributed via a GitHub project listed in the
book and on the book’s web site. The copyright prevents you from republishing the code in print or
electronic media without permission. Readers are granted limited permission to use this code in
their applications, as long at the code itself is not distributed, sold, or commercially exploited as a
stand-alone product.

Aside from the above exception concerning the source code, no part of this publication may be
stored in a retrieval system, transmitted, or reproduced in any way, either in the original or in a
translated language, including but not limited to photocopy, photograph, magnetic, or other
record, without the prior agreement and written permission of the publisher.

Delphi is a trademark of Embarcadero Technologies (a division of Idera, Inc.). Other trademarks
are of the respective owners, as referenced in the text. Whilst the author and publisher have made
their best efforts to prepare this book, they make no representation or warranties of any kind with
regard to the completeness or accuracy of the contents herein and accept no liability of any kind
including but not limited to performance, merchantability, fitness for any particular purpose, or
any losses or damages of any kind caused or alleged to be caused directly or indirectly from this
book.

Mastering Delphi 5 2025 Annotated Edition

This PDF version is a draft dated February 17th, 205

The electronic edition of this book is freely distributed by the author, but doesn’t further distribu-
tion. Do not distribute the PDF version of this book without permission from the author.

More information at http://www.marcocantu.com/md52025

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

4 -

To my wife, Lella, the love of my life1

1 I've kept the dedication of the book, as it was originally. In fact, that is still true today!

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Preface to the 2025 Commented Edition - 5

Preface To The

2025 Commented

Edition

As you know I wrote several Mastering Delphi books over the course of the years. I
thoughts a few times about writing a new one... but the task is fairly daunting, given
Delphi (as an IDE and considering the libraries and target platforms it now sup-
ports) has dramatically grown in size and complexity, and you’d now need several
thousand pages to cover the product adequately, and not even in depth. While I
have several draft of my older books, it turns out Mastering Delphi 5 is the oldest
one I have in an electronic version with images and proper formatting. A few years
back, I acquired the rights of this edition from my original publisher (Sybex, now
part of Wiley) and considering a new edition I asked a person to reformat the text,
import the images, and turn this into a complete volume.

That was a few years back. More recently, I found this edited and formatted manu-
script, and decided to make it public rather than keeping it on my hard drive. The

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

6 - Preface to the 2025 Commented Edition

text of the book is, with minor and limited changes, the original text covering ver-
sion 5 of Delphi, released in 1999.

This is not a book on recent versions of Delphi: A few of the sections are
clearly dated, but most of the core content covering the key features of the product
is still actual today. However, publishing it as is would have been of very limited use
and possibly confusing. Therefore I’ve made two primary changes to the book. First
I’ve captured some updated images of the IDE and of the running applications. I’ve
kept some of the original images alongside, though, mixing the old and the new. The
different is so striking I don’t even need to call them out. Second I’ve added a large
number of footnotes to underline new features, significant changes, code I’d write
differently, assertions that are no longer true. I haven’t rewritten the text, as this
would have been way more time consuming, but I’ve pointed out many facts, giving
ideas and suggestions for further study, or just providing some tidbits and facts,
along with many links to additional information available online. I’ve used footnotes
to reduce the impact on the existing text, compared to adding notes in the text flow
or doing direct edits.

But you might still wonder, who is this book for? Although it might appeal them,
this is not only for the nostalgic, although some of the old timers might find it inter-
esting to read it. It is for anyone who wants to understand Delphi. Even covering
the product how it was many years ago, this book helps understanding all of
Delphi’s core concepts.

You might be wondering if this is possible because Delphi is an old product. This is
certainly not the case. It underlines the fact the product has a great history, but also
that it has kept and keeps evolving in a fantastic way while maintaining its core
tenets and offering an unparalleled degree of compatibility in the development
tools space. The fact that most of the code in this old book can be compiled and run
today, producing modern looking Windows 11 applications is a testament of the
power of Delphi.

This preface is the only new section of the book. From now on, this is the old book
with my comments and annotation. Have a good reading!

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Acknowledgments - 7

Acknowledgments

This incarnation of Mastering Delphi marks the fifth year of the Delphi era2. As it
has for many other programmers, Delphi has been my primary interest throughout
these years; and writing, consulting, teaching, and speaking at conferences about
Delphi have absorbed more and more of my time, leaving other languages and pro-
gramming tools in the dust of my office3. Because my work and my life are quite
intertwined, many people have been involved in both, and I wish I had enough
space and time to thank them all as they deserve. Instead, I’ll just mention a few
particular people and say a warm “Thank You” to the entire Delphi community (also
for the Spirit of Delphi 1999 Award I’ve been happy to share with Bob Swart).

The first official thanks are for the Borland programmers and managers4 who made
Delphi possible and continue to improve it: Chuck Jazdzewski, Danny Thorpe5,
Eddie Churchill, Allen Bauer, Steve Todd, Mark Edington, Jim Tierney, Ravi

2 I made further editions of Mastering Delphi for Delphi 6, Delphi 7, and Delphi 2005 with the
same publisher. Later I moved to self publishing and started the “Delphi 20xx Handbook” se-
ries, focused on specific new features of the given version of Delphi, rather than providing the
broad overview of the Mastering Delphi volumes. That's one of the reasons for this new “re-
print” of Mastering Delphi 5. You can find more on my web site www.marcocantu.com.

3 A few years ago I ended up accepting a Product Manager position at Embarcadero (now part
of Idera Inc.), the company who owns Delphi. So my focus on Delphi continues to be a full
time focus even today, although with a different perspective. I have used Delphi for 30 years
and continue to do so. My knowledge of the technologies behind the product has grown during
the years I've been working for Embarcadero.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://www.marcocantu.com/

8 - Acknowledgments

Kumar, Jörg Weingarten, Anders Ohlsson, and all the others I have not had a
chance to meet. I’d also like to give particular mention to my friends Ben Riga (the
current Delphi product manager), Charlie Calvert, John Kaster, and David I (all
three at Borland Developer’s Relations). I cannot forget the help I received from
Zack Urlocker and Nan Borreson.

The next thanks are for the Sybex editorial and production crew, many of whom I
don’t even know. Special thanks go to Denise Santoro, Jim Compton, and Diane
Lowery for their editorial acumen; I’d also like to thank Richard Mills, Kristine
O’Callaghan, Maureen Forys, Teresa Trego, Jennifer Campbell, Carol Iverson, and
Tony Jonick.

This edition of Mastering Delphi has had an incredibly picky and detailed review
from Delphi team member Danny Thorpe. His highlights and comments have
improved the book in all areas: technical content, accuracy, examples, and even
readability. Thanks a lot. Past editions of the book also had special contributions:
Tim Gooch worked on Part V for Mastering Delphi 4 and Giuseppe Madaffari con-
tributed a lot of database material for this and the last edition. Many improvements
to the text and sample programs were suggested by technical reviewers of the past
editions (Juancarlo Añez, Ralph Friedman, Tim Gooch, and Alain Tadros) and from
other reviews done over the years by Bob Swart, Giuseppe Madaffari, and Steve
Tendon.

Special thanks go to my friends Bruce Eckel, Andrea Provaglio, Norm McIntosh,
Johanna and Phil of the BUG-UK, Ray Konopka, Mark Miller, Cary Jensen, Chris
Frizelle of The Delphi Magazine, Foo Say How, John Howe, Mike Orriss, Chad
“Kudzu” Hower, Dan Miser, and Marco Miotti. Also, a very big “Thank You” to all
the attendees of my Delphi programming courses, seminars, and conferences in
Italy, the United States, France, the United Kingdom, Singapore, the Netherlands,
Germany, and Sweden.

Aside from the people involved with Delphi, my biggest thanks go to my patient
wife, Lella, who (while carrying a child6) had to spend another summer with little
vacation, as the book always took more time than I expected. Many of our friends
provided healthy breaks in the work: Sandro and Monica with Luca, Stefano and

4 Needless to say none of this developers and managers work at Embarcadero any more, after 25
years. I’ve kept this Acknowledgments section as it was, despite the changes to my like and
that of all of the people mentioned here.

5 Unfortunately we lost Danny a few years back. Danny was the technical reviewer of the origi-
nal edition of this book, Mastering Delphi 5, and I’ve long been in touch with him after he left
the company.

6 That child is now a young adult. We also have a second one, who's also grown up.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Acknowledgments - 9

Elena, Marco and Laura with Matteo, Bianca, Chiara, Luca and Elena, Chiara and
Daniele with Leonardo, Laura, Vito and Marika with Sofia. Our parents, brothers,
sisters, and their families were very supportive, too. It was nice to spend some of
our free time with them and our six nephews, Matteo, Andrea, Giacomo, Stefano,
Andrea, and Pietro.

Finally, I would like to thank all of the people, many of them unknown, who enjoy
life and help to build a better world. If I never stop believing in the future and in
peace, it is also because of them.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

10 - Introduction

Introduction

The first time Zack Urlocker7 showed me a yet-to-be-released product code-named
Delphi, I realized that it would change my work—and the work of many other soft-
ware developers. I used to struggle with C++ libraries for Windows, and Delphi was
and still is the best combination of object-oriented programming and visual pro-
gramming for Windows.

Delphi 5 simply builds on this tradition and on the solid foundations of the VCL to
deliver another astonishing and all-encompassing software development tool. Look-
ing for database, client/server, multi tier, intranet, or Internet solutions? Looking
for control and power? Looking for fast productivity? With Delphi 5 and the
plethora of techniques and tips presented in this book, you’ll be able to accomplish
all this8.

7 Zack was the first Delphi Product Manager, and made a career in many other management po-
sitions including at MySQL and, more recently, several startups.

8 Most of the features discussed here are still valid in the latest versions of Delphi, even if they
represent a subset of the available features. A few have been discontinued or are not recom-
mended any more, and this will all be covered in footnotes.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Introduction - 11

Five Versions and Counting

Some of the original Delphi features that attracted me were its form-based and
object-oriented approach, its extremely fast compiler, its great database support, its
close integration with Windows programming, and its component technology. But
the most important element was the Object Pascal language, which is the founda-
tion of everything else.

Delphi 2 was even better! Among its most important additions were these: the
Multi-Record Object and the improved database grid, OLE Automation support and
the variant data type, full Windows 95 support and integration, the long string data
type, and Visual Form Inheritance. Delphi 3 added to this the Code Insight technol-
ogy, DLL debugging support, component templates, the TeeChart, the Decision
Cube9, the Web Broker technology, component packages, ActiveForms, and an
astonishing integration with COM, thanks to interfaces.

Delphi 4 gave us the AppBrowser editor, new Windows 98 features, improved OLE
and COM support, extended database components, and many additions to the core
VCL classes, including support for docking, constraining, and anchoring controls.
There are a great many new features in Delphi 4, as you can still discover by reading
this book if you missed the last edition.

Delphi 5 adds to the picture many more improvements of the IDE (too many to list
here), extended database support (with specific ADO and InterBase datasets), an
improved version of MIDAS10 with Internet support, the TeamSource version-con-
trol tool11, translation capabilities, the concept of frames, many new components,
and much more, as you’ll see in the following pages.

Delphi is a great tool, but it is also a complex programming environment that
involves many elements. This book will help you master Delphi programming,
including the Object Pascal language, Delphi components (both using the existing
ones and developing your own), database and client/server support, the key ele-
ments of Windows and COM programming, and Internet and Web development.

9 The Decision Cube is a feature that was later dropped form the product.

10 MIDAS was later turned into DataSnap and some of the related technologies are still around,
even if the world of multi-tier development and web services has changed a bit since the early
days. Today's multi-tier solutions tend to use the REST architecture, which is true for RAD
Server, the current multi-tier technology in Delphi.

11 More recent versions of Delphi have added support for modern version control systems, in-
cluding Subversion and Git.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

12 - Introduction

You do not need an in-depth knowledge of any of these topics to read this book, but
you do need to know the basics of Pascal programming. Having some familiarity
with Delphi will help you considerably, particularly after the introductory chapters.
The book starts covering its topics in depth immediately; much of the introductory
material from previous editions has been removed. Some of this left-out material
and an introduction to Pascal12 is available on the author’s Web site and can be a
starting point if you are not confident with Delphi basics. Each new Delphi 5 feature
is covered in the relevant chapters throughout the book.

The Structure of the Book

The book is divided into five parts:

· Part I, “Delphi and Object Pascal,” introduces new features of the Delphi 5 Inte-
grated Development Environment (IDE) in Chapter 1 and then moves to the
Object Pascal language and the Visual Component Library (VCL), providing both
foundations and advanced tips13.

· Part II, “Using Components,” covers standard components, Windows common
controls, graphics, menus, dialog, scrolling, docking, multiple-page controls,
Multiple Document Interface, and many other topics14.

· Part III, “Writing Database Applications,” covers plain database access, advanced
Paradox topics, in-depth coverage of the data-aware controls, client/server pro-
gramming, InterBase Express, and ADO15.

12 This material on the Pascal language later turned into the Essential Pascal e-book, but it is also
included in my “Object Pascal Handbook”, a book I'm maintaining up to date over time. It is
available as a PDF via Embarcadero and as a printed book on Amazon, see www.marcocantu.-
com/objectpascalhandbook/ for more information.

13 While the IDE changed considerably a fair number of the techniques and tips still applied to-
day. Also the core of the language remains the same, even if additions have been relevant. So
most of the content of Part I is quite relevant.

14 The core techniques related with using components have not changed at all. So these founda-
tion chapters provide a very good introduction to Delphi, even after many years. I'll mention
changes in notes, like on all other chapters, of course.

15 The database part of the product has seen many significant changes, with the demise of Para-
dox and the introduction of the dbExpress library and later the migration to FireDAC. ADO
components are still available and the core classes in the DB.pas unit did not change that
much.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://www.marcocantu.com/objectpascalhandbook/
https://www.marcocantu.com/objectpascalhandbook/

Introduction - 13

· Part IV, “Components and Libraries,” covers Delphi component and Dynamic
Link Library (DLL) development; it then looks at COM and OLE, covering Win-
dows shell extensions, OLE Automation, and ActiveX development16.

· Part V, “Real-World Delphi Programming,” discusses many common program-
ming techniques, such as multithreading, memory handling, debugging, using
resources, printing support, file handling, programming TCP/IP sockets, Inter-
net development, Web server-side extensions, three-tier architectures, and
distributed database applications build upon the MIDAS technology17.

As this brief summary suggests, the book covers topics of interest to Delphi users at
nearly all levels of programming expertise, from “advanced beginners” to compo-
nent developers.

In this book, I’ve tried to skip reference material almost completely and focus
instead on techniques for using Delphi effectively. Because Delphi provides exten-
sive online documentation, to include lists of methods and properties of
components in the book would not only be superfluous, it would also make it obso-
lete as soon as the software changes slightly. I suggest that you read this book with
the Delphi help files at hand, to have reference material readily available. You can
find some more Delphi reference material on my Web site, as described later.

However, I’ve done my best to allow you to read the book away from a computer if
you prefer. Screen images and the key portions of the listings should help in this
direction. The book uses just a few conventions to make it more readable. All the
source code elements, such as the keywords, the names of properties, classes, and
functions appear in this font, and listings are formatted as they appear in the Del-
phi editor, with boldfaced keywords and italic comments and strings.

16 The section on components and libraries is still surprisingly up-to-date, as the COM layer in
Windows is still there and Delphi's support saw limited improvements (as it was already very
good and Microsoft didn't touch COM for many years, focusing on the newer .NET frame-
work).

17 While some core techniques like multi-threading are still based on the same foundations, most
of what relates to Web development saw significant improvements. Still WebBroker is still an
architecture heavily used today.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

14 - Introduction

Free Source Code on the Web

This book focuses on examples. After the presentation of each concept or Delphi
component, you’ll find a working program example (sometimes more than one) that
demonstrates how the feature can be used. All told, there are more than 200 exam-
ples presented in the book18. Most of the examples are quite simple and focus on a
single feature. More complex examples are often built step-by-step, with intermedi-
ate steps including partial solutions and incremental improvements.

note Some of the database examples also require you to have the Delphi sample database DBDEMOS
installed; it is part of the default Delphi installation.

Besides the archive with the minimal source code files required to build the pro-
grams, a second archive includes an HTML version of the source code, with full
syntax highlighting, along with a complete cross-reference of keywords and identi-
fiers (class, function, method, and property names, among others). The cross-
reference is an HTML file, so you’ll be able to use your browser to easily find all the
programs that use a Delphi keyword or identifier you’re looking for.

The directory structure of the downloaded files is quite simple. Basically, each part
of the book has its own folder, with a subfolder for each chapter, and a further sub-
folder for each example (e.g., Part2\06\Borders). In the text, the examples are
simply referenced by name (e.g., Borders).

note Be sure to read the source code archive’s Readme file, which contains important information
about using the software legally and effectively.

How to Reach the Author

If you find any problems in the text or examples in this book, I would be happy to
hear from you. Besides reporting errors and problems, please give us your unbiased

18 I have not updated or modified the source code demos, although I might do it in the future. I’ll
occasionally point out to code that needs an update. The source code demos are available on
more modern repositories, like github.com/MarcoDelphiBooks/MasteringDelphi5.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://github.com/MarcoDelphiBooks/MasteringDelphi5

Introduction - 15

opinion of the book and tell us which examples you found most useful and which
you liked least. There are several ways you can provide this feedback19:

· My own Web page (www.marcocantu.com) hosts news and tips, technical articles,
the free online book “Essential Pascal,” Delphi 5 reference information we could
not fit in this book, Delphi links, and my collection of Delphi components and
tools.

· Finally, you can reach me via e-mail at marco@marcocantu.com. My mailbox is
usually quite full and, regretfully, I cannot reply promptly to every request.
Please write to me in English or Italian.

19 Here I've made an exception to the “no edits” rule and removed referenced to the original pub-
lisher, Sybex. My contact information is still valid, but some is missing like my blog (blog.mar-
cocantu.com).

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://www.marcocantu.com/
https://blog.marcocantu.com/
https://blog.marcocantu.com/

16 - Chapter I: Delphi and Object Pascal

Chapter I: Delphi

And Object Pascal

In a visual programming tool such as Delphi, the role of the environment is at times
even more important than the programming language. Delphi 5 provides many new
features in its visual development environment, and this chapter covers them in
detail. This chapter isn’t a complete tutorial but mainly a collection of tips and sug-
gestions aimed at the average Delphi user. In other words, it’s not for newcomers.
I’ll be covering the new features of the Delphi 5 Integrated Development Environ-
ment (IDE) and some of the advanced and/or little-known features of previous
versions as well, but in this chapter I won’t provide a step-by-step introduction.
Throughout this book I’ll assume you already know how to carry out the basic
hands-on operations of the IDE, and all the chapters after this one focus on pro-
gramming issues and techniques.

If you are a beginning programmer, don’t be afraid. The Delphi Integrated Develop-
ment Environment is quite intuitive to use. Delphi itself includes a manual
(available in Acrobat format on the Delphi CD20) with a tutorial that introduces the

20 There is no Delphi CD any more, but you can find tutorials and documentation at docwiki.em-
barcadero.com/RADStudio/.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://docwiki.embarcadero.com/RADStudio/
https://docwiki.embarcadero.com/RADStudio/

Chapter I: Delphi and Object Pascal - 17

development of Delphi applications. You can also find a step-by-step introduction to
the Delphi 5 IDE on my Web site, www.marcocantu.com. The short online book
Essential Pascal21 is based on material from the first chapters of earlier editions of
Mastering Delphi.

Editions of Delphi 5

Before delving into the details of the Delphi programming environment, let’s take a
side step to underline two key ideas. First, there isn’t a single edition of Delphi 5;
there are many of them. Second, any Delphi environment can be customized. For
these reasons, Delphi screens you see illustrated in this chapter may differ from
those on your own computer. Here are the current editions of Delphi:

· The basic version (the “Standard” edition) is aimed at Delphi newcomers and
casual programmers.22

· The second level (the “Professional” edition) is aimed at professional developers.
It includes all the basic features, plus database programming support, extensive
Web server support (WebBroker), and some of the external tools. This book gen-
erally assumes you are working with at least the Professional edition.

· The full-blown Delphi (the “Enterprise” edition, previously called the “Client/
Server Suite”) is aimed at developers building enterprise applications. It includes
SQL Links for native Client/Server BDE connections, ADO and InterBase
Express components, support for multiuser applications, internationalization,
and three-tier architecture, and many other tools, including the SQL Monitor.
Some chapters cover features included only in Delphi Enterprise; these sections
are specifically identified.

21 See www.marcocantu.com/epascal/ for the latest information about this e-book.

22 The “Standard” edition of Delphi has been long discontinued. It was temporarily replaced by a
Turbo edition (now discontinued as well). Later the company introduced a new low cost ver-
sion called Starter edition. Today you can use the free Delphi Community Edition (if you qual-
ity in terms of use case and earnings) or buy the “Professional” and “Enterprise” versions,
which continue to be the core offerings, with differences not radically changed since Delphi 5.
Check the latest product description and Feature Matrix at www.embarcadero.com/
products/delphi for information on differences between the versions, so you can download or
buy the one that better serves your needs.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://www.embarcadero.com/products/delphi
https://www.embarcadero.com/products/delphi
http://www.marcocantu.com/epascal/

18 - Chapter I: Delphi and Object Pascal

Some of the features of Delphi Enterprise are available as an “upsell” to owners of
Delphi Professional. Although this is a marketing decision that may change in the
future, you should be able to buy ADO components and TeamSource (for coopera-
tion among programmers). If you can’t justify the cost of the full Enterprise edition
for your work, you may be able to buy Delphi Professional plus the specific subsys-
tems you want separately from the Borland Online Store23.

Besides the different editions available, there are a number of ways to customize the
Delphi environment. In the screen illustrations throughout the book, I’ve tried to
use a standard user interface (as it comes out of the box); however, I have my pref-
erences, of course, and I generally install many add-ons, which might be reflected in
some of the screen shots.

The Delphi 5 IDE

The Delphi 5 IDE includes some of the broadest changes Borland has introduced
since it upgraded Delphi 1 to Delphi 2. Among the new features are a redesigned
Object Inspector, a new Project Manager, the ability to save the position of the desk-
top windows, the to-do list, and much more. Most of the features are quite easy to
grasp, but it’s worth examining them with some care so that you can start using Del-
phi 5 at its full potential.

Command-Line Options

The first thing to notice is that there are changes even before you start Delphi. In
fact, the delphi32.exe program24, which starts the IDE, has many new command-
line options. Most of these options (listed in the Help topic “IDE command-line
options”25) are aimed at advanced users and allow you to track the status of the Del-
phi IDE itself.

23 Extra add-ins are currently not sold separately any more.

24 The executable file that starts the IDE is now called “bds.exe” (which originally was a short
version of Borland Developer Studio), some of the command lines parameters mentioned here
still work and little known by developers.

25 See docwiki.embarcadero.com/RADStudio/en/IDE_Command_Line_Switches_and_Options

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://docwiki.embarcadero.com/RADStudio/en/IDE_Command_Line_Switches_and_Options

Chapter I: Delphi and Object Pascal - 19

For example, you can load a program into the debugger or attach the system to a
process that’s already running (topics I’ll discuss along with other debugging fea-
tures in Chapter 18).

Other features might be useful even to the casual programmer. The –ns (“no
splash”) flag skips the splash screen, and the –np (“no project”) flag tells Delphi not
to open an empty project on startup. (This allows for a fast boot because it prevents
the loading of any package of components, which are attached to projects.)

Probably the most commonly used feature isn’t strictly a command-line option, or
even a startup option. You can easily specify a project, project group, or Pascal
source code file to open. When Delphi is already running, double-clicking a file-
name or icon in Windows Explorer doesn’t open a new copy of the IDE, it simply
opens a PAS or DFM file in the current copy of Delphi. When you select a project file
(.DPR), Delphi first closes the current project after asking you to save any changes26.

From the command line you can load a project and let Delphi automatically build or
make it (with the –b and –m) options, immediately closing the IDE after the opera-
tion is completed. This doesn’t seem terribly useful; for compiling a series of large
projects with a script or batch file, you should instead use the faster command-line
compiler27 (which doesn’t need the IDE).

Saving the Desktop Settings

Building on past versions of Delphi and on the support for docking that was added
in Win32, Delphi has since version 4 allowed programmers to customize the IDE in
a number of ways, typically opening many windows and arranging them and dock-
ing them to each other. However, programmers often need to open one set of
windows at design time and a different set at debug time. Similarly, programmers
might need one layout when working with forms and a completely different layout
when writing components or low-level code using only the editor. Rearranging the
IDE for each of these needs is a tedious task.

With Delphi 5, every time you come up with an arrangement of IDE windows you
like for a specific purpose, you can save it with a name and restore it easily. Also,
you can make one of these groupings your default debugging setting, so that it will

26 This behavior has changed: As you activate a project in Explorer, the IDE by default adds the
project to the current project group, rather than replacing the currently open project.

27 Starting from Delphi 2005 the command line compilation can also be invoked using a MS-
Build script, which is what the IDE does anyway. Compiling outside of the IDE is also directly
available as a compiler project option.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

20 - Chapter I: Delphi and Object Pascal

be restored automatically when you start the debugger. All these features are avail-
able in the new Desktops toolbar, shown in Figure 1.1. (It’s the only toolbar with a
combo box.) You can also work with desktop settings using the View Desktops
menu. This has the features of the toolbar, and also allows you to delete one of the
saved settings28.

Figure 1.1:
The main window of
Delphi 5 includes the
Desktops toolbar,
which you can use to
reload a configuration
of the IDE windows.
Images captured in
Delphi 5 and Delphi 12.

Desktop setting information is saved in DST files29, which are INI files in disguise.
The saved settings include the position of the main window, the Project Manager,
the Alignment Palette, the Object Inspector (including its new property category
settings), the editor windows (with the status of the Code Explorer and the Message
View), and many others, plus the docking status of the various windows.

Here is a small excerpt from a DST file, which should be easily readable:

[Main Window]
Create=1
Visible=1
State=0
Left=0
Top=0
Width=1024
Height=105
ClientWidth=1016
ClientHeight=78

[ProjectManager]
Create=1
Visible=0
State=0
...
Dockable=1

28 While the UI has changed the same idea remains today, with the addition of a new default
desktop settings called “Startup Layout”, used when no project is open.

29 In recent versions, the DST files are saved in the folder with the version number under C:\
Users\<username>\AppData\Roaming\Embarcadero\BDS\xxx. The file content remains
largely the same.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 21

[AlignmentPalette]
Create=1
Visible=0
...

[PropertyInspector]
Create=1
Visible=1
...
Dockable=1
SplitPos=85
ArrangeBy=Name
HiddenCategories=Legacy
ShowStatusBar=1

note Desktop settings override project settings. This helps eliminate the problem of moving a project
between machines (or between developers) and having to rearrange the windows to your liking.
Delphi 5 separates per-user and per-machine preferences from the project settings, to better sup-
port team development.

The To-Do List

Another brand-new feature of Delphi 5’s IDE is the to-do list30. This is a list of tasks
you still have to do to complete a project, a collection of notes for the programmer
(or programmers, as this tool can be very handy in a team). While the idea is not
new, the key concept of the to-do list in Delphi 5 is that it works as a two-way tool.

In fact, you can add or modify to-do items by adding special comments to the source
code of any file of a project; you’ll then see the corresponding entries in the list. But
you can also visually edit the items in the list to modify the corresponding source
code comment. For example, here is how a to-do list item might look like in the
source code:

procedure TForm1.FormCreate(Sender: TObject);
begin
 // TODO -oMarco: Add creation code
end;

The same item can be visually edited in the window shown in Figure 1.2.

30 While superseded by modern developer collaboration tools for tracking changes and work, the
To-Do list has still a nice role and I think it has been a bit neglected, while I find it handy to
leave notes for myself and occasionally for others using this format rather than using a general
comment, as the IDE makes it easier to find them.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

22 - Chapter I: Delphi and Object Pascal

Figure 1.2:
The Edit To-Do Item
window can be used to
modify a to-do item, an
operation you can also
do directly in the
source code. Images
captured in Delphi 5
and Delphi 12.

The exception to this two-way rule is the definition of project-wide to-do items. You
must add these items directly to the list. To do that, you can either use the Ctrl+A
key combination in the To-Do List window or right-click in the window and select
Add from the shortcut menu. These items are saved in a special file with the .TODO
extension.

There are multiple options you can use with a TODO comment. You can use –o (as in
the code excerpt above) to indicate the owner, the programmer who entered the
comment; the –c option to indicate a category; or simply a number from 1 to 5 to
indicate the priority (0, or no number, indicates that no priority level is set). For
example, using the Add To-Do Item command on the editor’s shortcut menu (or the
Ctrl+Shift+T shortcut31) generated this comment:

{ TODO 2 -oMarco : Button pressed }

Delphi treats everything after the colon, up to the end of line or the closing brace,
depending on the type of comment, as the text of the to-do item.

31 The shortcut still opens the Edit To-Do item dialog above, but you can also type “todo” in the
editor and press space to trigger the generation of this line:

{TODO -oOwner -cGeneral : ActionItem}

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 23

Finally, in the To-Do List window you can check off an item to indicate that it has
been done. The source code comment will change from TODO to DONE. You can also
change the comment in the source code manually to see the check mark appear in
the To-Do List window.

One of the most powerful elements of this architecture is the main To-Do List win-
dow, shown in Figure 1.3, which can automatically collect to-do information from
the source code files as you type them. The items of this list are part of this chapter’s
ToDoTest example (which does nothing but has lots of things to do). The list items
in this window show the various attributes I’ve just described, along with the source
code files where they are defined. The initial check box is marked for Done items,
which also have their text crossed out.

Figure 1.3:
The To-Do List window
for the ToDoTest
example. Images
captured in Delphi 5
and Delphi 12.

note To try out ToDoTest and all the program examples in this book, you need to download the source
code32. Every reader should download the source code in order to get the full value of this book.
Each time the text mentions a new program example by name, you should look for a folder of that
name among the downloaded files and read the complete source code. For most examples you’ll
also want to compile the program and run it.

The To-Do List window has a shortcut menu that allows you to add, edit, or delete
items, filter and sort them, and export them to the Clipboard. The command used to
perform this last operation, Copy As, lets you export the items either as text or as an
HTML table, which can be customized using the Table Properties command. The
HTML table settings include a nice preview, as you can see in Figure 1.4. The infor-
mation is not saved in an HTML file; it’s just copied to the Clipboard. You have to

32 In this case, I’ve deleted portions of the text as the old locations don’t exist any more. Again,
the correct link is github.com/MarcoDelphiBooks/MasteringDelphi5.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://github.com/MarcoDelphiBooks/MasteringDelphi5

24 - Chapter I: Delphi and Object Pascal

open your favorite HTML editor (or Notepad or a text window in the Delphi editor)
to save it to a file.33

Figure 1.4:
The HTML table
preview of the to-do
list. Images captured in
Delphi 5 and Delphi 12.

33 I realized I had not seen that HTML preview in so many years, I thought the feature had been
dropped, but – as Figure 1.4 shows – it’s still in the most recent versions of Delphi.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 25

The AppBrowser Editor

The editor included with Delphi 5 hasn’t changed much from Delphi 4. However,
Delphi 4 had many new features, so it’s worth briefly examining this tool. Delphi 4
introduced three fundamental innovations: a Code Explorer window (which lists all
the definitions of a unit), support for navigation (similar to that of a Web browser),
and Class Completion (a code-generation technology).

Delphi 5 adds to the editor a new keyboard mapping for Visual Studio emulation
and the ability to extend the editor with custom key mapping modules. These last
settings are defined in the new Key Bindings tab of the Editor Properties dialog box,
which you can activate with the Tools Editor Options34 command. This new dialog
box shows the environment settings related to the editor.

note The custom key mapping modules can be written using new Tools API features added to Delphi 5.
You can write a completely new key mapping module or simply add a few extra shortcut keys to
the existing one. This advanced topic is not covered in the book, but you can find examples in the
Editor Keybinding folder of Delphi’s Demos directory. One of these additional key bindings, called
Buffer List, is installed by default and available by pressing the Ctrl+B key combination.

The Delphi editor allows you to work on several files at once, using a “notebook with
tabs” metaphor, and you can also open multiple editor windows35. You can jump
from one page of the editor to the next by pressing Ctrl+Tab (or Shift+Ctrl+Tab to
move in the opposite direction). There are a number of options that affect the edi-
tor, located in the new Editor Properties dialog box. You have to go to the
Preferences page of the Environment Options36 dialog box, however, to set the edi-
tor’s AutoSave feature, which saves the source code files each time you run the
program (preventing data loss in case the program crashes badly).

I won’t discuss the various settings of the editor, as they are quite intuitive and are
described in the online Help. What is not officially documented is that you can use
two entries of the Windows Registry to set the initial width and height of the editor37

34 This is now found in the Editor section of the Tools | Options dialog box.

35 Starting with very recent versions of Delphi, you can also use “split views” which is the ability
to slit an editor horizontally or vertically to see more than one file, but also see two different
locations of the same file side by side. I like this “split views” new feature a lot!

36 Now under Tools | Options. I won’t keep adding footnotes for each occurrence, it’s a general
changes how options are now surfaced I a single all-encompassing dialog box.

37 This entire concept doesn’t exist any more, given the editor is now docked to the main IDE
window.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

26 - Chapter I: Delphi and Object Pascal

(to make it as large as your screen, for example). Go to the Delphi section in the
Registry38, HKEY_CURRENT_USER/Software/Borland/Delphi/5.0, and add under the
Editor key two new DWORD items, called DefaultHeight and DefaultWidth, indicat-
ing the height and width of the editor in pixels. To modify the Windows Registry
you can use the RegEdit.EXE application under Windows 95 and 98 or
RegEdt32.EXE under NT39.

Another tip to remember is that beginning with Delphi 4, using Cut and Paste com-
mands is not the only way to move source code. You can also select and drag words,
expressions, or entire lines of code. You can also copy text instead of moving it, by
pressing the Ctrl key while dragging.

The Code Explorer

The Code Explorer window40, which is generally most useful when it’s docked on
the side of the editor, simply lists all of the types, variables, and routines, defined in
a unit, plus other units appearing in uses statements. For complex types, such as
classes, the Code Explorer can list detailed information including a list of fields,
properties, and methods. All the information is updated as soon as you start typing
in the editor. You can use the Code Explorer to navigate in the editor. If you double-
click one of the entries in the Code Explorer, the editor jumps to the corresponding
declaration.

While all that is quite obvious after you’ve used Delphi for a few minutes, there are
some features of the Code Explorer that are not so intuitive. One important point is
that you have full control of the layout of the information, and you can reduce the
depth of the tree usually displayed in this window by customizing the Code
Explorer. Collapsing the tree can help you make your selections more quickly. You
can configure the Code Explorer by using the corresponding page of the Environ-
ment Options41, as shown in Figure 1.5.

38 In recent releases, that’s a key under Computer\HKEY_CURRENT_USER\Software\Embar-
cadero\BDS\23.0 or similar (depending on the internal product version number).

39 Today, it’s just called regedit.exe.

40 The content of what was the Code Explorer windows now displayed in the Structure view in
case a source code file is open in the editor (while the same pane doubles as a form layout view
when a designer is selected). The Code Explorer pane has now some more information, includ-
ing Error Insight, the list of errors in the given unit.

41 In recent versions these settings are available under Tools | Options, User Interface, Structure.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 27

Figure 1.5:
You can configure the
Code Explorer in the
Environment Options
dialog box. Images
captured in Delphi 5
and Delphi 12: The
content it surprisingly
similar.

Notice that when you deselect one of the Explorer Categories items on the right side
of this page of the dialog box, the Explorer doesn’t remove the corresponding ele-
ments from view, it simply adds the node in the tree. For example, if you deselect
the Uses check box, Delphi doesn’t hide the list of the used units from the Code
Explorer. On the contrary, the used units are listed as main nodes instead of being
kept in the Uses folder. As another example, by disabling the Types, Classes, and
Variables selections, you obtain the output shown in Figure 1.6.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

28 - Chapter I: Delphi and Object Pascal

The most important settings are probably those related to classes. The definitions
related to a class can be arranged in three ways:

· According to the private, protected, public, and published categories

· According to the methods and fields categories

· All together in a single group

As each item of the Code Explorer tree has an icon marking its type, arranging by
field and method seems less important than arranging by access specifier. My pref-
erence is to show all items in a single group, as this requires the fewest mouse clicks
to reach each item. Selecting items in the Code Explorer, in fact, provides a very
handy way of navigating the source code of a large unit. When you double-click on a
method in the Code Explorer, the focus moves to the definition in the class declara-
tion (in the interface portion of the unit). You can use the Ctrl+Shift combination
with the up or down arrow keys to jump from the definition of a method or proce-
dure in the interface portion of a unit to its complete definition in the
implementation portion (or back again).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 29

Figure 1.6:
Some of the folders of
the Code Explorer can
be removed by
removing the items
from the
corresponding settings.
Images captured in
Delphi 5 and Delphi 12.

note Some of the Explorer Categories shown in Figure 1.5 are used by the new Project Explorer (or
Browser) introduced in Delphi 5, rather than by the Code Explorer. These include, among others,
the Virtuals, Statics, Inherited, and Introduced grouping options.

The Code Explorer is not only an output and browsing tool. In fact, you can use it for
entering new items in each category. Actually, the type of the new item generally
depends on what you type. A name that starts with the procedure or function key-
words is automatically considered a method, while a name followed by a semicolon
and a data type is considered a field. The editing capabilities of the Code Explorer
are too limited to provide any real advantage compared to editing in the source-
code window. It would be nice to have dragging capabilities, for example, to move a
field or method to a different visibility section or copy it to another class.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

30 - Chapter I: Delphi and Object Pascal

note Field, methods, public, private…? If you’re not familiar with the terminology of the Object Pascal
language, you’ll find good coverage of these terms in Chapter 2. I’ve used them here without
explaining them simply because most readers of this book probably have at least some exposure
to Delphi and its programming language.

Browsing in the Editor

Another feature of the AppBrowser editor is the Tooltip Symbol Insight. Move the
mouse over a symbol in the editor, and a Tooltip will show you where the identifier
is declared. This feature can be particularly important for tracking identifiers,
classes, and functions within an application you are writing, and also for referring to
the source code of the Visual Component Library (VCL).

note Although it may seem a good idea at first, you cannot use Tooltip Symbol Insight to find out
which unit declares an identifier you want to use. If the corresponding unit is not already
included, in fact, the Tooltip won’t appear.

The real bonus of this feature, however, is that you can turn it into a navigational
aid. When you hold down the Ctrl key and move the mouse over the identifier Del-
phi creates an active link to the definition instead of showing the Tooltip. These
links are displayed with the blue color and underline style that are typical of Web
browsers, and the pointer changes to a hand whenever it’s positioned on the link, as
shown in Figure 1.7.

For example, you can Ctrl-click on the TLabel identifier to open its definition in the
VCL source code. As you select references, the editor keeps track of the various posi-
tions you’ve jumped to, and you can move backward and forward among them—
again as in a Web browser. You can also click on the drop-down arrows near the
Back and Forward buttons to view a detailed list of the lines of the source code files
you’ve already jumped to, for more control over the backward and forward move-
ment.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 31

Figure 1.7:
Delphi’s browsing
capability is activated
by keeping the Ctrl key
pressed and moving the
mouse over an
identifier. Images
captured in Delphi 5
and Delphi 12.

How can you jump directly to the VCL source code if it is not part of your project?
The AppBrowser editor can find not only the units in the Search path (which are
compiled as part of the project), but also those in Delphi’s Debug Source, Browsing,
and Library paths. These directories are searched in the order I’ve just listed, and
you can set them in the Directories/Conditionals page42 of the Project Options dia-
log box and in the Library page of the Environment Options dialog box. By default,
Delphi adds the VCL source code directories in the Browsing path of the environ-
ment, which has the following declaration:

$(DELPHI)\source\vcl;$(DELPHI)\source\rtl\Corba;
$(DELPHI)\source\rtl\Sys;$(DELPHI)\source\rtl\Win;
$(DELPHI)\source\Internet

42 The Browsing Path is now configured the Language | Delphi | Library section of the Tools |
Options dialog box. The default path is very long, and not worth listing here.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

32 - Chapter I: Delphi and Object Pascal

In this series of paths, the declaration $(DELPHI) stands for the directory where Del-
phi is installed43.

Class Completion

The third important feature of Delphi’s AppBrowser editor is Class Completion,
activated by pressing the Ctrl+Shift+C key combination. Adding an event handler to
an application is a fast operation, as Delphi automatically adds the declaration of a
new method to handle the event in the class and provides you with the skeleton of
the method in the implementation portion of the unit. This is part of Delphi’s sup-
port for visual programming.

Newer versions of Delphi also simplify life in a similar way for programmers who
write a little extra code behind event handlers. The new code-generation feature, in
fact, applies to general methods, message-handling methods, and properties. For
example, if you type the following code in the class declaration:

public
 procedure Hello (MessageText: string);

and then press Ctrl+Shift+C, Delphi will provide you with the definition of the
method in the implementation section of the unit, generating the following lines of
code:

{ TForm1 }
procedure TForm1.Hello(MessageText: string);
begin
end;

This is really handy, compared with the traditional approach of many Delphi pro-
grammers, which is to copy and paste one or more declarations, add the class
names, and finally duplicate the begin .. end code for every method copied.

Class Completion can also work the other way around. You can write the implemen-
tation of the method with its code directly, and then press Ctrl+Shift+C to generate
the required entry in the class declaration.

Glancing back at the Explorer settings shown in Figure 1.5, you’ll see one option for
Class Completion—you can use it to complete the definition of a property. If you
simply type in a brand-new form class,

property X: Integer;

43 This is now replaced by the $(BDS) symbolic reference.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 33

and activate Class Completion, Delphi generates a SetX method for the property and
adds the FX field to the class. The resulting code looks like this:

type
 TForm1 = class(TForm)
 private
 FX: Integer;
 procedure SetX(const Value: Integer);
 public
 property X: Integer read FX write SetX;
 end;

implementation

procedure TForm1.SetX(const Value: Integer);
begin
 FX := Value;
end;

This really saves a lot of typing. In fact, you can even partially control how Class
Completion generates Set and Get methods for the property, as discussed in Chap-
ter 3 in the section devoted to properties.

Code Insight

Besides the Code Explorer, Code Completion, and the navigational features, the
Delphi editor still supports the Code Insight44 technology originally introduced in
Delphi 3. Collectively, the Code Insight techniques are based on a constant back-
ground parsing, both of the source code you write and of the source code of the
system units your source code refers to. Code Insight comprises five capabilities:

· Code Completion allows you to choose the property or method of an object
simply by looking it up on a list, or by typing its initial letters. To activate it you
can simply type the name of an object, such as Button1, then add the dot, and
wait. To force the display of the list, press Ctrl+Spacebar; to remove it when you
don’t want it, press Esc. Code Completion also lets you look for a proper value in
an assignment statement. As you type := after a variable or property, Delphi will
list all the other variables or objects of the same type, plus the objects having
properties of that type. While the list is visible, you can right-click on it to change
the order of the items, sorting either by scope or by name.

44 Most of the Code Insight features are now based on a DelphiLSP engine, a Delphi implementa-
tion of the Language Server Ptotocol defined by Microsoft. The behavior in the IDE remains
almost unchanged.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

34 - Chapter I: Delphi and Object Pascal

· Code Templates allow you to insert one of the predefined code templates, such
as a complex statement with an inner begin..end block. Code Templates must be
activated manually, by typing Ctrl+J to show a list of all of the templates45. If you
type a few letters (such as a keyword) before pressing Ctrl+J, Delphi will list only
the templates starting with those letters.

· Code Parameters display, in a hint or Tooltip window, the data type of a func-
tion’s or method’s parameters while you are typing it. Simply type the function or
method name and the open (left) parenthesis, and the parameter names and
types appear immediately in a popup hint window. To force the display of Code
Parameters, you can press Ctrl+Shift+spacebar. As a further help, the current
parameter appears in boldface type.

· Tooltip Expression Evaluation is a debug-time feature. It shows you the
value of the identifier, property, or expression that is under the mouse cursor.

· Tooltip Symbol Insight lets you see the definition of an identifier in a Tooltip,
as discussed earlier, in the section “Browsing in the Editor.”

You can enable and disable or configure each of these features in the Code Insight
page of the Editor Options dialog box46, shown in Figure 1.8.

45 Since Delphi 2006, Code Templates have been replaced and superseded by the more powerful
Live Templates, which are invoked either by the Tab key or the plain Space key, but are still
listed if you press the original Ctrl+J shortcut key. Live Templates are covered in my “Delphi
2007 Handbook”.

46 The configuration is now under the Editor | Language page of the Tools | Options dialog box.
The page has multiple tabs including a “Code Insigth” one, as shown in Figure 1.8.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 35

Figure 1.8:
The Code Insight page
of the Editor Options
dialog box allows you
to activate or disable
each of these
technologies and to set
the delay time. Images
captured in Delphi 5
and Delphi 12.

note When the code you’ve written is not correct, Code Insight won’t work, and you may see just a
generic error message indicating the situation. It is possible to display specific Code Insight errors
in the Message pane (which must already be open; it doesn’t open automatically to display compi-
lation errors). To activate this feature you need to set another undocumented registry entry,
setting the string key Delphi\5.0\Compiling\ShowCodeInsiteErrors to the value “1”.47

47 This feature is now active by default and it can be configured in the same page of the Tools Op-
tions dialog box, in the “Error Insight” tab.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

36 - Chapter I: Delphi and Object Pascal

More Editor Shortcut Keys

The editor has many more shortcut keys, which depend on the editor style you’ve
selected. Here are a few of the less-known shortcuts, most of which are useful:

· Ctrl+Shift plus a number key from 0 to 9 activates a bookmark, indicated in a
“gutter” margin on the side of the editor. To jump back to the bookmark you can
press the Ctrl key plus the number key. The usefulness of bookmarks in the edi-
tor is limited by the fact that a new bookmark can override an existing one and
that bookmarks are not persistent48; they are lost when you close the file.

· Ctrl+E activates the incremental search. You can press Ctrl+E and then directly
type the word you want to search for, without the need to go through a special
dialog box and click the Enter key to do the actual search.

· Ctrl+Shift+I indents multiple lines of code at once. The number of spaces used is
the one that is set by the Block Indent option in the Editor page of the Environ-
ment Options dialog box. Ctrl+Shift+U is the corresponding key for unindenting
the code.

· Ctrl+O+U toggles the case of the selected code; you can also use Ctrl+K+E to
switch to lowercase and Ctrl+K+F to switch to uppercase.

· Ctrl+Shift+R starts recording a macro, which you can later play by using the
Ctrl+Shift+P shortcut. The macro records all the typing, moving, and deleting
operations done in the source code file. Playing the macro simply repeats the
sequence—an operation that has little meaning once you’ve moved on to a differ-
ent source code file. I have yet to find a use for this technique, although I guess
Borland uses it for testing purposes49.

· Holding down the Alt key, you can drag the mouse to select rectangular areas of
the editor, not just consecutive lines and words.

48 This is not true any more: Editor bookmarks are saved along with other local project settings.

49 I started using this feature (which is now surfaced with specific buttons at the bottom of the
editor pane) when I need to perform repeated editing, like deleting or adding the same text to
multiple lines. It can be very effective.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 37

The Form Designer

Another Delphi window you’ll interact with very often is the Form Designer, a visual
tool for placing components on forms. In the Form Designer you can select a com-
ponent directly with the mouse or through the Object Inspector, a handy feature
when a control is behind another one or is very small. If a control covers another
one completely, you can use the Esc key to select the parent control of the current
one. You can press Esc one or more times to select the form, or press and hold Shift
while you click on the selected component. This will deselect the current component
and select the form by default.

note What if you need to move a control at design time by dragging it, but its area is covered by a child
control? Just drag the child control and then press the Esc key (while holding down the mouse
button) to switch the dragging operation to the parent control.

There are two alternatives to using the mouse to set the position of a component.
You can either set values for the Left and Top properties, or you can use the arrow
keys while holding down Ctrl. Using arrow keys is particularly useful for fine-tuning
an element’s position. (The Snap to Grid option works only for mouse operations.50)
Similarly, by pressing the arrow keys while you hold down Shift, you can fine-tune
the size of a component. (If you press Shift+Ctrl along with an arrow key, the com-
ponent will be moved only at grid intervals.) Unfortunately, during these fine-
tuning operations the component hints with the position and size are not displayed.

To align multiple components or make them the same size, you can select several
components and set the Top, Left, Width, or Height property for all of them at the
same time. To select several components, you can click on them with the mouse
while holding down the Shift key, or, if all the components fall into a rectangular
area, you can drag the mouse to “draw” a rectangle surrounding them. When you’ve
selected multiple components, you can also set their relative position using the
Alignment dialog box (with the Align command of the form’s shortcut menu) or the
Alignment palette (accessible through the View Alignment Palette51 menu com-
mand).

50 The design time guidelines now available in Delphi offer you a lot of power for aligning compo-
nents to the sides or the text baseline and effectively replace some of the techniques described
here and later. Notice also that you now get some of the hints that were missing when I wrote
the text.

51 Now available with the menu View | Toolbars | Align.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

38 - Chapter I: Delphi and Object Pascal

When you’ve finished designing a form, you can use the Lock Controls command of
the Edit menu to avoid accidentally changing the position of a component in a form.
This is particularly helpful, as there is no real Undo operation on forms (only an
Undelete one), but the setting is not persistent.

Among its other features, the Form Designer offers a number of Tooltip hints:

· As you move the pointer over a component, the hint shows you the name and
type of the component. This is an alternative to the Show Component Captions
environment setting, which I tend to keep always active.

· As you resize a control, the hint shows the current size (the Width and Height
properties). Of course, this feature is available only for controls, not for nonvi-
sual components (which are indicated in the Form Designer by icons).

· As you move a component, the hint indicates the current position (the Left and
Top properties).

Finally, what may be the most important new Delphi 5 feature of the Form Designer
is that you can save DFM (Delphi Form Module) files in plain text instead of the tra-
ditional binary resource format52. You can toggle this option for an individual form
with the Form Designer’s shortcut menu, or you can set a default value for newly
created forms in the Preferences page of the Environment Options dialog box (see
Figure 1.9).

52 Using textual DFM files has now long been the default in Delphi.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 39

Figure 1.9:
The Preferences page
of the Environment
Options dialog box in
Delphi 5 allows you to
determine whether
forms will be created
by default and whether
the DFM files will hold
plain text. Images
captured in Delphi 5
and Delphi 12.

In the same page you can also specify whether the secondary forms of a program
will be automatically created at startup, a decision you can always reverse for each
individual form (using the Forms page of the Project Options dialog box). But the
most obvious difference between Delphi 5 and past versions, when working with
forms, is the Object Inspector.

Having DFM files stored as text is a welcome addition; it lets you better operate
with version-control systems. Programmers won’t get a real advantage from this

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

40 - Chapter I: Delphi and Object Pascal

feature, as you could already open the binary DFM files in the Delphi editor with a
specific common of the shortcut menu of the designer. Version control systems, on
the other hand, need to store the textual version of the DFM files to be able to com-
pare them and capture the differences between two versions of the same file. This
was probably introduced in Delphi 5 in conjunction with the new TeamSource ver-
sion control system interface, discussed in Chapter 1953.

In any case, note that if you use DFM files as text, Delphi will still convert them into
a binary resource format before including them in the executable file of your pro-
grams. DFM are linked into your executable in binary format to reduce the
executable size (although they are not really compressed) and to improve run-time
performance (they can be loaded faster).

note Earlier versions of the Delphi IDE won’t recognize text DFM files. When you open a textual DFM
in Delphi 4 (or past versions), you’ll get an error. To fix it, you should manually first use Delphi 5
to convert the DFM file to the binary format, using the shortcut menu of the Form Designer. (On
a computer that doesn’t have Delphi 5, you can use the Delphi 4 command-line tool CONVERT.54)
When you open an existing DFM in the Delphi 5 IDE, the original DFM format will be preserved
(unless you explicitly change it using the Text DFM shortcut menu item), thus allowing you to
reopen the same form in past version of Delphi.

The Object Inspector in Delphi 5

If you have used Delphi in the past, you will immediately see that there is something
new in the Object Inspector. The most important changes involve the graphical
drop-down lists and the property categories.

The first element is the simplest to use. The drop-down list for a property in the
Object Inspector can include graphical elements. Many of the relevant properties
use this feature by default: Color, Cursor and its variations, generally the
ImageIndex property of components connected with an ImageList (such as an
action, a menu item, or a toolbar button), the Pen and Brush styles, and a few oth-
ers. For example, Figure 1.10 shows the list of cursors (Cursor properties)55. Of
course, developers of Delphi components and add-ins will be able to customize this
feature, and you’ll see more graphical drop-down elements in the future. See the fol-

53 Given this entire feature is no longer available (and it has been removed from the product for a
long time), I’m going to remove that section of the book.

54 The convert.exe tools continues to exist and be available in the bin folder today

55 The list of cursors is still displayed today, even if I haven’t included an updated image.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 41

lowing section “Drop-Down Fonts in the Object Inspector” for a simple customiza-
tion of this window.

Figure 1.10:
A graphical drop-down
list in the Delphi 5
Object Inspector,
showing available
cursors.

It takes a little more time to get used to the property categories56. To understand this
feature, you first need to make it visible. To display properties by category instead of
by name, right-click in the Object Inspector and choose the proper Arrange option
from the shortcut menu. You can see the effect of this choice in Figure 1.11. Looking
carefully at this figure, you may notice something strange—the Align property is
available in two different categories. This is a general rule; categories are not exclu-
sive, and a property can register itself for multiple categories.

56 While the ability to group Object Inspector properties in categories still exists today (see Fig-
ure 1.11), this feature is not frequently used and generally not recommended. Because of this,
I’ve skipped capturing new versions of some of the other figures.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

42 - Chapter I: Delphi and Object Pascal

Figure 1.11:
The effect of arranging
properties by category.
Images captured in
Delphi 5 and Delphi 12.

Categories have the benefit of reducing the complexity of the Object Inspector. You
can use the View submenu from the shortcut menu to hide properties of given cate-
gories, regardless of the way they are displayed (that is, even if you prefer the
traditional arrangement by name, you can still hide the properties of some cate-
gories). For example, in Figure 1.12 you can see the properties of a form arranged by
name, but only the properties within the Visual and Input categories. In fact, as you
can see in the status bar of the Object Inspector, 44 properties are hidden. The
arrangement and the visibility you select will affect events, as well.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 43

Figure 1.12:
You can hide
properties of some
categories, even when
they are arranged by
name.

note Another new feature of the Delphi 5 Object Inspector is the ability to select the component refer-
enced by a property. To do this, double-click with the left mouse button on the property value
while keeping the Ctrl key pressed. For example, if you have a MainMenu component in a form
and you are looking at the properties of the form in the Object Inspector, you can select the Main-
Menu component by moving to the MainMenu property of the form and Ctrl+double-clicking on
the value of this property. This selects the main menu indicated as the value of the property in the
Object Inspector. This feature can be very useful when you have many connected components; for
example, when using multiple data-source and dataset components.57

Drop-Down Fonts in the Object Inspector58

The Delphi 5 Object Inspector has graphical drop-down lists for several properties.
You might want to add one showing the actual image of the font you are selecting,

57 The ability to jump to the connected component has later been extended with the ability to ex-
pand the properties of the connected component in place, as if it was a local property with sub-
properties.

58 This Object Inspector customization still works today, but it is rarely used as painting the drop
down list of fonts with the actual fonts can be very slow, compared to showing the font names
only.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

44 - Chapter I: Delphi and Object Pascal

corresponding to the Name subproperty of the Font property. This capability is actu-
ally built into Delphi 5, but it has been disabled because most computers have a
large number of fonts installed and rendering them can really slow down the com-
puter. If you want to enable this feature, you have to install in Delphi a package that
enables the FontNamePropertyDisplayFontNames global variable of the DsgnIntf
unit. I’ve done this in the OiFontPk package, which you can find among the program
examples for this chapter59.

Once this package is installed, you can move to the Font property of any component,
and use the graphical Name drop-down menu, as displayed below:

There is a second, more complex customization of the Object Inspector I like and
use frequently, a custom font for the entire Object Inspector, to make its text more
visible. This feature is particularly useful for public presentations60. You can find the

59 Again, this is not recommended as this makes the display terribly slow. The feature can be en-
abled without the special add-in package.

60 I won’t recommend using this old add-in package either, I doubt it’s going to work smoothly.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 45

package to install custom fonts in the Object Inspector on my Web site,
www.marcocantu.com.

Secrets of the Component Palette

The Component Palette61 is very simple to use, but there are a few things you might
not know. There are four simple ways to place a component on a form:

· After selecting a control in the palette, click within the form to set the position
for the control, and press-and-drag the mouse to size it.

· After selecting any component, simply click within the form to place it with the
default height and width.

· Double-click the icon in the palette to add a component of that type in the center
of the form.

· Shift-click on the component icon to place several components of the same kind
in the form. To stop this operation, simply click on the standard selector (the
arrow icon) on the left side of the Component Palette.

You can select the Properties command on the shortcut menu of the palette to com-
pletely rearrange the components in the various pages, possibly adding new
elements or just moving them from page to page. In the resulting Properties page,
you can simply drag a component from the Components list box to the Pages list box
to move that component to a different page.

note When you have too many pages in the Component Palette, you’ll need to scroll them to reach a
component. There is a simple trick you can use in this case: Rename the pages with shorter
names, so that all the pages will fit on the screen. Obvious—once you’ve thought about it.

The real undocumented feature of the Component Palette is the “hot-track” activa-
tion. By setting special keys of the Registry, you can simply select a page of the
palette by moving over the tab, without any mouse click. The same feature can be

61 The Component Palette has been replaced by the Tools Palette, but some of the description in
this section (like the ways to select components) still applies. Delphi still has also a Compo-
nents Toolbar that acts, behaves, and can be customized much like the original Component
palette, although it’s not a stable and reliable feature and Embarcadero has hinted at deprecat-
ing and removing it.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

46 - Chapter I: Delphi and Object Pascal

applied to the component scrollers on both sides of the palette, which show up when
a page has too many components.

To activate this hidden feature you have to add an Extras key under
HKEY_CURRENT_USER\Software\Borland\Delphi\5.0. Under this key you have to
enter two string values, AutoPaletteSelect and AutoPaletteScroll, and set each
value to the string ‘1’.

Defining Event Handlers

There are several techniques you can use to define a handler for an event of a com-
ponent:

· Select the component, move to the Events page, and either double-click in the
white area on the right side of the event or type a name in that area and press the
Enter key.

· For many controls, you can double-click on them to perform the default action,
which is to add a handler for the OnClick, OnChange, or OnCreate events.

When you want to remove an event handler you have written from the source code
of a Delphi application, you could delete all of the references to it. However, a better
way is to delete all of the code from the corresponding procedure, leaving only the
declaration and the begin and end keywords. The text should be the same as what
Delphi automatically generated when you first decided to handle the event. When
you save or compile a project, Delphi removes any empty methods from the source
code and from the form description (including the reference to them in the Events
page of the Object Inspector). Conversely, to keep an event handler that is still
empty, consider adding a comment to it (even simply the // characters), so that it
will not be removed.

Copying and Pasting Components

An interesting feature of the Form Designer is the ability to copy and paste compo-
nents from one form to another or to duplicate the component in the form. During
this operation Delphi duplicates all the properties and keeps the connected event
handlers, and, if necessary, changes the name of the control (which must be unique
in each form).

It is also possible to copy components from the Form Designer to the editor and vice
versa. When you copy a component to the Clipboard, Delphi also places the textual

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 47

description there. You can even edit the text version of a component, copy the text
to the Clipboard, and then paste it back into the form as a new component. For
example, if you place a button on a form, copy it, and then paste it into an editor
(which can be Delphi’s own source code editor or any word processor), you’ll get the
following description:

object Button1: TButton
 Left = 152
 Top = 104
 Width = 75
 Height = 25
 Caption = 'Button1'
 TabOrder = 0
end

Now, if you change the name of the object, its caption, or its position, for example,
or add a new property, these changes can be copied and pasted back to a form. Here
are some sample changes:

object Button1: TButton
 Left = 152
 Top = 104
 Width = 75
 Height = 25
 Caption = 'My Button'
 TabOrder = 0
 Font.Name = 'Arial'
end

Copying this description and pasting it into the form will create a button in the spec-
ified position with the caption My Button in an Arial font.

To make use of this technique, you need to know how to edit the textual representa-
tion of a component, what properties are valid for that particular component, and
how to write the values for string properties, set properties, and other special prop-
erties. When Delphi interprets the textual description of a component or form, it
might also change the values of other properties related to those you’ve changed,
and it might change the position of the component so that it doesn’t overlap a previ-
ous copy. Of course, if you write something completely wrong and try to paste it into
a form, Delphi will display an error message indicating what has gone wrong.

You can also select several components and copy them all at once, either to another
form or to a text editor. This might be useful when you need to work on a series of
similar components. You can copy one to the editor, replicate it a number of times,
make the proper changes, and then paste the whole group into the form again.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

48 - Chapter I: Delphi and Object Pascal

From Component Templates to Frames

When you copy one or more components from one form to another, you simply copy
all of their properties. A more powerful approach is to create a component template,
which makes a copy of both the properties and the source code of the event han-
dlers. As you paste the template into a new form, by selecting the pseudo-
component from the palette, Delphi will replicate the source code of the event han-
dlers in the new form.

To create a component template, select one or more components and issue the
Component Create Component Template menu command. This opens the Com-
ponent Template Information dialog box (see Figure 1.13) where you enter the name
of the template, the page of the Component palette where it should appear, and an
icon.

Figure 1.13:
The Component
Template Information
dialog box. Images
captured in Delphi 5
and Delphi 12.

By default, the template name is the name of the first component you’ve selected
followed by the word Template. The default template icon is the icon of the first
component you’ve selected, but you can replace it with an icon file. The name you
give to the component template will be used to describe it in the Component Palette
(when Delphi displays the pop-up hint).

All the information about component templates is stored in a single file, DEL-
PHI32.DCT62, but there is apparently no way to retrieve this information and edit a

62 The file is now bds.dct, stored in C:\Users\xxx\AppData\Roaming\Embarcadero\BDS\xxx.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 49

template. What you can do, however, is place the component template in a brand-
new form, edit it, and install it again as a component template using the same
name. This way you can overwrite the previous definition.

note A group of Delphi programmers can share component templates by storing them in a common
directory, adding to the Registry the entry CCLibDir under the key Software\Borland\
Delphi\5.0\Component Templates.63

Component templates are handy when different forms need the same group of com-
ponents and associated event handlers. The problem is that once you place an
instance of the template in a form, Delphi makes a copy of the components and their
code, which is no longer related to the template. There is no way to modify the tem-
plate definition itself, and it is certainly not possible to make the same change
effective in all the forms that use the template. Am I asking too much? Not at all.
This is what the new frames technology in Delphi 5 does.

A frame is a sort of panel you can work with at design time in a way similar to a
form. You simply create a new frame, place some controls in it, and add code to the
event handlers. After the frame is ready you can open a form, select the Frame
pseudo-component from the Standard page of the Component Palette, and choose
one of the available frames (of the current project). After placing the frame in a
form, you’ll see it as if the components were copied to it. If you modify the original
frame (in its own designer), the changes will be reflected in each of the instances of
the frame.

You can see a simple example, called Frames1, in Figure 1.1464. A screen snapshot
doesn’t really mean much; you should open the program or rebuild a similar one if
you want to start playing with frames.

Like forms, frames define classes, so they fit within the VCL object-oriented model
much more easily than Component Templates. Chapter 4 provides an in-depth look
at the VCL and includes a more detailed description of frames. As you might imag-
ine from this short introduction, frames are a powerful new technique.

63 The registry key is still exists, but I’m not sure if this undocumented configuration works to-
day.

64 Frames work today, for both VCL and FireMonkey, even if I haven’t captured a new image for
Figure 1.14.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

50 - Chapter I: Delphi and Object Pascal

Figure 1.14:
The Frames1 example
demonstrates the use
of frames. The frame
(on the left) and its
instance inside a form
(on the right) are kept
in synch.

Managing Projects

One of the new features of the Delphi 4 IDE was the multi-target Project Manager
(View Project Manager). The Project Manager works on a project group, which
can have one or more projects under it. For example, a project group can include a
DLL and an executable file, or multiple executable files.

In Figure 1.15 you can see the Project Manager with the project group for the exam-
ples of the current chapter. As you can see, the Project Manager is based on a tree
view, which shows the hierarchical structure of the project group, the projects, and
all of the forms and units that make up each project. You can use the simple toolbar
and the more complex shortcut menus of the Project Manager to operate on it. The
shortcut menu is context-sensitive; its options depend on the selected item. There
are menu items to add a new or existing project to a project group, to compile or
build a specific project, or to open a unit.

Of all the projects in the group only one is active, and this is the project you operate
upon when you select a command such as Project Compile. The Project pull-down
of the main menu has two commands you can use to compile or build all the
projects of the group. (Strangely enough, these commands are not available in the
shortcut menu of the Project Manager for the project group.65) When you have mul-

65 They were not, now they've been added. The Project Manager has seen many extensions over
the years, but its core behavior is still what I described here (see also Figure 1.15).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 51

tiple projects to build, you can set a relative order by using the Build Sooner and
Build Later commands. These two commands basically rearrange the projects in the
list.

Figure 1.15:
Delphi’s multi-target
Project Manager.
Images captured in
Delphi 5 and Delphi 12.

Delphi 5 adds some features to the Project Manager. You can now drag source code
files from Windows folders or Windows Explorer onto a project in the Project Man-
ager window to add them to that project. Unfortunately, you cannot drag an existing

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

52 - Chapter I: Delphi and Object Pascal

project or package file to add it to the entire project group. You can also drag from
one project to another of the same project group.

Another big advantage is that the Project Manager automatically selects as current
project the one you are working with, for example, opening a file. You can easily see
which project is selected and change it by using the combo box on the top of the
form66.

note Besides adding Pascal files and projects, you can add Windows resource files to the Project Man-
ager; they are compiled along with the project. Simply move to a project, select the Add shortcut
menu, and choose Resource file (*.rc) as the file type. This resource file will be automatically
bound to the project, even without a corresponding $R directive.

Delphi saves the project groups with the new .BPG extension, which stands for Bor-
land Project Group67. This feature comes from C++Builder and from past Borland
C++ compilers, a history that is clearly visible as you open the source code of a
project group, which is basically that of a makefile in a C/C++ development envi-
ronment68.

Project Options

The Project Manager doesn’t provide a way to set the options of two different
projects at one time. What you can do instead is invoke the Project Options dialog
from the Project Manager for each project69. The first page of Project Options
(Forms) lists the forms that should be created automatically at program startup and
the forms that are created manually by the program. The next page (Application) is
used to set the name of the application and the name of its Help file, and to choose
its icon. Other Project Options choices relate to the Delphi compiler and linker, ver-
sion information, and the use of run-time packages.

66 That combo box is still available in the form of a drop down split button, the first button of the
Project Manager toolbar, with the symbol of a target superimposed.

67 This is not the case any more. Project and project groups are now XML files in the MSBuild
format, as this is the tool for building applications since Delphi 2007, as detailed in my “Del-
phi 2007 Handbook”. I took the freedom of removing the project group files listed in the origi-
nal book, as they are totally useless in today's Delphi.

68 The format was later changed to the MSBUILD XML format. You can still open a Delphi 5
project group file today, although the IDE will ask you to save it in the current format.

69 The Project Options dialog still exists, but the sequence of pages has changed, with many more
features available.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 53

There are two ways to set compiler options. One is to use the Compiler page of the
Project Options dialog. The other is to set or remove individual options in the source
code with the {$X+} or {$X-} commands, where you’d replace X with the option you
want to set. This second approach is more flexible, since it allows you to change an
option only for a specific source-code file, or even for just a few lines of code. The
source-level options override the compile-level options.

All of the Project Options are saved automatically with the project, but in a separate
file with a .DOF extension70. This is a text file you can easily edit. You should not
delete this file if you have changed any of the default options. Delphi also saves the
compiler options in another format in a CFG file, for command line compilation.

Another alternative for saving compiler options is to press Ctrl+O+O (press the O
key twice while keeping Ctrl pressed). This inserts, at the top of the current unit,
compiler directives that correspond to the current project options, as in the follow-
ing listing71:

{$A+,B-,C+,D+,E-,F-,G+,H+,I+,J+,K-,L+,M-,N+,O+,P+,Q-,
R-,S-,T-,U-,V+,W-,X+,Y+,Z1}

{$MINSTACKSIZE $00004000}

{$MAXSTACKSIZE $00100000}

{$IMAGEBASE $00400000}

{$APPTYPE GUI}

Compiling and Building Projects

There are several ways to compile a project. If you run it (by pressing F9 or clicking
the Run toolbar icon), Delphi will compile it first. When Delphi compiles a project,
it compiles only the files that have changed.

70 Project options files are gone as well, and so are their command line counterparts (as compila-
tion now follows the same steps both from the command line and from the IDE. In current
versions of Delphi, the project settings are saved in project files or in build configurations, can
be shared among projects, have release and build variations, and much more. Still the core ap-
plication settings haven't changed much. Coverage of project settings management is my Del-
phi Handbooks, as they were extended from version to version.

71 There are now many more lines inserted, but the keyboard shortcut and the overall concept re-
main the same.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

54 - Chapter I: Delphi and Object Pascal

If you select Compile Build All instead72, every file is compiled, even if it has not
changed. You should only need this second command infrequently, since Delphi can
usually determine which files have changed and compile them as required. The only
exception is when you change some project options. In this case you have to use the
Build All command to put the new options into effect.

To build a project, Delphi first compiles each source code file, generating a Delphi
compiled unit (DCU). (This step is performed only if the DCU file is not already up
to date.) The second step, performed by the linker, is to merge all the DCU files into
the executable file, optionally with compiled code from the VCL library (if you
haven’t decided to use packages at run time). The third step is binding into the exe-
cutable file any optional resource files, such as the RES file of the project, which
hosts its main icon, and the DFM files of the forms. You can better understand the
compilation steps and follow what happens during this operation if you enable the
Show Compiler Progress option (in the Preferences page of the Environment
Options dialog box).

note Delphi doesn’t always properly keep track of when to rebuild units based on other units you’ve
modified. This is particularly true for the cases (and there are many) in which user intervention
confuses the compiler logic. For example, renaming files, modifying source files outside the IDE,
copying older source files or DCU files to disk, or having multiple copies of a unit source file in
your search path can break the compilation. Every time the compiler shows some strange error
message, the first thing you should try is the Build All command to resynchronize the make fea-
ture with the current files on disk.

The Compile command can be used only when you have loaded a project in the edi-
tor. If no project is active and you load a Pascal source file, you cannot compile it.
However, if you load the source file as if it were a project, that will do the trick and
you’ll be able to compile the file. To do this, simply select the Open Project toolbar
button and load a PAS file. Now you can check its syntax or compile it, building a
DCU.73

I’ve mentioned before that Delphi allows you to use run-time packages, which affect
the distribution of the program more than the compilation process. Delphi packages
are dynamic link libraries (DLLs) containing Delphi components. By using pack-
ages, you can make an executable file much smaller. However, the program won’t

72 The menu command is now Project | Build.

73 In recent versions of Delphi (probably since MSBuild was introduced) this trick doesn't work
any more. There is apparently no way to compile an individual source code file outside of a
project in the IDE. However, you can easily compile a single Pascal source code files with the
command line compiler.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 55

run unless the proper dynamic link libraries (such as vcl50.bpl, which is quite large)
are available on the computer where you want to run the program.

If you add the size of this dynamic library to that of the small executable file, the
total amount of disk space required by the apparently smaller program built with
run-time packages is much larger than the space required by the apparently bigger
stand-alone executable file. Of course if you have multiple applications on a single
system, you’ll end up saving a lot, both in disk space and memory consumption at
run time. The use of packages is often but not always recommended. I’ll discuss all
the implications of packages in detail in Chapter 13, where we’ll build some pack-
ages, and in Chapter 14, which is devoted to DLLs and packages.

note You don’t have to use the stock vcl50.bpl package if you only need a small set of VCL units. You
can create your own mini-VCL package, as long as you don’t call it vcl50.bpl.

In both cases, Delphi executables are extremely fast to compile, and the speed of the
resulting application is comparable to that of a C or C++ program. Delphi compiled
code runs at least five times faster than the equivalent code in interpreted or “semi-
compiled” tools74.

Conditional Compilation for Different versions of
Delphi

You can test the VER130 define to check whether you are compiling with Delphi 5 or
an earlier version. This can be useful if you want to compile the same program with
different versions of Delphi and make minor changes to the source code in each of
the versions. If you want to add some specific Delphi 5 code, you can write that code
as follows:

{$IFDEF VER130}
 // Delphi 5 specific code
{$ENDIF}

Each of the past versions of the Delphi included a specific define, so you can write a
complex statement to provide alternative coding solutions for different Delphi ver-
sions. The numbering scheme starts from the last version of Pascal compiler from

74 I’m not sure if this specific number (“five times faster”, which I assume was in reference to Vis-
ual Basic) makes sense today, with many alternatives between compiled and interpreted code.
Delphi programs are still native and remain fast. Some of the options used today for desktop
development, like JavaScript, are clearly in a different league, both in terms of slower perfor-
mance and in terms of the complex deployment dependencies.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

56 - Chapter I: Delphi and Object Pascal

Borland before Delphi, Borland Pascal with Object version 7, and also includes the
versions of the Pascal compiler included in Borland C++Builder75:

· VER80 for Delphi 1

· VER90 for Delphi 2

· VER93 for C++Builder 1

· VER100 for Delphi 3

· VER110 for C++Builder 3

· VER120 for Delphi 4

· VER125 for C++Builder 4

Exploring a Project76

Past versions of Delphi included an Object Browser, which you could use when a
project was compiled to see a hierarchical structure of its classes and to look for its
symbols and the source code lines where they are referenced. Delphi 5 includes a
similar but enhanced tool, with a new name—Project Explorer. Like the Code
Explorer, it is updated automatically as you type, without recompiling the project.

The Project Explorer retains from the Object Browser the main structure of Classes,
Units, and Globals, but it lets you choose whether to look only for symbols defined
within your project or for those from both your project and the VCL. You can see an
example with project symbols only in Figure 1.16.

75 The list has been added to the Delphi docwiki, and it can be found at docwiki.embarcadero.-
com/RADStudio/en/Compiler_Versions. The Delphi 12 compiler defines VER360.

76 This entire feature isn’t part of recent versions of Delphi, so you can skip this section.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://docwiki.embarcadero.com/RADStudio/en/Compiler_Versions
https://docwiki.embarcadero.com/RADStudio/en/Compiler_Versions

Chapter I: Delphi and Object Pascal - 57

Figure 1.16:
The Project Explorer, a
completely updated
Object Browser77

You can change the settings of this Explorer and those of the Code Explorer in the
Explorer page of the Environment Options (see Figure 1.5) or by selecting the Prop-
erties command in the shortcut menu of the Project Explorer. Some of the Explorer
categories you see in this window are specific to the Project Explorer, others relate
to both tools.

Additional and External Delphi Tools

Besides the IDE, when you install Delphi you get other, external tools. Some of
them, such as the Database Desktop, the Package Collection Editor (PCE.EXE), and
the Image Editor (ImagEdit.EXE), are available from Tools menu of the IDE. In
addition, the Client/Server edition has a link to the SQL Monitor (SqlMon.EXE)78.

Other tools that are not directly accessible from the IDE include many command-
line tools you can find in the Bin directory of Delphi. For example, there is a com-
mand-line Delphi compiler (DCC.EXE), a Borland resource compiler (BRC32.EXE
and BRCC32.EXE), and an executable viewer (TDump.EXE).79

77 As mentioned earlier, this feature is no longer available in recent versions of Delphi.

78 Most of these tools are now gone. The Tools menu in Delphi 12 includes by default the Bitmap
Style Designer, the FireDAC Explorer, the FireDAC Monitor, the REST Debugger, the XML
Mapper, and – in some editions – the RAD Server Console.

79 These low level tools, instead, are still available today, even if with some differences. There are
multiple Delphi compilers, for example.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

58 - Chapter I: Delphi and Object Pascal

Finally, some of the sample programs that ship with Delphi are actually useful tools
that you can compile and keep at hand. I’ll discuss some of these tools in the book,
as needed. Here are a few of the useful and higher-level tools80:

· WinSight (WS.EXE) is a Windows “message spy” program available in the Bin
directory.81

· Database Explorer can be activated from the Delphi IDE or as a stand-alone
tool, using the DBExplor.EXE program of the Bin directory.82

· Convert (Convert.EXE) is a command-line tool you can use to convert DFM files
into the equivalent textual description and vice versa.

· Turbo Grep (Grep.EXE) is a command-line search utility, much faster than the
embedded Find in Files mechanism but not so easy to use.

· Turbo Register Server (TRegSvr.EXE) is a tool you can use to register
ActiveX libraries and COM servers. The source code of this tool is available
under Demos/ActiveX/TRegSvr.83

· Resource Explorer is a powerful resource viewer (but not a full-blown
resource editor) you can find under Demos/ResXplor84.

· The Delphi 5 CD also includes a separate installation for Resource Work-
shop85. This is an old 16-bit resource editor that can also manage Win32
resource files. It was formerly included in Borland C++ and Pascal compilers for
Windows, and it was much better than the standard Microsoft resource editors
then available. Although its user interface hasn’t been updated and it doesn’t
handle long file names, this tool can still be very useful for building custom or
special resources. It also lets you explore the resources of existing executable
files. You’ll find more information about Windows resources and the use of
Resource Workshop in Chapter 19.

80 Convert, Grep, and TRegSvr still exist today. For the other tools, see the respective footnotes.

81 The WinSight tool is not available any more. There are similar free utilities for Windows.

82 DbExplorer has been replaced by equivalent FireDAC utilities, some of which are listed in the
Tools menu, as covered in a previous footnote.

83 The tool is still available, but not its source code.

84 This demo is no longer part of the core product demos.

85 Not only there is no CD, but also no version of the Resource Explorer available with the prod-
uct. There are similar free utilities for Windows.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 59

The Files Produced by the System

Delphi produces a number of files for each project, and you should know what they
are and how they are named. There are basically two elements that have an impact
on how files are named: the names you give to a project and its units, and the prede-
fined file extensions used by Delphi. Table 1.1 lists the extensions of the files you’ll
find in the directory where a Delphi project resides86. The table also shows when or
under what circumstances these files are created and their importance for future
compilations. Extensions that are new to Delphi 5 are marked in bold.

Table 1.1: Delphi Project File Extensions

EXTENSION FILE TYPE AND
DESCRIPTION

CREATION TIME REQUIRED TO COMPILE?

.BMP, .ICO,

.CUR
Bitmap, icon, and cursor files:
standard Windows files used
to store bitmapped images.

Development:
Image Editor

Usually not, but they might be needed at
run time and for further editing.

.BPG Borland Project Group87: the
files used by the new multiple-
target Project Manager. It is a
sort of makefile.

Development Required to recompile all the projects of
the group at once.

.BPL Borland Package Library: a
DLL including VCL
components to be used by the
Delphi environment at design
time or by applications at run
time. (These files used a .DPL
extension in Delphi 3.)

Compilation:
Linking

You’ll distribute packages to other Delphi
developers and, optionally, to end-users.

.CAB The Microsoft Cabinet
compressed-file format used
for Web deployment by Delphi.
A CAB file can store multiple
compressed files.

Compilation Distributed to users.

.CFG Configuration file with project
options. Similar to the DOF
files.

Development Required only if special compiler options
have been set.

.DCP Delphi Component Package: a
file with symbol information
for the code that was compiled

Compilation Required when you use packages. You’ll
distribute it only to other developers along
with DPL files.

86 Most of these file types are still used, but not all of them. I haven’t added here new files avail-
able, including the new project files in MSBUILD format, but only added a few comments to
the original list.

87 This files is not used any more, replaced by Project Group files, with the .groupproj extension.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

60 - Chapter I: Delphi and Object Pascal

into the package. It doesn’t
include compiled code, which
is stored in DCU files.

.DCU Delphi Compiled Unit: the
result of the compilation of a
Pascal file.

Compilation Only if the source code is not available.
DCU files for the units you write are an
intermediate step, so they make
compilation faster.

.DFM Delphi Form File: a binary file
with the description of the
properties of a form (or a data
module) and of the
components it contains.

Development Yes. Every form is stored in both a PAS
and a DFM file.

.~DF88 Backup of Delphi Form File
(DFM).

Development No. This file is produced when you save a
new version of the unit related to the form
and the form file along with it.

.DFN89 Support file for the
Integrated Translation
Environment (there is one
DFN file for each form and
each target language).

Development
(ITE)

Yes (for ITE). These files contain the
translated strings that you edit in
the Translation Manager.

.DLL Dynamic Link Library: another
version of an executable file.

Compilation:
Linking

See .EXE.

.DOF90 Delphi Option File: a text file
with the current settings for
the project options.

Development Required only if special compiler options
have been set.

.DPK Delphi Package: the project
source code file of a package.

Development Yes.

.DPR Delphi Project file. (This file
actually contains Pascal source
code.)

Development Yes.

.~DP Backup of the Delphi Project
file (.DPR).

Development No. This file is generated automatically
when you save a new version of a project
file.

.DSK Desktop file: contains
information about the position
of the Delphi windows, the
files open in the editor, and
other Desktop settings.

Development No. You should actually delete it if you
copy the project to a new directory.

88 Backup files are now saved in sequence under the __history sub-folder of the project source
code folder and they use a different logic. The same is true for all of the backup files listed in
this table.

89 This format still exists but the translation support isn’t installed any more as part of Delphi.
The same is true for other file formats associated with the old translation system. The feature
can currently be installed using the GetIt package manager.

90 Project options are now part of the .dproj project file.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 61

.DSM91 Delphi Symbol Module: stores
all the browser symbol
information.

Compilation (but
only if the Save
Symbols option is
set)

No. Object Browser uses this file, instead
of the data in memory, when you cannot
recompile a project.

.DTI92 Design Time Information,
used by the new Data
Module Designer

Development No. This file stores “design-time
only” information, not required by
the resulting program but very
important for the programmer.

.EXE Executable file: the Windows
application you’ve produced

Compilation:
Linking

No. This is the file you’ll distribute. It
includes all of the compiled units, forms,
and resources.

.HTM Or .HTML, for HyperText
Markup Language: the file
format used for Internet Web
pages

Web deployment of
an ActiveForm

No. This is not involved in the project
compilation.

.LIC The license files related to an
OCX file.

ActiveX Wizard
and other tools

No. It is required to use the control in
another development environment.

.OBJ Object (compiled) file, typical
of the C/C++ world.

Intermediate
compilation step,
generally not used
in Delphi

It might be required to merge Delphi with
C++ compiled code in a single project.

.OCX OLE Control eXtension: a
special version of a DLL,
containing ActiveX controls or
forms.

Compilation:
Linking

See .EXE.

.PAS Pascal file: the source code of a
Pascal unit, either a unit
related to a form or a stand-
alone unit.

Development Yes.

.~PA Backup of the Pascal file
(.PAS).

Development No. This file is generated automatically by
Delphi when you save a new version of the
source code.

.RES, .RC Resource file: the binary file
associated with the project and
usually containing its icon.
You can add other files of this
type to a project. When you
create custom resource files
you might use also the textual
format, .RC.

Development
Options dialog box.
The ITE
(Integrated
Translation
Environment)
generates resource
files with special
comments.

Yes. The main RES file of an application is
rebuilt by Delphi according to the
information in the Application page of the
Project Options dialog box.

.RPS Translation Repository
(part of the Integrated
Translation

Development
(ITE)

No. Required to manage the
translations.

91 This file format and the associated feature don’t exist any more.

92 This feature is also long gone, with the matching file format.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

62 - Chapter I: Delphi and Object Pascal

Environment).

.TLB Type Library: a file built
automatically or by the Type
Library Editor for OLE server
applications.

Development This is a file other OLE programs might
need.

.TODO To-do list file, holding the
items related to the entire
project.

Development No. This file hosts notes for the
programmers.

.UDL Microsoft Data Link Development Used by ADO to refer to a data
provider. Similar to an alias in the
BDE world (see Chapter 12).

Besides the files generated during the development of a project in Delphi, there are
many others generated and used by the IDE itself. In Table 1.2 I’ve provided a short
list of extensions worth knowing about. Most of these files are in proprietary and
undocumented formats, so there is little you can do with them.

Table 1.2: Selected Delphi IDE Customization File Extensions93

EXTENSION FILE TYPE

.DCI Delphi Code Templates

.DRO Delphi’s Object Repository (The repository should be modified with the Tools
Repository command.)

.DMT Delphi Menu Templates

.DBI Database Explorer Information

.DEM Delphi Edit Mask (Files with country-specific formats for edit masks)

.DCT Delphi Component Templates

.DST Desktop settings file (one for each desktop setting you’ve defined)

Looking at Source Code Files

I’ve just listed some files related to the development of a Delphi application, but I
want to spend a little time to cover their actual format. The fundamental Delphi files
are Pascal source code files, which are plain ASCII text files. The bold, italic, and
colored text you see in the editor depend on syntax highlighting, but they are not
saved with the file. It is worth noting that there is one single file for the whole code
of the form, not just small code fragments.

93 Many of these files don’t exist any more. Desktops settings and component template files are
still used.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 63

note In the listings in the book I’ve tried to match the bold syntax highlighting of the editor for key-
words and the italic for strings and comments.

For a form, the Pascal file contains the form class declaration and the source code of
the event handlers. The values of the properties you set in the Object Inspector are
stored in a separate form description file (with a .DFM extension). The only excep-
tion is the Name property, which is used in the form declaration to refer to the
components of the form.

The DFM file is a binary and in Delphi 5 can be saved either as a plain text file or in
the traditional Windows Resource format. You can set the default format you want
to use for new projects in the Preferences page of the Environment Options dialog
box, and you can toggle the format of individual forms with the Text DFM command
of a form’s shortcut menu. A plain-text editor can read only the text version. How-
ever, you can load DFM files of both types in the Delphi editor, which will, if
necessary, first convert them into a textual description. The simplest way to open
the textual description of a form (whatever the format) is to select the View As Text
command on the shortcut menu in the Form Designer. This closes the form, saving
it if necessary, and opens the DFM file in the editor. You can later go back to the
form using the View As Form command on the shortcut menu in the editor window.

You can actually edit the textual description of a form, although this should be done
with extreme care. As soon as you save the file, it will be turned back into a binary
file. If you’ve made incorrect changes, compilation will stop with an error message
and you’ll need to correct the contents of your DFM file before you can reopen the
form. For this reason, you shouldn’t try to change the textual description of a form
manually until you have a good knowledge of Delphi programming.

note In the book I’ll often show you excerpts of DFM files. With most of these excerpts, I’ll only be
showing the most relevant components or properties; generally, I will have removed the posi-
tional properties, the binary values, and other lines providing little useful information.

In addition to the two files describing the form (PAS and DFM), a third file is vital
for rebuilding the application. This is the Delphi project file (DPR), which is another
Pascal source code file. This file is built automatically, and you seldom need to
change it manually. You can see this file with the View Project Source menu com-
mand.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

64 - Chapter I: Delphi and Object Pascal

Some of the other, less relevant, files produced by the IDE use the structure of Win-
dows INI files, in which each section is indicated by a name enclosed in square
brackets. For example, this is a fragment of an option file (DOF)94:

[Compiler]
A=1
B=0
ShowHints=1
ShowWarnings=1

[Linker]
MinStackSize=16384
MaxStackSize=1048576
ImageBase=4194304

[Parameters]
RunParams=
HostApplication=

The same structure is used by the Desktop files (DSK), which store the status of the
Delphi IDE for the specific project, listing the position of each window. Here is a
small excerpt:

[MainWindow]
Create=1
Visible=1
State=0
Left=2
Top=0
Width=800
Height=97

note A lot of information related to the status of the Delphi environment is saved in the Windows Reg-
istry, as well as in DSK and other files. I’ve already indicated a few special undocumented entries
of the Registry you can use to activate specific features. You should explore the HKEY_CUR-
RENT_USER/Software/Borland/Delphi/5.095 section of the Registry to examine all the setting of
the Delphi IDE (including all those you can modify with the Project Options and the Environment
Options dialog boxes, as well as many others).

94 As mentioned earlier, option files content is now part of the .drpoj project file.

95 This is still true, although the location in the registry is now HKEY_CURRENT_USER\Soft-
ware\Embarcadero\BDS\xx.0.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 65

The Object Repository

Delphi has several menu commands you can use to create a new form, a new appli-
cation, a new data module, a new component, and so on. These commands are
located in the File menu and in other pull-down menus. What happens if you simply
select File New96? Delphi opens the Object Repository, which is used to create
new elements of any kind: forms, applications, data modules, thread objects,
libraries, components, automation objects, and more.

The New dialog box (shown in Figure 1.17) has a number of pages, hosting all the
new elements you can create, existing forms and projects stored in the Repository,
Delphi wizards, and the forms of the current project (for visual form inheritance).
The pages and the entries in this tabbed dialog box depend on the specific version of
Delphi, so I won’t list them here.

note The Object Repository has a shortcut menu that allows you to sort its items in different ways (by
name, by author, by date, or by description) and to show different views (large icons, small icons,
lists, and details). The Details view gives you the description, the author, and the date of the tool,
information that is particularly important when looking at wizards, projects, or forms that you’ve
added to the Repository.

The simplest way to customize the Object Repository is to add new projects, forms,
and data modules as templates. You can also add new pages and arrange the items
on some of them (not including the New and “current project” pages). Adding a new
template to Delphi’s Object Repository is as simple as using an existing template to
build an application. When you have a working application you want to use as a
starting point for further development of similar programs, you can save the current
status to a template, ready to use later on. Simply use the Project Add to Reposi-
tory command, and fill in its dialog box.

Just as you can add new project templates to the Object Repository, you can also
add new form templates. Simply move to the form that you want to add and select
the Add To Repository command of its shortcut menu. Then indicate the title,
description, author, page, and icon in its dialog box.

You might want to keep in mind that as you copy a project or form template to the
repository and then copy it back to another directory, you are simply doing a copy
and paste operation. This isn’t much different than copying the files manually.

96 Beside the fact that the menu command is now File | New | Other and the totally different UI,
the role, content, and behavior of the Object Repository remains very similar to what’s de-
scribed here.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

66 - Chapter I: Delphi and Object Pascal

Figure 1.17:
The first page of the
New dialog box,
generally known as the
“Object Repository”.
Images captured in
Delphi 5 and Delphi 12.

The Empty Project Template

When you start a new project, it automatically opens a blank form, too. If you
want to base a new project on one of the form objects or Wizards, this is not
what you want, however. To solve this problem, you can add an Empty Project
template to the Gallery.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 67

The steps required to accomplish this are simple97:

1. Create a new project as usual.

2. Remove its only form from the project.

3. Add this project to the templates, naming it Empty Project.

When you select this project from the Object Repository, you gain two
advantages: You have your project without a form, and you can pick a
directory where the project template’s files will be copied. There is also a
disadvantage—you have to remember to use the File Save Project As
command to give a new name to the project, because saving the project any
other way automatically uses the default name in the template.

To further customize the Repository, you can use the Tools Repository command.
This opens the Object Repository dialog box, which you can use to move items to
different pages, to add new elements, or to delete existing ones. You can even add
new pages, rename or delete them, and change their order. An important element of
the Object Repository setup is the use of defaults:

· Use the New Form check box below the list of objects to designate a form as the
one to be used when a new form is created (File New Form).

· The Main Form check box indicates which type of form to use when creating the
main form of a new application (File New Application) when no special New
Project is selected.

· The New Project check box, available when you select a project, marks the
default project that Delphi will use when you issue the File New Application
command.

Only one form and only one project in the Object Repository can have each of these
three settings marked with a special symbol placed over its icon. If no project is
selected as New Project, Delphi creates a default project based on the form marked
as Main Form. If no form is marked as the main form, Delphi creates a default
project with an empty form.

When you work on the Object Repository, you work with forms and modules saved
in the OBJREPOS subdirectory of the Delphi main directory98. At the same time, if you

97 I haven’t actually tried these steps, but I assume they still work.

98 Current folder is still under the application folder, at C:\Program Files (x86)\Embarcadero\
Studio\xx.0\ObjRepos

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

68 - Chapter I: Delphi and Object Pascal

use a form or any other object directly without copying it, then you end up having
some files of your project in this directory. It is important to realize how the Reposi-
tory works, because if you want to modify a project or an object saved in the
Repository, the best approach is to operate on the original files, without copying
data back and forth to the Repository.

Installing New DLL Wizards

Technically, new wizards come in two different forms: They may be part of
components or packages, or they may be distributed as stand-alone DLLs. In
the first case, they would be installed the same way you install a component or
a package. When you’ve received a stand-alone DLL, you should add the
name of the DLL in the Windows Registry under the key Software\Borland\
Delphi\5.0\Experts99. Simply add a new string key under this key, choose a
name you like (it doesn’t really matter what it is), and use as text the path and
filename of the wizard DLL. You can look at the entries already present under
the Experts key to see how the path should be entered.

What’s Next?

This chapter has presented an overview of the new and more advanced features of
Delphi 5 programming environment, including a number of tips and suggestions
about some lesser-known features that were already available in previous Delphi
versions. I didn’t provide a step-by-step description of the IDE, partly because it is
generally simpler to start using Delphi than it is to read about how to use it. More-
over, there is a detailed Help file describing the environment and the development
of a new simple project; and you might already have some exposure to one of the
past versions of Delphi or a similar development environment.

We haven’t finished covering new features of Delphi 5 IDE, though. I’ll discuss the
new Data Module Designer in Chapter 10, new debugging features in Chapter 18,
and TeamSource and the Integrated Translation Environment in Chapter 19100. But

99 The registry key is now HKEY_CURRENT_USER\Software\Embarcadero\BDS\xx.0\Experts

100 As already mentioned, these two features don’t exist any more (or are not officially supported
any more).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter I: Delphi and Object Pascal - 69

now we are ready to spend the next three chapters looking into the Object Pascal
language and the VCL library. Then, in Part II, we’ll start focusing on the user inter-
face of applications and using the components available in Delphi.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

70 - Chapter 2: Object-Oriented Programming in Delphi

Chapter 2: Object-

Oriented

Programming In

Delphi

Most modern programming languages support object-oriented programming
(OOP). OOP languages are based on three fundamental concepts: encapsulation
(usually implemented with classes), inheritance, and polymorphism (or late bind-
ing).

You can write Delphi applications even without knowing the details of Object Pas-
cal. As you create a new form, add new components, and handle events, Delphi
prepares most of the related code for you automatically. But knowing the details of

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 71

the language and its implementation will help you to understand precisely what
Delphi is doing and to master the language completely.

A single chapter doesn’t allow space for a full introduction to the principles of
object-oriented programming and the Object Pascal language101. Instead, I will out-
line the key OOP features of the language and show how they relate to everyday
Delphi programming. Even if you don’t have a precise knowledge of OOP, the chap-
ter will introduce each of the key concepts so that you won’t need to refer to other
sources.

note If you don’t know the basics of the Pascal language (which is not covered in this book), you can
refer to the online electronic version of the text Essential Pascal at www.marcocantu.com. The
language has not changed significantly from Delphi 4 to Delphi 5.102

Introducing Classes and Objects

Class and object are two terms commonly used in Object Pascal and other OOP lan-
guages. However, because they are often misused, let’s be sure we agree on their
definitions. A class is a user-defined data type, which has a state (its representation)
and some operations (its behavior). A class has some internal data and some meth-
ods, in the form of procedures or functions, and usually describes the generic
characteristics and behavior of a number of similar objects.

An object is an instance of a class, or a variable of the data type defined by the class.
Objects are actual entities. When the program runs, objects take up some memory
for their internal representation. The relationship between object and class is the
same as the one between variable and type.

To declare a new class data type in Object Pascal, with some local data fields and
some methods, use the following syntax:

type
 TDate = class
 Month, Day, Year: Integer;
 procedure SetValue (m, d, y: Integer);
 function LeapYear: Boolean;

101 I’ve published a book covering the Delphi Object Pascal language in detail. It’s called “Object
Pascal Handbook” and it’s available in print on Amazon. See www.marcocantu.com/objectpas-
calhandbook/ for more information.

102 My ebook Essential Pascal remains available for free.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://www.marcocantu.com/objectpascalhandbook/
https://www.marcocantu.com/objectpascalhandbook/

72 - Chapter 2: Object-Oriented Programming in Delphi

 end;

The function and the procedure declared above should be fully defined in the imple-
mentation portion of the same unit, including the class declaration. You can let
Delphi generate a skeleton of the definition of the methods by using the Class Com-
pletion feature of the editor (simply press Ctrl+C while the cursor is within the class
definition). You can tell the methods are part of the TDate class by class-name pre-
fixing (using a dot in between), as in the following code:

procedure TDate.SetValue(m, d, y: Integer);
begin
 Month := m;
 Day := d;
 Year := y;
end;

function TDate.LeapYear: Boolean;
begin
 // call IsLeapYear in SysUtils.pas103

 Result := IsLeapYear (Year);
end;

note The convention in Delphi is to use the letter T as a prefix for the name of every class you write and
every other type (T stands for Type). This is just a convention—to the compiler, T is just a letter
like any other—but it is so common that following it will make your code easier to understand. In
the book I’ll try to stick with this convention.

Once the class has been defined, we can create an object and use it as follows:

var
 ADay: TDate;
begin
 // create
 ADay := TDate.Create;
 // use
 ADay.SetValue (1, 1, 2000);
 if ADay.LeapYear then
 ShowMessage (‘Leap year: ‘ + IntToStr (ADay.Year));
 // destroy
 ADay.Free;
end;

The notation used is nothing unusual, but it is powerful. We can write a complex
function (such as LeapYear) and then access its value for every TDate object as if it
were a primitive data type. Notice that ADay.LeapYear is an expression similar to

103 Using today’s notation, the unit name is now System.SysUtils.pas.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 73

ADay.Year, although the first is a function call and the second a direct data access.
As we’ll see in the next chapter, the notation used by Object Pascal to access proper-
ties is again the same.

Delphi’s Object Reference Model

In some OOP languages, declaring a variable of a class type creates an instance of
that class. Object Pascal, instead, is based on an object reference model. The idea is
that each variable of a class type, such as ADay in the code fragment above, does not
hold the value of the object. Rather, it contains a reference, or a pointer, to indicate
the memory location where the object has been stored.

note The object reference model is powerful yet easier to use than other models. Other OOP languages
use similar models, notably Eiffel and Java104. In my opinion, adopting this model was one of the
best design decisions made by the Delphi development team at Borland.

The only problem with this approach is that when you declare a variable, you don’t
create an object in memory, you only reserve the memory location for a reference to
an object. Object instances must be created manually, at least for the objects of the
classes you define. Instances of a component you place on a form are built automati-
cally by Delphi.

To create an instance of an object, we can call its Create method, which is a con-
structor. As you can see in the last code fragment, the constructor is applied to the
class, not to the object. Where does the Create method come from? It is a construc-
tor of the class TObject, from which all the other classes inherit. Once you have
created an object and you’ve finished using it, you need to dispose of it (to avoid fill-
ing up memory you don’t need any more, which causes what is known as a memory
leak). This can be accomplished by calling the Free method (yet another method of
the TObject class), as demonstrated in the previous listing. As long as you create
objects when you need them and free them when you’re finished with them, the
object reference model works without a glitch.

Private, Protected, and Public

A class can have any amount of data and any number of methods. However, for a
good object-oriented approach, data should be hidden, or encapsulated, inside the

104 Also C# uses the same machanism.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

74 - Chapter 2: Object-Oriented Programming in Delphi

class using it. When you access a date, for example, it makes no sense to change the
value of the day by itself. In fact, changing the value of the day might result in an
invalid date, such as February 30. Using methods to access the internal representa-
tion of an object limits the risk of generating erroneous situations, as the methods
can check whether the date is valid and refuse to modify the new value if it is not.
Encapsulation is important because it allows the class writer to modify the internal
representation in a future version.

The concept of encapsulation is quite simple: just think of a class as a “black box”
with a small, visible portion. The visible portion, called the class interface, allows
other parts of a program to access and use the objects of that class. However, when
you use the objects, most of their code is hidden. You seldom know what internal
data the object has, and you usually have no way to access the data directly. Of
course, you are supposed to use methods to access the data, which is shielded from
unauthorized access. This is the object-oriented approach to a classical program-
ming concept known as information hiding.

Object Pascal has three access specifiers: private, protected, and public105. A
fourth one, published, will be discussed in the next chapter. Here are the three
basic ones:

· The private directive denotes fields and methods of a class that are not accessi-
ble outside the unit (the source code file) that declares the class.

· The public directive denotes fields and methods that are freely accessible from
any other portion of a program as well as in the unit in which they are defined.

· The protected directive is used to indicate methods and fields with limited visi-
bility. Only the current class and its subclasses can access protected elements.
We’ll discuss this keyword again in the “Protected Fields and Encapsulation” sec-
tion.

Generally, the fields of a class should be private; the methods are usually public.
However, this is not always the case. Methods can be private or protected if they
are needed only internally to perform some partial computation. Fields can be
protected or public when you want an easy and direct access and you are fairly
sure that their type definition is not going to change.

105 Two further access specifiers, strict private and strict protected were added to match the be-
havior of other OOP languages having no special rules for classes declared within the same
unit or source code file. The strict versions of the access specifiers provide an even more robust
encapsulation, but remain rarely used by Delphi developers.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 75

note Instead of having public fields, you should generally use properties, as we’ll see in detail in the
next chapter. Properties are an extension to the encapsulation mechanism of other OOP lan-
guages and are very important in Object Pascal.

Access specifiers only restrict code outside your unit from accessing certain mem-
bers of classes declared in the interface section of your unit. This means that if two
classes are in the same unit, there is no protection for their private fields. Only by
placing a class in the interface portion of a unit will you limit the visibility from
classes and functions in other units to the public method and fields of the class.

As an example, consider this new version of the TDate class:

type
 TDate = class
 private
 Month, Day, Year: Integer;
 public
 procedure SetValue (m, d, y: Integer);
 function LeapYear: Boolean;
 function GetText: string;
 procedure Increase;
 end;

In this version, the fields are now declared to be private106, and there are some new
methods. The first, GetText, is a function that returns a string with the date. You
might think of adding other functions, such as GetDay, GetMonth, and GetYear,
which simply return the corresponding private data, but similar direct data-access
functions are not always needed. Providing access functions for each and every field
might reduce the encapsulation and make it harder to modify the internal imple-
mentation of a class. Access functions should be provided only if they are part of the
logical interface of the class you are implementing.

The second new method is the Increase procedure, which increases the date by one
day. This is far from simple, because you need to consider the different lengths of
the various months as well as leap and nonleap years. What I’ll do to make it easier
to write the code is to change the internal implementation of the class to use Del-
phi’s TDateTime type for the internal implementation. The class will change to

type
 TDate = class
 private
 fDate: TDateTime;
 public
 procedure SetValue (m, d, y: Integer);

106 You could consider using strict private, instead.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

76 - Chapter 2: Object-Oriented Programming in Delphi

 function LeapYear: Boolean;
 function GetText: string;
 procedure Increase;
 end;

Notice that because the only change is in the private portion of the class, you won’t
have to modify any of your existing programs that use it. This is the advantage of
encapsulation!

note The TDateTime type is actually a floating-point number. The integral portion of the number
indicates the date since 12/30/1899, the same base date used by OLE Automation and Microsoft
applications. (Use negative values to express previous years.) The decimal portion indicates the
time as a fraction. For example, a value of 3.75 stands for the second of January 1900, at 6:00
p.m. (three-quarters of a day). To add or subtract dates, you can simply add or subtract the num-
ber of days, which is much simpler than adding days with a day/month/year representation.

Encapsulation and Forms

One of the key ideas of encapsulation is to reduce the number of global variables
used by a program. A global variable can be accessed from every portion of a pro-
gram. For this reason, a change in a global variable affects the whole program. On
the other hand, when you change the representation of a field of a class, you only
need to change the code of some methods of that class and nothing else. Therefore,
we can say that information hiding refers to encapsulating changes.

Let me clarify this idea with an example. When you have a program with multiple
forms, you can make some data available to every form by declaring it as a global
variable in the interface portion of the unit of one of the forms:

var
 Form1: TForm1;
 nClicks: Integer;

This works but has two problems. First, the data is not connected to a specific
instance of the form, but to the entire program. If you create two forms of the same
type, they’ll share the data. If you want every form of the same type to have its own
copy of the data, the only solution is to add it to the form class:

type
 TForm1 = class(TForm)
 public
 nClicks: Integer;
 end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 77

The second problem is that if you define the data as a global variable or as a public
field of a form, you won’t be able to modify its implementation in the future without
affecting the code that uses the data. For example, if you only have to read the cur-
rent value from other forms, you can declare the data as private and provide a
method to read the value:

type
 TForm1 = class(TForm)
 public
 function GetClicks: Integer;
 private
 nClicks: Integer;
 end;

function TForm1.GetClicks: Integer;
begin
 Result := nClicks;
end;

An even better solution is to add a property to the form, as we’ll see in the next
chapter.

The Self Keyword

We’ve seen that methods are very similar to procedures and functions. The real dif-
ference is that methods have an implicit parameter, which is a reference to the
current object. Within a method you can refer to this parameter—the current object
—using the Self keyword. This extra hidden parameter is needed when you create
several objects of the same class, so that each time you apply a method to one of the
objects, the method will operate only on its own data and not affect the other sibling
objects.

For example, in the SetValue method of the TDate class, listed earlier, we simply
use Month, Year, and Day to refer to the fields of the current object, something you
might express as

Self.Month := m;
Self.Day := d;

This is actually how the Delphi compiler translates the code, not how you are sup-
posed to write it. The Self keyword is a fundamental language construct used by the
compiler, but at times it is used by programmers to resolve name conflicts and to

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

78 - Chapter 2: Object-Oriented Programming in Delphi

make tricky code more readable. (The C++ and Java languages107 have a similar fea-
ture based on the keyword this.)

All you really need to know about Self is that the technical implementation of a call
to a method differs from that of a call to a generic subroutine. Methods have an
extra hidden parameter, Self. Because all this happens behind the scenes, you do
not need to know how Self works at this time.

note If you look at the definition of the TMethod data type in the VCL, you’ll see that it is a record with
a Code field and a Data field. The first is a pointer to the function’s address in memory, the sec-
ond the value of the Self parameter to use when calling that function address. We’ll discuss
method pointers in the next chapter.

Creating Components Dynamically

In Delphi, the Self keyword is often used when you need to refer to the current
form explicitly in one of its methods. The typical example is the creation of a compo-
nent at run time, where you must pass the owner of the component to its Create
constructor and assign the same value to its Parent property. (The difference
between Owner and Parent properties is discussed in the next chapter.) In both
cases, you have to supply the current form as parameter or value, and the best way
to do this is to use the Self keyword.

To demonstrate this kind of code, I’ve written the CreateC108 example (the name
stands for Create Component). This program has a simple form with no compo-
nents and a handler for its OnMouseDown event. I’ve used OnMouseDown because it
receives as its parameter the position of the mouse click (differently from the
OnClick event). I need this information to create a button component in that posi-
tion. Here is the code of the method:

procedure TForm1.FormMouseDown (Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
var
 Btn: TButton;
begin
 Btn := TButton.Create (Self);
 Btn.Parent := Self;
 Btn.Left := X;

107 And C#, as well.

108 A lot of the example of the book are short, to comply with the 8 char file name limitations of
the DOS word. I know it can sound odd, but it was common at the time. The original Delphi li-
brary unit names were all 8 char maximum for the same reason.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 79

 Btn.Top := Y;
 Btn.Width := Btn.Width + 50;
 Btn.Caption := Format (‘Button at %d, %d’, [X, Y]);
end;

The effect of this code is to create buttons at mouse-click positions, with a caption
indicating the exact location, as you can see in Figure 2.1. In the code above, notice
in particular the use of the Self keyword, as the parameter of the Create method
and as the value of the Parent property.

Figure 2.1:
The output of the
CreateC example,
which creates Button
components at run
time. Images from the
original book and
captured today after
rebuilding it in Delphi
12, running on
Windows 11.

It is very common to write code like the above method using a with109 statement, as
in the following listing:

procedure TForm1.FormMouseDown (Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 with TButton.Create (Self) do
 begin
 Parent := Self;
 Left := X;
 Top := Y;
 Width := Width + 50;
 Caption := Format (‘Button in %d, %d’, [X, Y]);
 end;
end;

109 I’ve later changed my mind regarding the with statement: I don’t recommend using it as it can
lead to hard-to-spot bugs, given the scope of the symbols used is not always clear.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

80 - Chapter 2: Object-Oriented Programming in Delphi

note When writing a procedure like the code you’ve just seen, you might be tempted to use the Form1
variable instead of Self. In this specific example, that change wouldn’t make any practical differ-
ence, but if there are multiple instances of a form, using Form1 would really be an error. In fact, if
the Form1 variable refers to the first form of that type being created, by clicking in another form
of the same type, the new button will always be displayed in the first form. Its owner and Parent
will be Form1 and not the form the user has clicked onto. In general, referring to a particular
instance of a class when the current object is required is a bad OOP practice.110

Constructors

To allocate the memory for the object, we call the Create method. This is a con-
structor, a special method that you can apply to a class to allocate memory for an
instance of that class. The instance is returned by the constructor and can be
assigned to a variable for storing the object and using it later on. The default
TObject.Create constructor initializes all the data of the new instance to zero.

If you want your instance data to start out with a nonzero value, then you need to
write a custom constructor to do that. The new constructor can be called Create, or
it can have any other name: simply use the constructor keyword in front of it.
Notice that in this case, you don’t need to call TObject.Create: every constructor
can automatically allocate the memory for an object instance simply by applying this
special method to the related class.

The main reason to add a custom constructor to a class is to initialize its data. If you
create objects without initializing them, calling methods later on may result in odd
behavior or even a run-time error. Instead of waiting for these errors to appear, you
should use preventive techniques to avoid them in the first place. One such tech-
nique is the consistent use of constructors to initialize objects’ data. For example,
we must call the SetValue procedure of the TDate class after we’ve created the
object. As an alternative, we can provide a customized constructor, which creates
the object and gives it an initial value.

Although in general you can use any name for a constructor, keep in mind that if
you use a name other than Create, the Create constructor of the base TObject class
will still be available. If you are developing and distributing code for others to use, a
programmer calling this default constructor might bypass the initialization code
you’ve provided. By defining a Create constructor with some parameters, you

110 I’ve defined a rule “Never use Form1” (or a reference to a specific form) in your code. While
not an absolute rules, it’s a very good idea in almost all cases.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 81

replace the default definition with a new one and make its use compulsory. This is
possible for generic classes, but it should be avoided for custom components. As
we’ll see in Chapter 13, when you inherit from TComponent, you should override the
default Create constructor with one parameter and avoid disabling it.

In the same way that a class can have a custom constructor, it can have a custom
destructor, a method declared with the destructor keyword and called Destroy,
which can perform some resource cleanup before an object is destroyed. Just as a
constructor call allocates memory for the object, a destructor call frees the memory.
Destructors are needed only for objects that acquire resources in their constructors
or during their lifetime.

Instead of calling Destroy directly, a program should call Free, which calls Destroy
only if the object exists—that is, if it is not nil111. Keep in mind, however, that call-
ing Free doesn’t set the object to nil automatically; this is something you should do
yourself! The reason is that the object doesn’t know which variables may be refer-
ring to it, so it has no way to set them all to nil.

note Delphi 5 has finally introduced a simple FreeAndNil procedure you can use to free an object and
set its reference to nil at the same time. Simply call FreeAndNil (Obj1) instead of calling
Obj1.Free and then setting Obj1 to nil.112

Overloaded Methods and Constructors

Starting with Delphi 4, Object Pascal supports overloaded functions and methods:
you can have multiple methods with the same name, provided that the parameters
are different. By checking the parameters, the compiler can determine which of the
versions of the routine you want to call.

There are two basic rules:

· Each version of the method must be followed by the overload keyword.

· The differences must be in the number or type of the parameters or both. The
return type, instead, cannot be used to distinguish among two methods.

111 Delphi’s nil is the equivalent of null in other programming languages.

112 There have been discussions in the Delphi community whether FreeAndNil should be used or
if its use implies a bad code architecture. In general, I tend to agree that the use of FreeAndNil
should be a rare occurrence. Then a lcoal variable is about to get out of scope, setting it to nil
has no benefit.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

82 - Chapter 2: Object-Oriented Programming in Delphi

Overloading can be applied to global functions and procedures and to methods of a
class. This feature is particularly relevant for constructors, because we can have
multiple constructors and call them all Create, which makes them easy to remem-
ber.

note Historically, overloading was added to C++ to allow the use of multiple constructors that each
have the same name (the name of the class). In Object Pascal, this feature was considered unnec-
essary simply because multiple constructors can have different specific names. The increased
integration of Delphi with C++Builder has motivated Borland to make this feature available in
both languages. Technically, when C++Builder constructs an instance of a Delphi VCL class, it
looks for a Delphi constructor named Create and nothing but Create. If the Delphi class has
constructors by other names, they cannot be used from C++Builder code. Therefore, when creat-
ing classes and components you intend to share with C++Builder programmers, you should be
careful to name all your constructors Create and distinguish between them by their parameter
lists (using overload). This is not required by Delphi, but it is required for C++Builder to use
your Delphi classes.

As an example of overloading, I’ve added to the TDate class two different versions of
the SetValue method:

type
 TDate = class
 public
 procedure SetValue (y, m, d: Integer); overload;
 procedure SetValue (NewDate: TDateTime); overload;

procedure TDate.SetValue (y, m, d: Integer);
begin
 fDate := EncodeDate (y, m, d);
end;

procedure TDate.SetValue(NewDate: TDateTime);
begin
 fDate := NewDate;
end;

After this simple step, I’ve added to the class two separate Create constructors, one
with no parameters, which hides the default constructor, and one with the initializa-
tion values. The constructor with no parameters uses as the default value today’s
date:

type
 TDate = class
 public
 constructor Create; overload;
 constructor Create (y, m, d: Integer); overload;

constructor TDate.Create (y, m, d: Integer);

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 83

begin
 fDate := EncodeDate (y, m, d);
end;

constructor TDate.Create;
begin
 fDate := Date;
end;

Having these two constructors makes it possible to define a new TDate object in two
different ways:

var
 Day1, Day2: TDate;
begin
 Day1 := TDate.Create (1999, 12, 25);
 Day2 := TDate.Create; // today

The Complete TDate Class

Throughout this chapter, I’ve shown you bits and pieces of the source code for dif-
ferent versions of a TDate class. The first version was based on three integers to
store the year, the month, and the day; a second version used a field of the
TDateTime type provided by Delphi. Here is the complete interface portion of the
unit that defines the TDate class:

unit Dates;

interface

type
 TDate = class
 private
 fDate: TDateTime;
 function GetYear: Integer;
 public
 constructor Create; overload;
 constructor Create (y, m, d: Integer); overload;
 procedure SetValue (y, m, d: Integer); overload;
 procedure SetValue (NewDate: TDateTime); overload;
 function LeapYear: Boolean;
 procedure Increase (NumberOfDays: Integer = 1);
 procedure Decrease (NumberOfDays: Integer = 1);
 function GetText: string;
 end;

implementation
...

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

84 - Chapter 2: Object-Oriented Programming in Delphi

The aim of the new methods, Increase and Decrease (which have a default value for
their parameter), is quite easy to understand. If called with no parameter, they
change the value of the date to the next or previous day. If a NumberOfDays parame-
ter is part of the call, they add or subtract that number:

procedure TDate.Increase (NumberOfDays: Integer = 1);
begin
 fDate := fDate + NumberOfDays;
end;

GetText returns a string with the formatted date, using the DateToStr function:

function TDate.GetText: string;
begin
 GetText := DateToStr (fDate);
end;

We’ve already seen most of the methods in the previous sections, so I won’t provide
the complete listing; you can find it in the code of the ViewDate example I’ve writ-
ten to test the class. The form has a caption to display a date and six buttons, which
can be used to modify the date. You can see the main form of the ViewDate example
at run time in Figure 2.2. To make the label component look nice, I’ve given it a big
font, made it as wide as the form, set its Alignment property to taCenter, and set its
AutoSize property to False.

Figure 2.2:
The output of the
ViewDate example at
start-up. Images
captured now and in
the original book.

The start-up code of this program is in the OnCreate event handler. In the corre-
sponding method, we create an instance of the TDate class, initialize this object, and
then show its textual description in the Caption of the label, as shown in Figure 2.2.

procedure TDateForm.FormCreate(Sender: TObject);
begin
 TheDay := TDate.Create (1999, 12, 25);
 LabelDate.Caption := TheDay.GetText;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 85

end;

TheDay is a private field of the class of the form, TDateForm. By the way, the name for
the class is automatically chosen by Delphi when we change the Name property of the
form to DateForm. The object is then destroyed along with the form:

procedure TDateForm.FormDestroy(Sender: TObject);
begin
 TheDay.Free;
end;

When the user clicks one of the six buttons, we need to apply the corresponding
method to the TheDay object and then display the new value of the date in the label:

procedure TDateForm.BtnTodayClick(Sender: TObject);
begin
 TheDay.SetValue (Date);
 LabelDate.Caption := TheDay.GetText;
end;

An alternative way to write the last method is to destroy the current object and cre-
ate a new one:

procedure TDateForm.BtnTodayClick(Sender: TObject);
var
 NewDay: TDate;
begin
 TheDay.Free;
 NewDay := TDate.Create;
 TheDay := NewDay;
 LabelDate.Caption := TheDay.GetText;
end;

In this particular circumstance, this is not a very good approach (because creating a
new object and destroying an existing one entails a lot of time overhead, when all we
need is to change the object’s value), but it allows me to show you a couple of Object
Pascal techniques. The first thing to notice is that we destroy the previous object
before assigning a new one. The assignment operation, in fact, replaces the refer-
ence, leaving the object in memory (even if no pointer is referring to it). When you
assign an object to another object, Delphi simply copies the reference to the object
in memory to the new object/reference.

If you really want to change the data inside an existing object, copy each field, or
provide a specific method to copy the internal data. Some classes of the VCL have an
Assign method, which does this deep-copying. To be more precise, all the VCL
classes inheriting from TPersistent have the Assign method, but most of those
inheriting from TComponent don’t implement it, raising an exception when it is
called.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

86 - Chapter 2: Object-Oriented Programming in Delphi

Inheriting from Existing Types

We often need to use a slightly different version of an existing class that we have
written or that someone has given to us. For example, you might need to add a new
method or slightly change an existing one. You can do this easily by modifying the
original code, unless you want to be able to use the two different versions of the
class in different circumstances. Also, if the class was originally written by someone
else (including Borland), you might want to keep your changes separate.

A typical alternative is to make a copy of the original type definition, change its code
to support the new features, and give a new name to the resulting class. This might
work, but it also might create problems: in duplicating the code you also duplicate
the bugs; and if you want to add a new feature, you’ll need to add it two or more
times, depending on the number of copies of the original code you’ve made. This
approach results in two completely different data types, so the compiler cannot help
you take advantage of the similarities between the two types.

To solve these kinds of problems in expressing similarities between classes, Object
Pascal allows you to define a new class directly from an existing one. This technique
is known as inheritance (or subclassing, or derivation) and is one of the fundamen-
tal elements of object-oriented programming languages. To inherit from an existing
class, you only need to indicate that class at the beginning of the declaration of the
subclass. For example, Delphi does this automatically each time you create a new
form:

type
 TForm1 = class(TForm)
 end;

This simple definition indicates that the TForm1 class inherits all the methods,
fields, properties, and events of the TForm class. You can apply any public method of
the TForm class to an object of the TForm1 type. TForm, in turn, inherits some of its
methods from another class, and so on, up to the TObject class.

As a simple example of inheritance, we can change the ViewDate program slightly,
deriving a new class from TDate and modifying one of its functions, GetText. You
can find this code in the DATES.PAS file of the ViewD2 example.

type
 TNewDate = class (TDate)
 public
 function GetText: string;
 end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 87

In this example, TNewDate is derived from TDate. It is common to say that TDate is
an ancestor class or parent class of TNewDate and that TNewDate is a subclass,
descendant class, or child class of TDate.

To implement the new version of the GetText function, I used the FormatDateTime
function, which uses (among other features) the predefined month names available
in Windows; these names depend on the user’s regional and language settings.
Many of these regional settings are actually copied by Delphi into constants defined
in the library, such as LongMonthNames, ShortMonthNames, and many others you can
find under the Currency and date/time formatting variables topic in the Delphi
Help file. Here is the GetText method, where ‘dddddd’ stands for the long data for-
mat:

function TNewDate.GetText: string;
begin
 GetText := FormatDateTime (‘dddddd’, fDate);
end;

note Using regional information, the ViewD2 program automatically adapts itself to different Windows
user settings. If you run this same program on a computer with regional settings referring to a
language other than English, it will automatically show month names in that language. To test
this behavior, you just need to change the regional settings; you don’t need a new version of Win-
dows. Notice that regional-setting changes immediately affect the running programs.

Once we have defined the new class, we need to use this new data type in the code of
the form of the ViewD2 example. Simply define the TheDay object of type TNewDate,
and call its constructor in the FormCreate method:

type
 TDateForm = class(TForm)
 ...
 private
 TheDay: TNewDate; // updated declaration
 end;

procedure TDateForm.FormCreate(Sender: TObject);
begin
 TheDay := TNewDate.Create (1998, 12, 25); // updated
 DateLabel.Caption := TheDay.GetText;
end;

Without any other changes, the new ViewD2 example will work properly. The
TNewDate class inherits the methods to increase the date, add a number of days, and
so on. In addition, the older code calling these methods still works. Actually, to call
the new version of the GetText method, we don’t need to change the source code!
The Delphi compiler will automatically bind that call to a new method. The source

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

88 - Chapter 2: Object-Oriented Programming in Delphi

code of all the other event handlers remains exactly the same, although its meaning
changes considerably, as the new output demonstrates (see Figure 2.3).

Figure 2.3:
The output of the
ViewD2 program, with
the name of the month
and of the day
depending on Windows
regional settings.
Images captured now
and in the original
book.

Protected Fields and Encapsulation

The code of the GetText method of the TNewDate class compiles only if it is written
in the same unit as the TDate class. In fact, it accesses the fDate private field of the
ancestor class. If we want to place the descendant class in a new unit, we must
either declare the fDate field as protected or add a simple, possibly protected,
method in the ancestor class to read the value of the private field.

Many developers believe that the first solution is always the best, because declaring
most of the fields as protected will make a class more extensible and will make it
easier to write subclasses. However, this violates the idea of encapsulation. In a
large hierarchy of classes, changing the definition of some protected fields of the
base classes becomes as difficult as changing some global data structures. If ten
derived classes are accessing this data, changing its definition means potentially
modifying the code in each of the ten classes.

In other words, flexibility, extension, and encapsulation often become conflicting
objectives. When this happens, you should try to favor encapsulation. If you can do
so without sacrificing flexibility, that will be even better. Often this intermediate
solution can be obtained by using a virtual method, a topic I’ll discuss in detail
below in the section “Late Binding and Polymorphism.” If you choose not to use
encapsulation in order to obtain faster coding of the subclasses, then your design
might not follow the object-oriented principles.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 89

Accessing Protected Data of Other Classes

If you are new to Delphi and to OOP, this is a rather advanced section you
might want to skip the first time you are reading this book, as it might be
confusing.

We’ve seen that in Delphi, the private and protected data of a class is accessible to
any functions or methods that appear in the same unit as the class. For example,
consider this simple class (part of the Protection example):

type
 TTest = class
 protected
 ProtectedData: Integer;
 public
 PublicData: Integer;
 function GetValue: string;
 end;

The GetValue method simply returns a string with the two integer values:

function TTest.GetValue: string;
begin
 Result := Format (‘Public: %d, Protected: %d’,
 [PublicData, ProtectedData]);
end;

Once you place this class in its own unit, you won’t be able to access its protected
portion from other units directly. Accordingly, if you write the following code,

procedure TForm1.Button1Click(Sender: TObject);
var
 Obj: TTest;
begin
 Obj := TTest.Create;
 Obj.PublicData := 10;
 Obj.ProtectedData := 20; // won’t compile
 ShowMessage (Obj.GetValue);
 Obj.Free;
end;

the compiler will issue an error message, Undeclared identifier: “ProtectedData.”
At this point, you might think there is no way to access the protected data of a class
defined in a different unit. (This is what Delphi manuals and most Delphi books
say.) However, there is a way around it. Consider what happens if you create an
apparently useless derived class, such as

type
 TFake = class (TTest);

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

90 - Chapter 2: Object-Oriented Programming in Delphi

Now, if you make a direct cast of the object to the new class and access the protected
data through it, this is how the code will look:

procedure TForm1.Button2Click(Sender: TObject);
var
 Obj: TTest;
begin
 Obj := TTest.Create;
 Obj.PublicData := 10;
 TFake (Obj).ProtectedData := 20; // compiles!
 ShowMessage (Obj.GetValue);
 Obj.Free;
end;

This code compiles and works properly, as you can see by running the Protection
program. How is it possible for this approach to work? Well, if you think about it,
the TFake class automatically inherits the protected fields of the TTest base class,
and because the TFake class is in the same unit as the code that tries to access the
data in the inherited fields, the protected data is accessible. As you would expect, if
you move the declaration of the TFake class to a secondary unit, the program won’t
compile any more.

Now that I’ve shown you how to do this, I must warn you that violating the class-
protection mechanism this way is likely to cause errors in your program (from
accessing data that you really shouldn’t), and it runs counter to good OOP tech-
nique. However, there are times when using this technique is the best solution, as
you’ll see by looking at the VCL source code and the code of many Delphi compo-
nents. Two simple examples that come to mind are accessing the Text property of
the Tcontrol class and the Row and Col positions of the DBGrid control. These two
ideas are demonstrated by the TextProp and DBGridCol examples respectively.
(These examples are quite advanced, so I suggest that only programmers with a
good background of Delphi programming read them at this point in the text—other
readers might come back later.)

Although the first example shows a reasonable example of using the typecast
cracker, the DBGrid example of Row and Col is actually a counter example, one that
illustrates the risks of accessing bits that the class writer chose not to expose. The
row and column of a DBGrid do not mean the same thing as they do in a DrawGrid or
StringGrid (the base classes). First, DBGrid does not count the fixed cells as actual
cells (it distinguishes data cells from decoration), so your row and column indexes
will have to be adjusted by whatever decorations are currently in effect on the grid
(and those can change on the fly). Second, the DBGrid is a virtual view of the data.
When you scroll up in a DBGrid, the data may move underneath it, but the currently
selected row might not change.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 91

This technique is often described as a hack, and it should be avoided whenever pos-
sible. The problem is not accessing protected data of a class in the same unit but
declaring a class for the sole purpose of accessing protected data of an existing
object of a different class! The danger of this technique is in the hard-coded typecast
of an object from a class to a different one.

Inheritance and Type Compatibility

Pascal is a strictly typed language. This means that you cannot, for example, assign
an integer value to a Boolean variable, at least not without an explicit typecast. The
rule is that two values are type-compatible only if they are of the same data type, or
(to be more precise) if their data type has the same name and their definition comes
from the same unit.

There is an important exception to this rule in the case of class types. If you declare
a class, such as TAnimal, and derive from it a new class, say TDog, you can then
assign an object of type TDog to a variable of type TAnimal. That is because a dog is
an animal! So, although this might surprise you, the following constructor calls are
both legal:

var
 MyAnimal1, MyAnimal2: TAnimal;
begin
 MyAnimal1 := TAnimal.Create;
 MyAnimal2 := TDog.Create;

As a general rule, you can use an object of a descendant class any time an object of
an ancestor class is expected. However, the reverse is not legal; you cannot use an
object of an ancestor class when an object of a descendant class is expected. To sim-
plify the explanation, here it is again in code terms:

MyAnimal := MyDog; // This is OK
MyDog := MyAnimal; // This is an error!!!

Before we look at the implications of this important feature of the language, you can
try out the Animals1 example, which defines the two simple TAnimal and TDog
classes:

type
 TAnimal = class
 public
 constructor Create;
 function GetKind: string;
 private
 Kind: string;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

92 - Chapter 2: Object-Oriented Programming in Delphi

 end;

 TDog = class (TAnimal)
 public
 constructor Create;
 end;

The two Create methods simply set the value of Kind, which is returned by the
GetKind function. The form displayed by this example, shown in Figure 2.4, has a
private field of type TAnimal. An instance of this class is created and initialized when
the form is created and each time one of the radio buttons is selected.

procedure TFormAnimals.FormCreate(Sender: TObject);
begin
 MyAnimal := TAnimal.Create;
end;

procedure TFormAnimals.RbtnDogClick(Sender: TObject);
begin
 MyAnimal.Free;
 MyAnimal := TDog.Create;
end;

Figure 2.4:
The form of the
Animals1 example (in
Delphi 5)

Finally, the Kind button calls the GetKind method for the current animal and dis-
plays the result in the label:

procedure TFormAnimals.BtnKindClick(Sender: TObject);
begin
 KindLabel.Caption := MyAnimal.GetKind;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 93

Late Binding and Polymorphism

Pascal functions and procedures are usually based on static binding, which is also
called early binding. This means that a method call is resolved by the compiler or
the linker, which replaces the request with a call to the specific memory location
where the function or procedure resides. (This is known as the address of the func-
tion.) Object-oriented programming languages allow the use of another form of
binding, known as dynamic binding, or late binding. In this case, the actual address
of the method to be called is determined at run time based on the type of the
instance used to make the call.

The advantage of this technique is known as polymorphism. Polymorphism means
you can write a call to a method, applying it to a variable, but which method Delphi
actually calls depends on the type of the object the variable relates to. Delphi cannot
determine until run time the actual class of the object the variable refers to, simply
because of the type-compatibility rule discussed in the previous section.

note The term polymorphism is quite a mouthful. A glance at the dictionary tells us that in a general
sense it refers to something having more than one form. In the OOP sense, then, it refers to the
fact that there may be several versions of a given method and that a single method call can refer to
any of these versions.

For example, suppose that a class and its subclass (let’s say TAnimal and TDog) both
define a method, and this method has late binding. Now you can apply this method
to a generic variable, such as MyAnimal, which at run time can refer either to an
object of class TAnimal or to an object of class TDog. The actual method to call is
determined at run time, depending on the class of the current object.

The Animals2 example extends the Animals1 program to demonstrate this tech-
nique. In the new version, the TAnimal and the TDog classes have a new method:
Voice, which means to output the sound made by the selected animal, both as text
and as sound. This method is defined as virtual in the TAnimal class and is later
overridden when we define the TDog class, by the use of the virtual and override
keywords:

type
 TAnimal = class
 public
 function Voice: string; virtual;

 TDog = class (TAnimal)
 public
 function Voice: string; override;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

94 - Chapter 2: Object-Oriented Programming in Delphi

Of course, the two methods also need to be implemented. Here is a simple
approach:

uses
 MMSystem;

function TAnimal.Voice: string;
begin
 Voice := ‘Voice of the animal’;
 PlaySound (‘Anim.wav’, 0, snd_Async);
end;

function TDog.Voice: string;
begin
 Voice := ‘Arf Arf’;
 PlaySound (‘dog.wav’, 0, snd_Async);
end;

note This example uses a call to the PlaySound API function, defined in the MMSystem unit. The first
parameter of this function is the name of the WAV sound file or the system sound you want to
execute. The second parameter indicates an optional resource file containing the sound. The third
parameter indicates (among other options) whether the call should be synchronous or asynchro-
nous; that is, whether the program should wait for the sound to finish before continuing with the
following statements.

Now what is the effect of the call MyAnimal.Voice? It depends. If the MyAnimal vari-
able currently refers to an object of the TAnimal class, it will call the method
TAnimal.Voice. If it refers to an object of the TDog class, it will call the method
TDog.Voice instead. This happens only because the function is virtual.

The call to MyAnimal.Voice will work for an object that is an instance of any descen-
dant of the TAnimal class, even classes that are defined after this method call or
outside its scope. The compiler doesn’t need to know about all the descendants in
order to make the call compatible with them; only the ancestor class is needed. In
other words, this call to MyAnimal.Voice is compatible with all future TAnimal sub-
classes.

This is the key technical reason why object-oriented programming languages favor
reusability. You can write code that uses classes within a hierarchy without any
knowledge of the specific classes that are part of that hierarchy. In other words, the
hierarchy—and the program—is still extensible, even when you’ve written thou-
sands of lines of code using it. Of course, there is one condition—the ancestor
classes of the hierarchy need to be designed very carefully.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 95

The Animals2 program demonstrates the use of these new classes and has a form
similar to that of the previous example. This code is executed by clicking on the but-
ton:

procedure TFormAnimals.BtnVerseClick(Sender: TObject);
begin
 LabelVoice.Caption := MyAnimal.Voice;
end;

In Figure 2.5, you can see an example of the output of this program. By running it,
you’ll also hear the corresponding sounds produced by the PlaySound API call.

Figure 2.5:
The output of the
Animals2 example.
Image from the
original book.

Overriding, Redefining, and Reintroducing
Methods

As we have just seen, to override a late-bound method in a descendant class, you
need to use the override keyword. Note that this can take place only if the method
was defined as virtual in the ancestor class. Otherwise, if it was a static method,
there is no way to activate late binding, other than by changing the code of the
ancestor class.

The rules are simple: A method defined as static remains static in every subclass,
unless you hide it with a new virtual method having the same name. A method
defined as virtual remains late-bound in every subclass. There is no way to change
this, because of the way the compiler generates different code for late-bound meth-
ods.

To redefine a static method, you simply add a method to a subclass having the same
parameters or different parameters than the original one, without any further speci-
fications. To override a virtual method, you must specify the same parameters and
use the override keyword:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

96 - Chapter 2: Object-Oriented Programming in Delphi

type
 MyClass = class
 procedure One; virtual;
 procedure Two; {static method}
 end;

 MySubClass = class (MyClass)
 procedure One; override;
 procedure Two;
 end;

There are typically two ways to override a method. One is to replace the method of
the ancestor class with a new version. The other is to add some more code to the
existing method. This can be accomplished by using the inherited keyword to call
the same method of the ancestor class. For example, you can write

procedure MySubClass.One;
begin
 // new code
 ...
 // call inherited procedure MyClass.One
 inherited One;
end;

You might wonder why you need to use the override keyword. In other languages,
when you redefine a method in a subclass, you automatically override the original
one. However, having a specific keyword allows the compiler to check the corre-
spondence between the names of the methods of the ancestor class and the subclass
(misspelling a redefined function is a common error in other OOP languages), check
that the method was virtual in the ancestor class, and so on.

Furthermore, if you define a static method in any class inherited by a class of the
library, there will be no problem, even if the library is updated with a new virtual
method having the same name as a method you’ve defined. Because your method is
not marked by the override keyword, it will be considered a separate method and
not a new version of the one added to the library (something that would probably
break your code).

The support for overloading introduced in Delphi 4 added some further complexity
to this picture. A subclass can provide a new version of a method using the overload
keyword. If the method has different parameters than the version in the base class,
it becomes effectively an overloaded method; otherwise it replaces the base class
method. Here is an example:

type
 TMyClass = class
 procedure One;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 97

 end;

 TMySubClass = class (TMyClass)
 procedure One (S: string); overload;
 end;

Notice that the method doesn’t need to be marked as overload in the base class.
However, if the method in the base class is virtual, the compiler issues the warning
Method ‘One’ hides virtual method of base type ‘TMyClass.’ To avoid this message
from the compiler and to instruct the compiler more precisely on your intentions,
you can use the new reintroduce directive:

type
 TMyClass = class
 procedure One; virtual;
 end;

 TMySubClass = class (TMyClass)
 procedure One (S: string); reintroduce; overload;
 end;

You can find this code in the Reintr example and experiment with it further.

Virtual versus Dynamic Methods

In Delphi, there are two different ways to activate late binding. You can declare the
method as virtual, as we have seen before, or declare it as dynamic. The syntax of
these two keywords is exactly the same, and the result of their use is also the same.
What is different is the internal mechanism used by the compiler to implement late
binding.

Virtual methods are based on a virtual method table (VMT, also known as a vtable).
A virtual method table is an array of method addresses. For a call to a virtual
method, the compiler generates code to jump to an address stored in the nth slot in
the object’s virtual method table.

Virtual method tables allow fast execution of the method calls. Their main drawback
is that they require an entry for each virtual method for each descendant class, even
if the method is not overridden in the subclass. At times, this has the effect of prop-
agating virtual method table entries throughout a class hierarchy (even for methods
that aren’t redefined). This might require a lot of memory just to store the same
method address a number of times.

Dynamic method calls, on the other hand, are dispatched using a unique number
indicating the method. The search for the corresponding function is generally

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

98 - Chapter 2: Object-Oriented Programming in Delphi

slower than the simple one-step table lookup for virtual methods. The advantage is
that dynamic method entries only propagate in descendants when the descendants
override the method. For large or deep object hierarchies, using dynamic methods
instead of virtual methods can result in significant memory savings with only a min-
imal speed penalty.

From a programmer’s perspective, the difference between these two approaches lies
only in a different internal representation and slightly different speed or memory
usage. Apart from this, virtual and dynamic methods are the same.

Message Handlers

A late-bound method can be used to handle a Windows message, too, although the
technique is somewhat different. For this purpose Delphi provides yet another
directive, message, to define message-handling methods, which must be procedures
with a single var parameter. The message directive is followed by the number of the
Windows message the method wants to handle. For example, the following code
allows you to handle a user-defined message, with the numeric value indicated by
the wm_User Windows constant:

type
 TForm1 = class(TForm)
 ...
 procedure WmUser (var Msg: TMessage);
 message wm_User;
 end;

The name of the procedure and the actual type of the parameters are up to you,
although there are a number of predefined record types for the various Windows
messages. This technique can be extremely useful for veteran Windows program-
mers, who know all about Windows messages and API functions.

note The ability to handle Windows messages and call API functions as you do when you are program-
ming Windows with the C language may horrify some programmers and delight others. But in
Delphi, when writing Windows applications, you will seldom need to use message methods. Only
when you are writing complex components in Delphi will you have to deal with low-level mes-
sages and API calls.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 99

Abstract Methods

The abstract keyword is used to declare methods that will be defined only in sub-
classes of the current class113. The abstract directive fully defines the method; it is
not a forward declaration. If you try to provide a definition for the method, the com-
piler will complain. In Object Pascal, you can create instances of classes that have
abstract methods. However, when you try to do so, Delphi’s 32-bit compiler issues
the warning message: Constructing instance of <class name> containing abstract
methods. If you happen to call an abstract method at run time, Delphi will raise an
exception, as demonstrated by the following Animals3 example.

note C++ and Java use a more strict approach: in these languages, you cannot create instances of
abstract classes.

You might wonder why you would want to use abstract methods. The reason lies in
the use of polymorphism. If class TAnimal has the abstract method Voice, every
subclass can redefine it. The advantage is that you can now use the generic MyAnimal
object to refer to each animal defined by a subclass and invoke this method. If this
method was not present in the interface of the TAnimal class, the call would not have
been allowed by the compiler, which performs static type checking. Using a generic
MyAnimal object, you can call only the method defined by its own class, TAnimal.

You cannot call methods provided by subclasses, unless the parent class has at least
the declaration of this method—in the form of an abstract method. The next exam-
ple, Animals3, demonstrates the use of abstract methods and the abstract call
error. Here are the interfaces of the classes of this new example:

type
 TAnimal = class
 public
 constructor Create;
 function GetKind: string;
 function Voice: string; virtual; abstract;
 private
 Kind: string;
 end;

 TDog = class (TAnimal)
 public
 constructor Create;
 function Voice: string; override;

113 In recent versions of Delphi you can also use the abstract keyword to decorate a class as a
whole, a syntax originally introduced in the .NET version of the compiler.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

100 - Chapter 2: Object-Oriented Programming in Delphi

 function Eat: string; virtual;
 end;

 TCat = class (TAnimal)
 public
 constructor Create;
 function Voice: string; override;
 function Eat: string; virtual;
 end;

The most interesting portion is the definition of the class TAnimal, which includes a
virtual abstract method: Voice. It is also important to notice that each derived
class overrides this definition and adds a new virtual method, Eat. What are the
implications of these two different approaches? To call the Voice function, we can
simply write the same code as in the previous version of the program:

LabelVoice.Caption := MyAnimal.Voice;

How can we call the Eat method? We cannot apply it to an object of the TAnimal
class. The statement

LabelVoice.Caption := MyAnimal.Eat;

generates the compiler error Field identifier expected.

To solve this problem, you can use run-time type information (RTTI) to cast the
TAnimal object to a TCat or TDog object; but without the proper cast, the program
will raise an exception. You will see an example of this approach in the next section.
Adding the method definition to the TAnimal class is a typical solution to the prob-
lem, and the presence of the abstract keyword favors this choice.

Run-Time Type Information114

The Object Pascal type–compatibility rule for descendant classes allows you to use a
descendant class where an ancestor class is expected. As I mentioned earlier, the
reverse is not possible.

Now suppose that the TDog class has an Eat method, which is not present in the
TAnimal class. If the variable MyAnimal refers to a dog, it should be possible to call

114 The core form of RTTI, described in this section, is still available today. On top of it, there is
now in Delphi an extended RTTI and a specific unit with classes you can use to access a large
amount of type information at runtime.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 101

the function. But if you try, and the variable is referring to another class, the result
is an error. By making an explicit typecast, we could cause a nasty run-time error (or
worse, a subtle memory overwrite problem), because the compiler cannot deter-
mine whether the type of the object is correct and the methods we are calling
actually exist.

To solve the problem, we can use techniques based on run-time type information.
Essentially, because each object “knows” its type and its parent class, we can ask for
this information with the is operator or using some of the methods of the TObject
class (discussed in the next chapter). The parameters of the is operator are an
object and a class type, and the return value is a Boolean:

if MyAnimal is TDog then
 ...

The is expression evaluates as True only if the MyAnimal object is currently referring
to an object of class TDog or a type descendant from TDog. This means that if you test
whether a TDog object is of type TAnimal, the test will succeed. In other words, this
expression evaluates as True if you can safely assign the object (MyAnimal) to a vari-
able of the data type (TDog).

Now that you know for sure that the animal is a dog, you can make a safe typecast
(or type conversion). You can accomplish this direct cast by writing the following
code:

if MyAnimal is TDog then
begin
 MyDog := TDog (MyAnimal);
 Text := MyDog.Eat;
end;

This same operation can be accomplished directly by the second RTTI operator, as,
which converts the object only if the requested class is compatible with the actual
one. The parameters of the as operator are an object and a class type, and the result
is an object converted to the new class type. We can write the following snippet:

MyDog := MyAnimal as TDog;
Text := MyDog.Eat;

If we only want to call the Eat function, we might also use an even shorter notation:

(MyAnimal as TDog).Eat;

The result of this expression is an object of the TDog class data type, so you can apply
to it any method of that class. The difference between the traditional cast and the
use of the as cast is that the second one raises an exception if the type of the object

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

102 - Chapter 2: Object-Oriented Programming in Delphi

is not compatible with the type you are trying to cast it to. The exception raised is
EInvalidCast (exceptions are described at the end of this chapter).

To avoid this exception, use the is operator and, if it succeeds, make a plain type-
cast (in fact there is no reason to use is and as in sequence, doing the type check
twice):

if MyAnimal is TDog then
 TDog(MyAnimal).Eat;

Both RTTI operators are very useful in Delphi because you often want to write
generic code that can be used with a number of components of the same type or
even of different types. When a component is passed as a parameter to an event-
response method, a generic data type is used (TObject), so you often need to cast it
back to the original component type:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if Sender is TButton then
 ...
end;

This is a common technique in Delphi, and I’ll use it in a number of examples
throughout the book. In Chapter 4, we’ll discuss the is and as operators again,
while focusing on some alternative RTTI techniques based on methods of the
TObject class. The two RTTI operators, is and as, are extremely powerful, and you
might be tempted to consider them as standard programming constructs. Although
they are indeed powerful, you should probably limit their use to special cases. When
you need to solve a complex problem involving several classes, try using polymor-
phism first. Only in special cases, where polymorphism alone cannot be applied,
should you try using the RTTI operators to complement it. Do not use RTTI instead
of polymorphism. This is bad programming practice, and it results in slower pro-
grams. RTTI, in fact, has a negative impact on performance, because it must walk
the hierarchy of classes to see whether the typecast is correct. As we have seen, vir-
tual method calls require just a memory lookup, which is much faster.

Visual Form Inheritance

To better understand derivation among classes, you can use visual form inheritance.
In short, you can simply inherit a form from an existing one, adding new compo-

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 103

nents or altering the properties of the existing ones. But what is the real advantage
of visual form inheritance?

Well, this mostly depends on the kind of application you are building. If it has a
number of forms, some of which are very similar to each other or simply include
common elements, then you can place the common components and the common
event handlers in the base form and add the specific behavior and components to
the sub-classes. For example, if you prepare a standard parent form with a toolbar, a
logo, default sizing and closing code, and the handlers of some Windows messages,
you can then use it as the parent class for each of the forms of an application.

You can also use visual form inheritance to customize an application for different
clients, without duplicating any source code or form definition code; just inherit the
specific versions for a client from the standard forms. Remember that the main
advantage of visual inheritance is that you can later change the original form and
automatically update all the derived forms. This is a well-known advantage of inher-
itance in object-oriented programming languages. But there is a beneficial side
effect: polymorphism. You can add a virtual method in a base form and override it
in a subclassed form. Then you can refer to both forms and call this method for each
of them.

note Delphi 5 includes a new feature, called Frames, which resembles visual form inheritance. In both
cases you can work at design time on two versions of a form. However, in visual form inheritance,
you are defining two different classes (parent and derived), whereas with frames, you work on a
class and an instance. Frames will be discussed in detail in Chapter 4.

Inheriting from a Base Form

The rules governing visual form inheritance are quite simple, once you have a clear
idea of what inheritance is. Basically, a subclass form has the same components as
the parent form as well as some new components. You cannot remove a component
of the base class, although (if it is a visual control) you can make it invisible. What’s
important is that you can easily change properties of the components you inherit.

Notice that if you change a property of a component in the inherited form, any mod-
ification of the same property in the parent form will have no effect. Changing other
properties of the component will affect the inherited versions, as well. You can re-
synchronize the two property values by using the Revert to Inherited local menu
command of the Object Inspector. The same thing is accomplished by setting the
two properties to the same value and recompiling the code. After modifying multi-

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

104 - Chapter 2: Object-Oriented Programming in Delphi

ple properties, you can re-synchronize them all to the base version by applying the
Revert to Inherited command of the component’s local menu.

An alternative technique is to open the textual description of the inherited form and
remove the line that changes the value of the property. (We will look at the structure
of this file in a second.) Besides inheriting components, the new form inherits all
the methods of the base form, including the event handlers. You can add new han-
dlers in the inherited form and also override existing handlers.

To describe how visual form inheritance works, I’ve built a very simple example,
called VFI. I’ll describe step-by-step how to build it. First, start a new project, and
add four buttons to its main form. Then select File New115, and choose the page
with the name of the project in the New Items dialog box (see Figure 2.6). Here you
can choose the form from which you want to inherit. The new form has the same
four buttons. Here is the initial textual description of the new form:

inherited Form2: TForm2
 Caption = ‘Form2’
end

And here is its initial class declaration, where you can see that the base class is not
the usual TForm but the actual base class form:

type
 TForm2 = class(TForm1)
 private
 { Private declarations }
 public
 { Public declarations }
 end;

Notice the presence of the inherited keyword in the textual description; also notice
that the form indeed has some components, although they are defined in the base
class form. If you move the form and add the caption of one of the buttons, the tex-
tual description will change accordingly:

115 File | New | Other in recent versions of Delphi. The category is “Inheritable items”, rather than
the name of the project.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 105

Figure 2.6:
The New Items dialog
box allows you to
create an inherited
form. Images captured
in Delphi 5 and Delphi
12.

inherited Form2: TForm2
 Left = 313
 Top = 202
 Caption = ‘Form2’
 inherited Button2: TButton
 Caption = ‘Beep...’
 end
end

Only the properties with a different value are listed (and by removing these proper-
ties from the textual description of the inherited form, you can reset them to the
value of the base form, as I mentioned before). I’ve actually changed the captions of
most buttons, as you can see in Figure 2.7.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

106 - Chapter 2: Object-Oriented Programming in Delphi

Figure 2.7:
The two forms of the
VFI example at run
time. Image from the
original book.

Each of the buttons of the first form has an OnClick handler, with simple code. The
first button shows the inherited form calling its Show method; the second and the
third buttons call the Beep procedure; and the last button displays a simple message
calling ShowMessage (‘Hi’).

What happens in the inherited form? First we should remove the Show button
because the secondary form is already visible. However, we cannot delete a compo-
nent from an inherited form. An alternative solution is to leave the component there
but set its Visible property to False. The button will still be there but not visible (as
you can guess from Figure 2.7). The other three buttons will be visible but with dif-
ferent handlers. This is simple to accomplish. If you select the OnClick event of a
button in the inherited form (by double-clicking it), you’ll get an empty method
slightly different from the default one:

procedure TForm2.Button2Click(Sender: TObject);
begin
 inherited;
end;

The inherited keyword stands for a call to the corresponding event handler of the
base form. This keyword is always added by Delphi, even if the handler is not
defined in the parent class (and this is reasonable, because it might be defined later)
or if the component is not present in the parent class (which doesn’t seem like a
great idea to me). It is very simple to execute the code of the base form and perform
some other operations:

procedure TForm2.Button2Click(Sender: TObject);
begin
 inherited;
 ShowMessage (‘Hi’);
end;

This is not the only choice. An alternative approach is to write a brand-new event
handler and not execute the code of the base class, as I’ve done for the third button
of the VFI example:

procedure TForm2.Button3Click(Sender: TObject);

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 107

begin
 ShowMessage (‘Hi’);
end;

Still another choice includes calling a base-class method after some custom code has
been executed, calling it when a condition is met, or calling the handler of a differ-
ent event of the base class, as I’ve done for the fourth button:

procedure TForm2.Button4Click(Sender: TObject);
begin
 inherited Button3Click (Sender);
 inherited;
end;

You probably won’t do this very often, but you must be aware that you can. Of
course, you can consider each method of the base form as a method of your form,
and call it freely. This example allows you to explore some features of visual form
inheritance, but to see its true power you’ll need to look at real-world examples
more complex than this book has room to explore. There is something else I want to
show you here: visual form polymorphism.

Polymorphic Forms

The problem is simple. If you add an event handler to a form and then change it in
an inherited form, there is no way to refer to the two methods using a common vari-
able of the base class, because the event handlers use static binding by default.

Confusing? Here is an example, which is intended for experienced Delphi program-
mers. Suppose you want to build a bitmap viewer form and a text viewer form in the
same program. The two forms have similar elements, a similar toolbar, a similar
menu, an OpenDialog component, and different components for viewing the data.
So you decide to build a base-class form containing the common elements and
inherit the two forms from it. You can see the three forms at design time in Figure
2.8.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

108 - Chapter 2: Object-Oriented Programming in Delphi

Figure 2.8:
The base-class form
and the two inherited
forms of the PoliForm
example at design time
(in Delphi 5)

Here is the textual description of the main form:

object ViewerForm: TViewerForm
 Caption = ‘Generic Viewer’
 Menu = MainMenu1
 object Panel1: TPanel
 Align = alBottom
 object ButtonLoad: TButton…
 object CloseButton: TButton…
 end
 object MainMenu1: TMainMenu
 object File1: TMenuItem...
 object Load1: TMenuItem...
 object N1: TMenuItem...
 object Close1: TMenuItem...
 object Help1: TMenuItem...
 object AboutPoliform1: TMenuItem...
 end
 object OpenDialog1: TOpenDialog...
end

The two inherited forms have only minor differences, but they feature a new compo-
nent, either an image viewer (TImage) or a text viewer (TMemo):

inherited ImageViewerForm: TImageViewerForm
 Caption = ‘Image Viewer’
 object Image1: TImage [0]
 Align = alClient
 end
 inherited OpenDialog1: TOpenDialog
 Filter = ‘Bitmap file|*.bmp|Any file|*.*’
 end
end
inherited TextViewerForm: TTextViewerForm

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 109

 Caption = ‘Text Viewer’
 object Memo1: TMemo [1]
 Align = alClient
 end
 inherited OpenDialog1: TOpenDialog
 Filter = ‘Text files|*.txt|Any file|*.*’
 end
end

The main form includes some common code. The Close button and the File Close
command call the Close method of the form. The Help About command shows a
simple message box. The Load button of the base form has the follow-ing code:

procedure TViewerForm.ButtonLoadClick(Sender: TObject);
begin
 ShowMessage (‘Error: File loading code missing’);
end;

The File Load command, instead, calls another method:

procedure TViewerForm.Load1Click(Sender: TObject);
begin
 LoadFile;
end;

This method is defined in the TViewerForm class as

public
 procedure LoadFile; virtual; abstract;

Because this is an abstract method, we will need to redefine it (and override it) in
the inherited forms:

type
 TImageViewerForm = class(TViewerForm)
 Image1: TImage;
 procedure ButtonLoadClick(Sender: TObject);
 public
 procedure LoadFile; override;
 end;

The code of this LoadFile method simply uses the OpenDialog1 component to ask
the user to select an input file and loads it into the image component:

procedure TImageViewerForm.LoadFile;
begin
 if OpenDialog1.Execute then
 Image1.Picture.LoadFromFile (
 OpenDialog1.Filename);
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

110 - Chapter 2: Object-Oriented Programming in Delphi

The other inherited class has similar code, loading the text into the memo compo-
nent. The project has one more form, a main form with two buttons, used to reload
the files in each of the viewer forms. The main form is the only form created by the
project when it starts. The generic viewer form is never created: it is only a generic
base class, containing common code and components of the two sub-classes. The
forms of the two subclasses are created in the OnCreate event handler of the main
form:

procedure TMainForm.FormCreate(Sender: TObject);
var
 I: Integer;
begin
 FormList [1] := TTextViewerForm.Create (Application);
 FormList [2] := TImageViewerForm.Create (Application);
 for I := 1 to 2 do
 FormList[I].Show;
end;

See Figure 2.9 for the resulting forms (with text and image already loaded in the
viewers). FormList is a polymorphic array of forms, declared in the TMainForm class
as:

private
 FormList: array [1..2] of TviewerForm;

Figure 2.9:
The PoliForm example
at run time. Image
from the original book.

Note that to make this declaration in the class, you need to add the Viewer unit (but
not the specific forms) in the uses clause of the interface portion of the main form.
The array of forms is used to load a new file in each viewer form when one of the
two buttons is pressed. The handlers of the two buttons’ OnClick events use differ-
ent approaches:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 111

procedure TMainForm.ReloadButton1Click(Sender: TObject);
var
 I: Integer;
begin
 for I := 1 to 2 do
 FormList [I].ButtonLoadClick (self);
end;

procedure TMainForm.ReloadButton2Click(Sender: TObject);
var
 I: Integer;
begin
 for I := 1 to 2 do
 FormList [I].LoadFile;
end;

The second button simply calls a virtual method, and it will work without any prob-
lem. The first button calls an event handler and will always reach the generic
TFormView class (displaying the error message of its ButtonLoadClick method). This
happens because the method is static, not virtual.

Is there a way to make this approach work? Sure. Declare the ButtonLoadClick
method of the TFormView class as virtual, and declare it as overridden in each of the
inherited form classes, as we do for any other virtual method:

type
 TViewerForm = class(TForm)
 // components and plain methods...
 procedure ButtonLoadClick(Sender: TObject); virtual;
 public
 procedure LoadFile; virtual; abstract;
 end;
...
type
 TImageViewerForm = class(TViewerForm)
 Image1: TImage;
 procedure ButtonLoadClick(Sender: TObject); override;
 public
 procedure LoadFile; override;
 end;

Simple, isn’t it? This trick really works, although it is never mentioned in the Delphi
documentation. This ability to use virtual event handlers is what I actually mean by
visual form polymorphism.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

112 - Chapter 2: Object-Oriented Programming in Delphi

What’s Next?

In this chapter, we have discussed the foundations of object-oriented programming
in Object Pascal. We have considered the definition of classes, the use of methods,
encapsulation, inheritance, polymorphism, and run-time type information. This is
certainly a lot of information if you are a newcomer, but if you are fluent in another
OOP language or if you’ve already used past versions of Delphi, you should be able
to apply the topics covered in this chapter to your programming.

The next chapter continues our discussion of how Delphi implements OOP. It cov-
ers other language features, such as method pointers, class references, properties,
events, and exceptions, which are particularly important to support Delphi’s visual
development style. Chapter 3 also shows how to define your own components.
Chapter 4 then focuses on the structure of the VCL (Visual Component Library) and
discusses a few important classes.

Understanding the secrets of Object Pascal and the structure of the VCL is vital for
becoming an expert Delphi programmer. These topics form the foundation of work-
ing with the VCL; after exploring them in the next two chapters, we’ll finally go on
in Part II of the book to explore the development of real applications using all the
various components provided by Delphi.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 113

Chapter 3:

Advanced Object

Pascal

In the last chapter you’ve seen the foundations of the Object Pascal language used
by Delphi: classes, objects, methods, constructors, inheritance, late binding, and
run-time type information. Now we need to move one step further, by looking at
some more advanced features of the language116. Some of the extensions discussed
in this chapter, particularly the published keyword, properties, and events, are

116 Since the time this book was published, the Delphi language has been largely extended with
significant improvements to classes (with strict access specifiers, nested types, class data, class
properties, class constructors, and more), to the core language (inline routines, for-in loops,
records with methods and operators overloading), and later with features opening up for dif-
ferent programming models, like generics, anonymous methods, and extended RTTI. All of
these features build on top of the core capabilities of Delphi discussed in this book, which re-
main relevant.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

114 - Chapter 3: Advanced Object Pascal

strictly related to Delphi’s visual programming model. In fact, while discussing
these topics, I’ll show you how to build a simple custom component.

Some other elements of Object Pascal, such as exceptions and interfaces, are not so
closely related with the visual elements of Delphi. Still, it’s important to know them,
as well as a few other elements discussed in this chapter, to write correct code in
your Delphi applications.

Class Methods and Class Data

When you define a field in a class, you actually specify that the field should be added
to each object instance of that class. Each instance has its own independent repre-
sentation (referred to by the Self pointer). In some cases, however, it might be
useful to have a field that is shared by all the objects of a class.

Other object-oriented programming languages have formal constructs to express
this, such as static in C++. But in Object Pascal, we can simulate this feature using
the encapsulation provided at the unit level117. You can simply add a variable in the
implementation portion of a unit, to obtain a class variable—a single memory loca-
tion shared by all of the objects of a class.

If you need to access this value from outside the unit, you might use a method of the
class. However, this forces you to apply this method to one of the instances of the
class. An alternative solution is to declare a class method. A class method cannot
access the data of any single object but can be applied to a class as a whole rather
than to a particular instance. A class method is related to the class, not to its objects
or instances (like a static member function in C++ or Java118).

To declare a class method in Object Pascal, you simply add the class keyword in
front of it:

type
 MyClass = class

117 The lack of a formal declaration for class data has been filled with the “class var” construct,
which let's you define true class data and works properly in case on inheritance and for generic
classes, two areas in which the technique proposed in Mastering Delphi 5 falls short.

118 Another addition to the language, since the days this book was written, is the availability of
“static” class methods, which are very similar to their C++, Java, or C# counterparts. The dif-
ference with the standard class methods in Delphi is that these have a hidden self parameter
referring to the class, unlike static class methods which are for all purposes identical to global
functions (to the point that they can be used as Windows callback functions).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 115

 class function ClassMeanValue: Integer;

The use of class methods is not very common in Object Pascal, because you can
obtain the same effect by adding a procedure or function to a unit declaring a class.
Object-oriented purists, however, will definitely prefer the use of a class method
over a routine unrelated to a class. And actually the VCL uses class methods quite
often, although there are also many global subroutines. Notice that in Delphi, class
methods can also be virtual119, so they can be overridden and used to obtain poly-
morphism.

A Class with an Object Counter

When unit data is used to maintain general information related to the class (such as
the number of objects created or a list of these objects), you can use class methods
to access that data. That is exactly what the next example does.

The CountObj program is an extension of the CreateC example from the last chap-
ter. The form is still quite bare, but I’ve added some new code. In particular I’ve
added a brand-new class, which inherits from the TButton class of the VCL and adds
a new feature, namely object counting. Here is the declaration of the new class:

type
 TCountButton = class (TButton)
 constructor Create (AOwner: TComponent); override;
 destructor Destroy; override;
 class function GetTotal: Integer;
 end;

note What you see here is a perfectly working custom component. In this case, we won’t register it and
won’t add it to Delphi’s Components palette, even if this is not a particularly difficult operation.
Customizing existing components can be really that simple! We’ll cover this topic a little further
in this chapter and in much more detail in Chapter 13.

Every time an object is created, the program increments the counter before calling
the constructor of the base class. Every time an object is destroyed, the counter is
decreased:

constructor TCountButton.Create (AOwner: TComponent);
begin
 inherited Create (AOwner);

119 This is a unique feature across programming languages, which combines nicely with another
uncommon Delphi feature, class references.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

116 - Chapter 3: Advanced Object Pascal

 Inc (TotBtns);
end;

destructor TCountButton.Destroy;
begin
 Dec (TotBtns);
 inherited Destroy;
end;

The counter is a variable declared in the implementation portion of the unit and so
is not accessible outside the unit. Only the class method allows us to read its current
value. You can directly initialize this variable when it is defined:

implementation

var
 TotBtns: Integer = 0;

class function TCountButton.GetTotal: Integer;
begin
 Result := TotBtns;
end;

Now we can create objects of this new type by changing the code of the
FormMouseDown method slightly:

begin
 with TCountButton.Create (Self) do
 begin
 Parent := Self;
 // same code as before...

Every time a TCountButton object is created, the current number of objects is displayed
at the beginning of its caption. We can call the GetTotal class method for the newly cre-
ated object (notice that we are inside a with statement), just as we call any plain method.
However, we can call the same method without a valid object instance. This is what we
do when the interval of a timer I’ve added to the form elapses:

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 Caption := Format (‘CountObj: %d custom buttons’,
 [TCountButton.GetTotal]);
end;

The Caption property in this code refers to the caption of the form. You can see the
effect of this call in Figure 3.1. The drawback of this example is that we can only cre-
ate objects and never destroy them, so we see the total number of live objects always
increasing and never reducing its value.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 117

To see that the number of objects in existence goes down to zero, we can try to check
the number of objects after the form has been destroyed, along with the
TCountButton objects it owns. This is the code I’ve added at the end of the unit:

finalization
 MessageBox (0, PChar (Format (
 ‘There are %d CountButton objects’,
 [TCountButton.GetTotal])),
 ‘Finalization’, mb_OK);
end.

Figure 3.1:
The output the
CountObj example
after a couple of
TCountButton objects
have been created.
Image from the
original book.

note In the finalization code above I had to use a Windows API function (MessageBox) instead of
a Delphi procedure (such as ShowMessage). The reason is that the finalization code of the
unit is executed after some of the Delphi global objects have been destroyed, so it is better not to
rely on them.

The program simply displays a Windows message box indicating the number of
objects in existence, a value obtained by calling the GetTotal class method. If you
run the program, the number in the output is zero, although I have to say that this is
not guaranteed but is due to the order in which objects are destroyed. The compiler
uses a specific order for units initialization and finalization: starting with the project
source code, the units referred to are initialized before and finalized after the units
that refer to them. Typically, the project will initialize the Forms unit, which in turn
initializes other VCL units, and then it initializes your form unit, which will first ini-
tialize the units describing the components you use (that is, those in the uses
statement).

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

118 - Chapter 3: Advanced Object Pascal

However, at first sight, it is not simply to determine when in this sequence the main
form of the application and the components it owns are going to be destroyed. To
test that everything actually works, I’ve added the same MessageBox call code in the
handler of the OnDestroy event of the form, triggered before the form is destroyed.

If you run the program, you’ll see that when the FormDestroy method is executed,
all of the objects you’ve created still exist; but right after that, the objects are
destroyed and the count decreases to zero. We’ll see a more complete example, in
which we’ll destroy the buttons at run time, after we discuss method pointers in the
following section “The Updated Counter Example.”

Method Pointers

Another Delphi addition to the Object Pascal language is the concept of method
pointers. A method pointer type is like a procedural type, but one that refers to a
method120. Technically, a method pointer type is a procedural type that has an
implicit Self parameter. In other words, a method pointer stores two addresses: the
address of the method code and the address of an object instance (data). The
address of the object instance will show up as Self inside the method body when
the method code is called using this method pointer. This explains the definition of
Delphi’s generic TMethod type, a record with a Code field and a Data field.

The declaration of a method pointer type is similar to that of a procedural type,
except that it has the keywords of object at the end of the declaration:

type
 IntProceduralType = procedure (Num: Integer);
 IntMethodPointerType = procedure (Num: Integer) of object;

When you have declared a method pointer, such as the one above, you can declare a
variable of this type and assign to it a compatible method of another object. What’s a
compatible method? One that has the same parameters as those requested by the
method pointer type, such as a single Integer parameter in the example above.

At first glance, the goal of this technique may not be clear, but this is one of the cor-
nerstones of Delphi component technology. The secret is in the word delegation. If
someone has built an object that has some method pointers, you are free to change
the object’s behavior simply by assigning new methods to the pointers. Does this
sound familiar? It should.

120 The language now offers a different, related feature: anonymous methods. Methods pointers
remain the foundation for event handlers.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 119

When you add an OnClick event handler for a button, Delphi does exactly that. The
button has a method pointer, named OnClick, and you can directly or indirectly
assign a method of the form to it. When a user clicks the button, this method is exe-
cuted, even if you have defined it inside another class (typically, in the form).

What follows is a listing that sketches the code actually used by Delphi to define the
event handler of a button component and the related method of a form:

type
 TNotifyEvent = procedure (Sender: TObject) of object;

 MyButton = class
 OnClick: TNotifyEvent;
 end;

 TForm1 = class (TForm)
 procedure Button1Click (Sender: TObject);
 Button1: MyButton;
 end;

var
 Form1: TForm1;

Now inside a procedure, you can write

MyButton.OnClick := Form1.Button1Click;

The only real difference between this code fragment and the code of the VCL is that
OnClick is a property name, and the actual data it refers to is called FOnClick. An
event that shows up in the Events page of the Object Inspector, in fact, is nothing
more than a property of a method pointer type.

This means, for example, that you can dynamically modify the event handler
attached to a component at design time or even build a new component at run time
and assign an event handler to it. For example, we could add to the form of the
Counter example the following method:

procedure TForm1.ButtonClick (Sender: TObject);
begin
 ShowMessage (‘Button pressed’);
end;

and then write for each newly created button the following code:

with TCountButton.Create (Self) do
begin
 OnClick := ButtonClick;

With this code each of the buttons will react to a click of the mouse by showing a
common message, because all components share the same handler. However, we

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

120 - Chapter 3: Advanced Object Pascal

can use the Sender parameter of the event to customize it for each button. This is
what I’ll do in the example discussed in the sidebar “The Updated Counter Exam-
ple,” which is an even more complete extension of the Counter program.

The Updated Counter Example

Now that we know how to use method pointers, we can update the CountObj exam-
ple by using them. The name of the new example is CountOb2. Its purpose is to add
a handler for the OnKeyPress event of the new objects a user creates dynamically.
Add the following code in the form class declaration:

procedure ButtonKeyPress(Sender: TObject; var Key: Char);

The parameters are those required for an event of this kind. If you select the
OnKeyPress event for a component of a form and press the F1 key to invoke the Help
file, you’ll find the following declaration:

TKeyPressEvent = procedure (Sender: TObject; var Key: Char) of object;
property OnKeyPress: TKeyPressEvent;

As you can see in this last line, the event is based on the TKeyPressEvent method
pointer type, listed in the line before. Therefore, we need to write a method that
complies with this method pointer type, like the one presented in the previous sec-
tion.

To connect this method with the OnKeyPress event of the buttons we create dynami-
cally, we need just one line of code in the FormMouseDown method:

with TCountButton.Create (Self) do
begin
 ...
 // set the event handler
 OnKeyPress := ButtonKeyPress;
 // grab the input focus
 SetFocus;
end;

The second line of code moves the input focus to the newly created button, so that
subsequent keyboard input will be directed to it.

Now we can write the code of the ButtonKeyPress method. Press the Ctrl+Shift+C
key combination to activate Delphi’s Code Completion, and then fill the method
declaration with some actual code. In this example, we should destroy the button
when the user presses the Backspace key. Because keyboard input is sent to the con-
trol that has the input focus, you can simply click a button or use the Tab key to
select the button you want to destroy; then press the Backspace key.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 121

The first approach I tried in developing this application was simply to destroy the
object passed as Sender parameter, which is the object that received the event:

procedure TForm1.ButtonKeyPress(Sender: TObject;
 var Key: Char);
begin
 if Key = #8 then
 Sender.Free
end;

This code generates an exception. We cannot destroy an object while we are pro-
cessing one of its events. Instead, we must delay the object destruction. There are
basically two approaches. We can save the object we want to destroy in a private
field of the form class and later destroy it, inside some code periodically activated by
a timer. You can find this code in the CountOld example. Notice that the use of the
timer causes a little flaw in the program: if two backspace keys are processed before
the timer fires, only one button is going to be destroyed.

The second approach, implemented in the CountOb2 example, is to send a custom
Windows message (such as wm_User) to the form using the PostMessage API func-
tion. This introduces a delay, because the message has to reach the window and will
be retrieved and elaborated after the current event handler has completed its execu-
tion. To follow this second approach, we can write the following handler for the
OnKeyPress event of each new button:

procedure TForm1.ButtonKeyPress(Sender: TObject;
 var Key: Char);
begin
 // if user pressed backspace
 if Key = #8 then
 begin
 // set this as the object to destroy
 ToDestroy := Sender as TButton;
 // post message to perform destruction
 PostMessage (Handle, wm_User, 0, 0);
 end;
end;

In this code ToDestroy is a private field of the form of the TButton data type. This
field is automatically set to nil (no object to destroy) when the form is first created
(this is the default initialization for class fields). When the user presses the
Backspace key, the current button object (the Sender of the ButtonKeyPress
method) is stored in the ToDestroy field. At this point, the PostMessage Windows
API call sends a message to the current window (identified by the value of its Handle
property). The handler of this message is defined in the form class as follows:

type

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

122 - Chapter 3: Advanced Object Pascal

 TForm1 = class(TForm)
 ...
 private
 ToDestroy: TButton;
 public
 procedure WmUser (var Msg: TMessage); message wm_User;

Now we can look at the code of this method, in which the program can double-check
whether there is a button to destroy before destroying it and setting it to nil:

procedure TForm1.WmUser (var Msg: TMessage);
begin
 // if there is an object to destroy
 if Assigned (ToDestroy) then
 begin
 // moves the input focus to the next control
 SelectNext (ToDestroy, True, True);
 // destroy the object and set the reference to nil
 FreeAndNil (ToDestroy);
 end;
 // update the form caption
 Caption := Format (‘CountObj: %d custom buttons’,
 [TCountButton.GetTotal]);
end;

To make the program behave a little better before destroying an object, I moved the
input focus to the next control by calling the SelectNext method. Then the program
calls the FreeAndNil procedure, which calls the Free method of the object, which in
turn invokes the destructor Destroy. Because the destructor is virtual, the program
invokes the overridden destructor of the TCountButton class, which decrements the
object counter. For this reason I’ve placed the code that destroys the object before
the code that updates the form caption. Before calling Free, FreeAndNil sets the
ToDestroy reference to nil.

More about freeing objects and memory management is in the section “Objects and
Memory,” later in this chapter.

Class References

Having looked at several topics related to methods, we can now move on to the topic
of class references and extend our example of dynamically creating components
even further. The first point to keep in mind is that a class reference isn’t a class, it
isn’t an object, and it isn’t a reference to an object; it is simply a reference to a class
type.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 123

A class reference type determines the type of a class reference variable. Sounds con-
fusing? A few lines of code might make this a little clearer. Suppose you have
defined the class TMyClass. You can now define a new class reference type, related
to that class:

type
 TMyClassRef = class of TMyClass;

Now you can declare variables of both types. The first variable refers to an object,
the second to a class:

var
 AClassRef: TMyClassRef;
 AnObject: TMyClass;
begin
 AClassRef := TMyClass;
 AnObject := TMyClass.Create;

You may wonder what class references are used for. In general, class references
allow you to manipulate a class data type at run time. You can use a class reference
in any expression where the use of a data type is legal. Actually, there are not many
such expressions, but the few cases are interesting. The simplest case is the creation
of an object. We can rewrite the two lines above as follows:

AClassRef := TMyClass;
AnObject := AClassRef.Create;

This time I’ve applied the Create constructor to the class reference instead of to an
actual class; I’ve used a class reference to create an object of that class.

note Class references remind us of the concept of metaclass available in other OOP languages. In
Object Pascal, however, a class reference is not itself a class but only a type pointer. Therefore, the
analogy with metaclasses (classes describing other classes) is a little misleading. Actually,
TMetaclass is also the term used in C++Builder.

Class reference types wouldn’t be as useful if they didn’t support the same type-
compatibility rule that applies to class types. When you declare a class reference
variable, such as MyClassRef above, you can then assign to it that specific class and
any subclass. So if MyNewClass is a subclass of my class, you can also write

AClassRef := MyNewClass;

Delphi declares a lot of class references in the run-time library and the VCL, includ-
ing the following:

TClass = class of TObject;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

124 - Chapter 3: Advanced Object Pascal

ExceptClass = class of Exception;
TComponentClass = class of TComponent;
TControlClass = class of TControl;
TFormClass = class of TForm;

In particular, the TClass class reference type can be used to store a reference to any
class you write in Delphi, because every class is ultimately derived from TObject.
The TFormClass reference, instead, is used in the source code of most Delphi
projects. The CreateForm method of the Application object, in fact, requires as
parameter the class of the form to create:

Application.CreateForm(TForm1, Form1);

The first parameter is a class reference, the second is a variable that stores a refer-
ence to the created object instance.

Finally, when you have a class reference you can apply to it the class methods of the
related class. Considering that each class inherits from TObject, you can apply to
each class reference some of the methods of TObject, including InstanceSize,
ClassName, ParentClass, and InheritsFrom. I’ll discuss these class methods and
other methods of TObject class in the next chapter.

Creating Components Using Class References

What is the practical use of class references in Delphi? Being able to manipulate a
data type at run time is a fundamental element of the Delphi environment. When
you add a new component to a form by selecting it from the Component Palette, you
select a data type and create an object of that data type. (Actually, that is what Del-
phi does for you behind the scenes.)

To give you a better idea of how class references work, I’ve built an example named
ClassRef. The form displayed by this example is quite simple. It has three radio but-
tons, placed inside a panel in the upper portion of the form. When you select one of
these radio buttons and click the form, you’ll be able to create new components of
the three types indicated by the button labels: radio buttons, push buttons, and edit
boxes.

To make this program run properly, you need to change the names of the three com-
ponents. The form must also have a class reference field:

private
 ClassRef: TControlClass;
 Counter: Integer;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 125

The first field stores a new data type every time the user clicks one of the three radio
buttons. Here is one of the three methods:

procedure TForm1.RadioButtonRadioClick(Sender: TObject);
begin
 ClassRef := TRadioButton;
end;

The other two radio buttons have OnClick event handlers similar to this one, assign-
ing the value TEdit or TButton to the ClassRef field. A similar assignment is also
present in the handler of the OnCreate event of the form, used as an initialization
method.

The interesting part of the code is executed when the user clicks the form. Again,
I’ve chosen the OnMouseDown event of the form to hold the position of the mouse
click:

procedure TForm1.FormMouseDown(
 Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
var
 NewCtrl: TControl;
 MyName: String;
begin
 // create the control
 NewCtrl := ClassRef.Create (Self);
 // hide it temporarily, to avoid flickering
 NewCtrl.Visible := False;
 // set parent and position
 NewCtrl.Parent := Self;
 NewCtrl.Left := X;
 NewCtrl.Top := Y;
 // compute the unique name (and caption)
 Inc (Counter);
 MyName := ClassRef.ClassName + IntToStr (Counter);
 Delete (MyName, 1, 1);
 NewCtrl.Name := MyName;
 // now show it
 NewCtrl.Visible := True;
end;

The first line of the code for this method is the key. It creates a new object of the
class data type stored in the ClassRef field. We accomplish this simply by applying
the Create constructor to the class reference. Now you can set the value of the
Parent property, set the position of the new component, give it a name (which is
automatically used also as Caption or Text), and make it visible.

Notice in particular the code used to build the name; to mimic Delphi’s default
naming convention, I’ve taken the name of the class with the expression
ClassRef.ClassName, using a class method of the TObject class. Then I’ve added a

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

126 - Chapter 3: Advanced Object Pascal

number at the end of the name and removed the initial letter of the string. For the
first radio button, the basic string is TRadioButton, plus the 1 at the end, and minus
the T at the beginning of the class name—RadioButton1. Sounds familiar?

You can see two examples of the output of this program in Figure 3.2. Notice that
the naming is not exactly the same as used by Delphi. Delphi uses a separate
counter for each type of control; I’ve used a single counter for all of the components.
If you place a radio button, a push button, and an edit box in a form of the ClassRef
example, their names will be RadioButton1, Button2, and Edit3.

Figure 3.2:
Two examples of the
output of the ClassRef
example, in two
different windows

Objects and Memory

Memory management in Delphi is subject to two simple rules: You must destroy
every object you create, and you must destroy each object only once. Delphi sup-
ports three types of memory management for dynamic elements (that is, elements
not in the stack and the global memory area):

· Every time you create an object, you should also free it. If you fail to do so, the
memory used by that object won’t be released for other objects, until the pro-
gram terminates.

· When you create a component, you can specify an owner component, passing the
owner to the component constructor. The owner component (often a form)

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 127

becomes responsible for destroying all the objects it owns. In other words, when
you free the form, it frees all the components it owns. So, if you create a compo-
nent and give it an owner, you don’t have to remember to destroy it.

· When you allocate memory for strings, dynamic arrays, and objects referenced
by interface variables (discussed at the end of this chapter), Delphi automatically
frees the memory when the reference goes out of scope. You don’t need to free a
string: when it becomes unreachable, its memory is released.

We’ll see how the issue of memory management affects actual examples when dis-
cussing applications with multiple forms in Part II of the book.

Destroying Objects Only Once

Another problem is that if you call the destructor of an object twice, you get an
error. A destructor is a method that de-allocates an object’s memory. We can write
code for a destructor, generally overriding the default Destroy destructor, to let the
object execute some code before it is destroyed. In your code, of course, you don’t
have to handle memory de-allocation—this is something Delphi does for you.

Destroy is simply a virtual destructor of the TObject class. Most of the classes that
require custom clean-up code when the objects are destroyed override this virtual
method. The reason you should never define a new destructor is that objects are
usually destroyed by calling the Free method, and this method calls the Destroy vir-
tual destructor (possibly the overridden version) for you.

As I’ve just mentioned, Free is simply a method of the TObject class, inherited by all
other classes. The Free method basically checks whether the current object (Self) is
not nil before calling the Destroy virtual destructor.

note You might wonder why you can safely call Free if the object reference is nil, but you can’t call
Destroy. The reason is that Free is a known method at a given memory location, whereas the
virtual function Destroy is determined at run time by looking at the type of the object, a very
dangerous operation if the object doesn’t exist any more.

Here is its pseudo-code (the actual code in the RTL source code files is written in
assembler):

procedure TObject.Free;
begin
 if Self <> nil then
 Destroy;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

128 - Chapter 3: Advanced Object Pascal

Next, we can turn our attention to the Assigned function. When we pass a pointer to
this function, it simply tests whether the pointer is nil. So the following two state-
ments (from the CountOb2 example) are equivalent, at least in most cases:

if Assigned (ToDestroy) then ...
if ToDestroy <> nil then ...

Notice that these statements test only whether the pointer is not nil; they do not
check whether it is a valid pointer. If you write the following code

ToDestroy.Free;
if ToDestroy <> nil then
 ToDestroy.DoSomething;

the test will be satisfied, and you’ll get an error on the line with the call to the
method of the object. It is important to realize that calling Free doesn’t set the
object to nil.

Automatically setting an object to nil is not possible. You might have several refer-
ences to the same object, and Delphi doesn’t track them. At the same time, within a
method (such as Free) we can operate on the object, but we know nothing about the
object reference—the memory address of the variable we’ve used to call the method.
In other words, inside the Free method or any other method of a class, we know the
memory address of the object (Self), but we don’t know the memory location of the
variable referring to the object, such as ToDestroy. Therefore, the Free method can-
not affect the ToDestroy variable.

However, when we call an external procedure, such as FreeAndNil in Delphi 5, the
procedure knows about the object reference, passed as a parameter, and can act on
it. Here is Delphi code for FreeAndNil121:

procedure FreeAndNil(var Obj);
var
 P: TObject;
begin
 P := TObject(Obj);
 // clear the reference before destroying the object
 TObject(Obj) := nil;
 P.Free;
end;

To sum things up, here are a couple of guidelines:

· Always call Free to destroy objects, instead of calling the Destroy destructor.

121 The code today is slightly different, as it assigns the nil value before freeing the object, to be
safe in multi-threaded applications.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 129

· Use FreeAndNil, or set object references to nil after calling Free, unless the ref-
erence is going out of scope immediately afterward.

Passing and Copying Objects

Another important element to discuss is passing objects as parameters or assigning
an object to another one. If you write

var
 Button2: TButton;
begin
 Button2 := Button1;

you don’t create a new object but rather a new reference to the same object in mem-
ory. There is only one object in memory, and both the Button1 and Button2
variables refer to it. The same happens if you pass an object as parameter to a func-
tion: you don’t create a new object, but you refer to the same one in two different
places of the code.

For example, by writing this procedure and calling it as follows, you’ll modify the
caption of Button1, or Button if you prefer:

procedure ChangeCaption (Button: TButton; Text: string);
begin
 Button.Caption := Text;
end;

// call...
ChangeCaption (Button1, ‘Hello’)

What if you need to create a new object, instead? You’ll basically have to create it
and then copy each of the relevant properties. Some classes, notably some VCL
classes derived from TPersistent, define an Assign method to copy the data of an
object. For example, you can write

ListBox1.Items.Assign (Memo1.Lines);

Even if you assign those properties directly, Delphi will execute a similar code for
you. In fact, the SetItems method connected with the items property of the list box
calls the Assign method of the TStringList class representing the actual items of
the listbox.

You can use complex techniques based on streaming to clone a component in mem-
ory, but most of the time, creating a new object of the same type as the current one
and assigning a few properties to it might do the trick. To do this, you can ask the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

130 - Chapter 3: Advanced Object Pascal

component its class and then use the class reference to create a new object of that
type. Here is the code (extracted from the ObjClone example), which clones the
Sender object:

procedure TForm1.ClickComp(Sender: TObject);
var
 ControlText: string;
begin
 with TControlClass (Sender.ClassType).Create (Self) do
 begin
 Parent := (Sender as TControl).Parent;
 Left := (Sender as TControl).Left + 10;
 Top := (Sender as TControl).Top + 10;
 SetLength (ControlText, 50);
 (Sender as TControl).GetTextBuf(
 PChar(ControlText), 50);
 ControlText := PChar(ControlText) + ‘ *’;
 SetTextBuf (PChar (ControlText));
 end;
end;

This method takes the class of the Sender object, the component clicked by the user,
and calls the Create constructor. To call the Create constructor of the TControl
class instead of calling that of the TObject class, the program has to cast the class
reference to the proper type. When we cast to TControlClass and then call Create,
the result is an object of class TControl. This object is used inside the with state-
ment, and the program sets its Parent, Left, and Top properties using information
extracted from the Sender control.

At the end of the with statement, the program extracts the text of the Sender object,
using the GetTextBuf method, which is available for every control. In fact, the Text
and Caption properties aren’t defined inside the TControl class. After adding an
asterisk to the string, the program uses the string as the new text of the control,
again calling the SetTextBuf method of the TControl class.

You can see the effect of cloning on some of the controls in Figure 3.3. The ObjClone
program is also capable of cloning an entire form, using a similar technique.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 131

Figure 3.3:
The ObjClone example.
Image from the
original book.

Handling Exceptions

The last interesting feature of Object Pascal we will cover in this chapter is excep-
tion handling. The idea of exceptions is to make programs more robust by adding
the capability of handling software or hardware errors in a simple and uniform way.
A program can survive such errors or terminate gracefully, allowing the user to save
data before exiting. Exceptions allow you to separate the error handling code from
your normal code, instead of intertwining the two. You end up writing code that is
more compact and less cluttered by maintenance chores unrelated to the actual pro-
gramming objective.

Another benefit is that exceptions define a uniform and universal error-reporting
mechanism, which is also used by Delphi components. At run time, Delphi raises
exceptions when something goes wrong. If your code has been written properly, it
can acknowledge the problem and try to solve it; otherwise, the exception is passed
to its calling code, and so on. Ultimately, if no part of your code handles the excep-
tion, Delphi handles it, by displaying a standard error message and trying to
continue the program.

The whole mechanism is based on four keywords:

· try delimits the beginning of a protected block of code.

· except delimits the end of a protected block of code and introduces the excep-
tion-handling statements, with this syntax form:

on exception-type do statement

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

132 - Chapter 3: Advanced Object Pascal

· finally is used to specify blocks of code that must always be executed, even
when exceptions occur.

· raise is the statement used to generate an exception. Most exceptions you’ll
encounter in your Delphi programming will be generated by the system, but you
can also raise exceptions in your own code when it discovers invalid or inconsis-
tent data at run time. The raise keyword can also be used inside a handler to re-
raise an exception; that is, to propagate it to the next handler.

Here is an example of a simple protected block:

function DivideTwicePlusOne (A, B: Integer): Integer;
begin
 try
 // error if B equals 0
 Result := A div B;
 // do something else... skip if exception is raised
 Result := Result div B;
 Result := Result + 1;
 except
 on EDivByZero do
 Result := 0;
 end;
end;

In the exception-handling statement, we catch the EDivByZero exception, which is
defined by Delphi. There are a number of these exceptions referring to run-time
problems (such as a division by zero or a wrong dynamic cast), to Windows resource
problems (such as out-of-memory errors), or to component errors (such as a wrong
index). Programmers can also define their own exceptions; simply create a new sub-
class of the default exception class or one of its sub-classes:

type
 EArrayFull = class (Exception);

When you add a new element to an array that is already full (probably because of an
error in the logic of the program), you can raise the corresponding exception by cre-
ating an object of this class:

if MyArray.Full then
 raise EArrayFull.Create (‘Array full’);

This Create method (inherited from the Exception class) has a string parameter to
describe the exception to the user. You don’t need to worry about destroying the
object you have created for the exception, because it will be deleted automatically by
the exception-handler mechanism.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 133

The code presented in the previous excerpts is part of a sample program, called
Except. Some of the routines have actually been slightly modified, as in the follow-
ing DivideTwicePlusOne function:

function DivideTwicePlusOne (A, B: Integer): Integer;
begin
 try
 // error if B equals 0
 Result := A div B;
 // do something else... skip if exception is raised
 Result := Result div B;
 Result := Result + 1;
 except
 on EDivByZero do
 begin
 Result := 0;
 MessageDlg (‘Divide by zero corrected’,
 mtError, [mbOK], 0);
 end;
 on E: Exception do
 begin
 Result := 0;
 MessageDlg (E.Message,
 mtError, [mbOK], 0);
 end;
 end; // end except
end;

note When you run a program in the debugger, the debugger will stop the program by default when an
exception is encountered. This is normally what you want, of course, because you’ll know where
the exception took place and can see the call of the handler step-by-step. In the case of the Except
test program, however, this behavior will confuse the program’s execution. In fact, even if the
code is prepared to properly handle the exception, the debugger will stop the program execution
at the source code line closest to where the exception was raised. Then, moving step-by-step
through the code, you can see how it is handled. If you just want to let the program run when the
exception is properly handled, run the program with the “Run without debugging” menu com-
mand.

In this code there are two different exception handlers after the same try block. You
can have any number of these handlers, which are evaluated in sequence. For this
reason, you need to place the broader handlers (the handlers of the ancestor
Exception classes) at the end.

In fact, using a hierarchy of exceptions, a handler is also called for the subclasses of
the type it refers to, as any procedure will do. This is polymorphism in action again.
But keep in mind that using a handler for every exception, such as the one above, is
not usually a good choice. It is better to leave unknown exceptions to Delphi. The
default exception handler in the VCL displays the error message of the exception

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

134 - Chapter 3: Advanced Object Pascal

class in a message box, and then resumes normal operation of the program. You can
actually modify the normal exception handler with the Application.OnException
event, as demonstrated in the ErrorLog example later in this chapter.

Another important element of the code above is the use of the exception object in
the handler (see on E: Exception do). The object E of class Exception receives the
value of the exception object passed by the raise statement. When you work with
exceptions, remember this rule: You raise an exception by creating an object and
handle it by indicating its type. This has an important benefit, because as we have
seen, when you handle a type of exception, you are really handling exceptions of the
type you specify as well as each descendant type.

Delphi defines a hierarchy of exceptions, and you can choose to handle each specific
type of exception in a different way or handle groups of them together. You can find
a list of the Delphi exception classes on www.marcocantu.com/d5ref122.

Exceptions and the Stack

When the program raises an exception and the current routine doesn’t handle it,
what happens to your function call stack? The program starts searching for a han-
dler among the functions already on the stack. This means that the program exits
from existing functions and does not execute the remaining statements. To under-
stand how this works, you can either use the debugger or add a number of simple
message boxes to the code, to be informed when a certain source code statement is
executed. In the next example, Except2, I’ve followed this second approach.

For example, when you press the Raise2 button in the form of the Except2 example,
an exception is raised and not handled, so that the final part of the code will never
be executed:

procedure TForm1.ButtonRaise2Click(Sender: TObject);
begin
 // unguarded call
 AddToArray (24);
 ShowMessage (‘Program never gets here’);
end;

Notice that this method calls the AddToArray procedure, which invariably raises the
exception. When the exception is handled, the flow starts again after the handler
and not after the code that raises the exception. Consider this modified method:

122 That page and that list don’t exists any more.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

http://www.marcocantu.com/d5ref.%5Bcheck

Chapter 3: Advanced Object Pascal - 135

procedure TForm1.ButtonRaise1Click(Sender: TObject);
begin
 try
 // this procedure raises an exception
 AddToArray (24);
 ShowMessage (‘Program never gets here’);
 except
 on EArrayFull do
 ShowMessage (‘Handle the exception’);
 end;
 ShowMessage (‘ButtonRaise1Click call completed’);
end;

The last ShowMessage call will be executed right after the second one, while the first
is always ignored. I suggest that you run the program, change its code, and experi-
ment with it to fully understand the program flow when an exception is raised.

The Finally Block

There is a fourth keyword for exception handling that I’ve mentioned but haven’t
used so far, finally. A finally block is used to perform some actions (usually
cleanup operations) that should always be executed. In fact, the statements in the
finally block are processed whether or not an exception takes place. The plain code
following a try block, instead, is executed only if an exception was not raised or if it
was raised and handled. In other words, the code in the finally block is always exe-
cuted after the code of the try block, even if an exception has been raised.

Consider this method (part of the Except3 example), which performs some time-
consuming operations and uses the hourglass cursor to show the user that it’s doing
something:

procedure TForm1.BtnWrongClick(Sender: TObject);
var
 I, J: Integer;
begin
 Screen.Cursor := crHourglass;
 J := 0;
 // long (and wrong) computation...
 for I := 1000 downto 0 do
 J := J + J div I;
 MessageDlg (‘Total: ‘ + IntToStr (J),
 mtInformation, [mbOK], 0);
 Screen.Cursor := crDefault;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

136 - Chapter 3: Advanced Object Pascal

Because there is an error in the algorithm (as the variable I can reach a value of 0
and is also used in a division), the program will break, but it won’t reset the default
cursor. This is what a try-finally block is for:

procedure TForm1.BtnTryFinallyClick(Sender: TObject);
var
 I, J: Integer;
begin
 Screen.Cursor := crHourglass;
 J := 0;
 try
 // long (and wrong) computation...
 for I := 1000 downto 0 do
 J := J + J div I;
 MessageDlg (‘Total: ‘ + IntToStr (J),
 mtInformation, [mbOK], 0);
 finally
 Screen.Cursor := crDefault;
 end;
end;

When the program executes this function, it always resets the cursor, whether an
exception (of any sort) occurs or not. The drawback to this version of the function is
that it doesn’t handle the exception. Strangely enough, this is not possible. A try
block can be followed by either an except or a finally statement but not both of
them at the same time. The typical solution is to use two nested try blocks, associat-
ing the internal one with a finally statement and the external one with an except
statement or vice versa, as the situation requires. Here is the code of this third but-
ton of the Except3 example:

procedure TForm1.BtnTryTryClick(Sender: TObject);
var
 I, J: Integer;
begin
 Screen.Cursor := crHourglass;
 J := 0;
 try try
 // long (and wrong) computation...
 for I := 1000 downto 0 do
 J := J + J div I;
 MessageDlg (‘Total: ‘ + IntToStr (J),
 mtInformation, [mbOK], 0);
 finally
 Screen.Cursor := crDefault;
 end;
 except
 on E: EDivByZero do
 begin
 // re-raise the exception with a new message
 raise Exception.Create (‘Error in Algorithm’);

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 137

 end;
 end;
end;

You should always protect blocks with the finally statement, to avoid resource or
memory leaks in case an exception is raised. Handling the exception is probably less
important, since Delphi can survive most of them.

Logging Errors

Most of the time, you don’t know which operation is going to raise an exception,
and you cannot (and should not) wrap each and every piece of code in a try-except
block. An alternative approach is to let Delphi handle all the exceptions and pass
them all to you, by handling the OnException event of the global Application
object. In early versions of Delphi you could handle this event by writing a proper
method and connecting in the code. Now Delphi provides the ApplicationEvents
component we can use to build this example. (More on the global Application
object and the ApplicationEvents component in Chapter 6).

In the ErrorLog example, I’ve added to the main form a copy of the Application-
Events component, and added a handler for its OnException event:

procedure TFormLog.LogException(Sender: TObject; E: Exception);
var
 Filename: string;
 LogFile: TextFile;
begin
 // prepares log file
 Filename := ChangeFileExt (Application.Exename, ‘.log’);
 AssignFile (LogFile, Filename);
 if FileExists (FileName) then
 Append (LogFile) // open existing file
 else
 Rewrite (LogFile); // create a new one

 // write to the file and show error
 Writeln (LogFile, DateTimeToStr (Now) + ‘:’ + E.Message);
 if not CheckBoxSilent.Checked then
 Application.ShowException (E);

 // close the file
 CloseFile (LogFile);
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

138 - Chapter 3: Advanced Object Pascal

note The ErrorLog example uses the simple text file support provided by the traditional Turbo Pascal
TextFile data type. You can assign a text file variable to an actual file and then simply read or
write it. You can find more on TextFile operations in the book Essential Pascal (available on
www.marcocantu.com/epascal).123

In the global exceptions handler, you can write to the log, for example, the date and
time of the event, and also decide whether to show the exception as Delphi usually
does (executing the ShowException method of the TApplication class). In fact, Del-
phi by default executes ShowException only if there is no OnException handler
installed.

Finally, remember to close the file, flushing the buffers, every time the exception is
handled or when the program terminates. I’ve chosen the first approach to avoid
keeping the log file open for the lifetime of the application, potentially making it dif-
ficult to work on it. You can accomplish this in the OnDestroy event handler of the
form:

procedure TFormLog.FormDestroy(Sender: TObject);
begin
 CloseFile (LogFile);
end;

The form of the program includes a check box to determine its behavior and two
buttons generating simple exceptions. In Figure 3.4, you can see the ErrorLog pro-
gram running and a sample exceptions log open in Notepad.

Figure 3.4:
The ErrorLog example
and the log it produces.
Image from the
original book.

123 Using the very old TextFile type is not recommended at all, however the code does work today
in Delphi 12.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 139

The published Access Specifier

Along with the public, protected, and private access directives, you can use a
fourth one, called published. A published field or method is available not only at
run time but also at design time. In fact, every component in the Delphi Compo-
nents Palette has a published interface that is used by some Delphi tools, in
particular the Object Inspector. A regular use of published fields is important when
you write components. Usually, the published part of a component contains no
fields or methods but has a new element of the language: properties.

When Delphi generates a form, it places the definitions of its components and
methods in the first portion of its definition, before the public and private key-
words. These fields and methods of the initial portion of the class are published.
The default is published when no special keyword is added before an element of a
component class.

note To be more precise, published is the default keyword only if the class was compiled with the
$M+ compiler directive or is descended from a class compiled with $M+. As this directive is used in
the TPersistent class, most classes of the VCL and all of the component classes default to
published. However, non-component classes in Delphi (such as TStream and TList) are com-
piled with $M- and default to public visibility.

The methods assigned to any event should be published methods, and the fields
corresponding to your components in the form should be published to be automati-
cally connected with the objects described in the DFM file and created along with
the form. Only the components and methods in the initial published part of your
form declaration can show up in the Object Inspector (in the list of components of
the form or in the list of the available methods displayed when you select the drop-
down list for an event).

Defining Properties

Now that we have looked at the published keyword, we can start focusing on other
extensions of the Object Pascal language specifically tailored for visual, component-
based programming. This section covers properties; later on, we’ll look at events
and build a first simple component.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

140 - Chapter 3: Advanced Object Pascal

Properties are attributes that determine the status and behavior of an object. A
property is basically a name that is mapped to some read and write methods or that
accesses some data directly. In other words, every time you read the value of a prop-
erty or change it, you might be accessing a field (even a private one) or calling a
method. For example, here is the definition of a property for a date object:

property Month: Integer
 read FMonth write SetMonth;

To access the value of the Month property, this code has to read the value of the pri-
vate field FMonth, while to change the value it calls the method SetMonth. Different
combinations are possible (for example, we could also use a method to read the
value or directly change a field in the write directive), but the use of a method to
change the value of a property is very common. Here are some alternatives:

property Month: Integer read GetMonth write SetMonth;
property Month: Integer read FMonth write Fmonth;

note When you write code that accesses a property, it is important to realize that a method might be
called. The issue is that some of these methods take some time to execute; they can also produce a
number of side effects, often including a (slow) repainting of the component on the screen.
Although side effects of properties are seldom documented, you should be aware that they exist,
particularly when you are trying to optimize your code.

The write directive of a property can also be omitted, making it a read-only prop-
erty. Technically you can also omit the read directive and define a write-only
property, but that doesn’t make much sense. Another distinction is between design-
time properties and run-time only properties. Design-time properties are declared
in a published section of the class declaration. Anything that is declared in the
public section is not available at design time—it is run-time only. All the read-only
properties must be defined in the public section (or in the protected or private
sections) because published properties must be read-write.

To see the value of a published property at design time or to change it, you can use
the Object Inspector. This is the tool that Delphi’s visual programming environment
provides to give access to properties. At run time, you can access any public or
published property by reading or writing its value.

note Remember that the Object Inspector lists only the design-time properties of a component, omit-
ting the run-time only properties. Also, in Delphi 5 some properties can be hidden, if their
category has been filtered out. For a complete list of the properties of a component, refer to the
Delphi help files, not to the Object Inspector.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 141

To summarize, along with the properties listed in the Object Inspector (design-
time), there are other properties (run-time only), some of which can only be read
(read-only). Note that you can usually assign a value to a property or read it, and
you can even use properties in expressions, but you cannot always pass a property
as a parameter to a procedure or method. This is because a property is not a mem-
ory location, so it cannot be used as a var parameter; it cannot be passed by
reference.

Not all of the VCL classes have properties. Properties are present in components
and in other subclasses of the TPersistent class, because properties usually can be
streamed and saved to a file. A DFM file, in fact, is nothing but a collection of pub-
lished properties of the components on the form. Delphi has extensive support for
saving this kind of information, an advanced topic discussed in Delphi Developers’
Handbook (Sybex, 1998)124.

Adding Properties to Forms

Properties are a very sound OOP mechanism, a very well thought out application of
the idea of encapsulation. Essentially, you have a name that hides the implementa-
tion of how to access the information of a class (either accessing the data directly or
calling a method). In fact, using properties you end up with an interface that is
unlikely to change. At the same time, if you only want to allow users access to some
fields of your class, you can easily wrap those fields into properties instead of mak-
ing them public. You have no further code to write (coding simple Get and Set
methods is terribly boring), and you are still able to change the implementation of
your class. Even if you replace the direct data access with method-based access, you
won’t have to change the source code that uses these properties at all. You’ll only
need to recompile it. Think of this as the concept of encapsulation raised to the max-
imum power!

Also keep in mind that using properties is very simple thanks to Code Completion.
For this reason, every time you want to make some information of a form available
to other forms, you should really use a property. Simply write in the form class dec-
laration the property name and type:

property Clicks: Integer;

124 That book is now hard to find, given it was published over 25 years ago. The content of that
book is still applicable today and th book is focused on Delphi RTL internals and writing com-
ponents.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

142 - Chapter 3: Advanced Object Pascal

Then press Ctrl+Shift+C to activate Code Completion. You’ll see the following
effect:

type
 TForm1 = class(TForm)
 private
 FClicks: Integer;
 procedure SetClicks(const Value: Integer);
 public
 property Clicks: Integer
 read FClicks write SetClicks;
 end;

implementation

procedure TForm1.SetClicks(const Value: Integer);
begin
 FClicks := Value;
end;

This saves you a lot of typing, compared to the previous versions of Delphi, and it
should make the use of properties the standard technique for accessing form data.

In my opinion, properties should also be used in the form classes to encapsulate the
access to the components of a form. For example, if you have a main form with a
status bar used to display some information (and with the SimplePanel property set
to True), and you want to modify the text from a secondary form, you might be
tempted to write:

Form1.StatusBar1.SimpleText := ‘new text’;

This is a standard practice in Delphi, but it’s not a good one, because it doesn’t pro-
vide any encapsulation of the form structure or components. If you have similar
code in many places throughout an application, and you later decide to modify the
user interface of the form (replacing StatusBar with another control or activating
multiple panels), you’ll have to fix the code in many places.

The alternative is to use a method or, even better, a property, to hide the specific
control. Simply type

property StatusText: string
 read GetText write SetText;

and press the Ctrl+Shift+C combination again, to let Delphi add the definition of
both methods for reading and writing the property:

function TForm1.GetText: string;
begin
 Result := StatusBar1.SimpleText;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 143

end;

procedure TForm1.SetText(const Value: string);
begin
 StatusBar1.SimpleText := Value;
end;

In the other forms of the program, you can simply refer to the StatusText property
of the form, and if the user interface changes, only the Set and Get methods of the
property are affected.

Adding Properties to the TDate Class

In the previous chapter we developed the TDate class. Now we can extend it by using
properties. This new example, DateProp, is basically an extension of the ViewD2
example from Chapter 2. Here is the new declaration of the class. It has some new
methods (used to set and get the values of the properties) and four properties:

type
 TDate = class
 private
 fDate: TDateTime;
 function GetYear: Integer;
 function GetDay: Integer;
 function GetMonth: Integer;
 procedure SetDay (const Value: Integer);
 procedure SetMonth (const Value: Integer);
 procedure SetYear (const Value: Integer);
 public
 constructor Create; overload;
 constructor Create (y, m, d: Integer); overload;
 procedure SetValue (y, m, d: Integer); overload;
 procedure SetValue (NewDate: TDateTime); overload;
 function LeapYear: Boolean;
 procedure Increase (NumberOfDays: Integer = 1);
 procedure Decrease (NumberOfDays: Integer = 1);
 function GetText: string; virtual;
 property Day: Integer read GetDay write SetDay;
 property Month: Integer read GetMonth write SetMonth;
 property Year: Integer read GetYear write SetYear;
 property Text: string read GetText;
 end;

The Year, Day, and Month properties read and write their values using corresponding
methods. Here are the two related to the Month property:

function TDate.GetMonth: Integer;
var

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

144 - Chapter 3: Advanced Object Pascal

 y, m, d: Word;
begin
 DecodeDate (fDate, y, m, d);
 Result := m;
end;

procedure TDate.SetMonth(const Value: Integer);
begin
 if (Value < 1) or (Value > 12) then
 raise EDateOutOfRange.Create (‘Invalid month’);
 SetValue (Year, Value, Day);
end;

The call to SetValue performs the actual encoding of the date, raising an exception
in case of an error. I’ve defined a custom exception class, which is raised every time
a value is out of range:

type
 EDateOutOfRange = class (Exception);

The fourth property, Text, maps only to a read method. This function is declared as
virtual, because it is replaced by the TNewDate subclass. There is no reason the Get
or Set method of a property should not use late binding.

note What is important to acknowledge in this example is that the properties do not map directly to
data. They are simply computed.

Having updated the class with the new properties, we can now update the example
to use properties when appropriate. For example, we can use the Text property
directly, and we can use some edit boxes to let the user read or write the values of
the three main properties (as you can see in Figure 3.5). This happens when the
Read button is pressed:

procedure TDateForm.BtnReadClick(Sender: TObject);
begin
 EditYear.Text := IntToStr (TheDay.Year);
 EditMonth.Text := IntToStr (TheDay.Month);
 EditDay.Text := IntToStr (TheDay.Day);
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 145

Figure 3.5:
The updated form of
the DateProp example
at run time. Image
from the original book.

The Write button does the reverse operation. You can write the code in either of the
two following ways:

// direct use of properties
TheDay.Year := StrToInt (EditYear.Text);
TheDay.Month := StrToInt (EditMonth.Text);
TheDay.Day := StrToInt (EditDay.Text);

// update all values at once
TheDay.SetValue (StrToInt (EditMonth.Text),
 StrToInt (EditDay.Text),
 StrToInt (EditYear.Text));

The difference between the two approaches relates to what happens when the input
doesn’t correspond to a valid date. When we set each value separately, the program
might change the year and then raise an exception and skip executing the rest of the
code, so that the date is only partially modified. When we set all the values at once,
either they are correct and are all set, or one is invalid and the date object retains
the original value.

note The SetValue method of this class and the three properties have the same relationship as the
SetBounds method of the TControl classes has with the Left, Top, Width, and Height prop-
erties. Actually, in some special circumstances the same problem described above arises with
these positional properties of controls.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

146 - Chapter 3: Advanced Object Pascal

Events in Delphi

When a user does something with a component, such as clicking it, the component
generates an event. Other events are generated by the system, in response to a
method call or a change to one of that component’s properties (or even a different
component’s). For example, if you set the focus on a component, the component
currently having the focus loses it, triggering the corresponding event.

Technically, most Delphi events are triggered when a corresponding Windows mes-
sage is received, although the events do not match the messages on a one-to-one
basis. Delphi events tend to be higher-level than Windows messages, and Delphi
provides a number of extra intercomponent messages.

From a theoretical point of view, an event is the result of a message sent to a win-
dow, and this window (or the corresponding component) can respond to the
message. Following this approach, to handle the click event of a button, we would
need to subclass the TButton class and add the new event handler.

In practice, creating a new class is too complex to be a reasonable solution. In Del-
phi, the event handler of a component usually is a method of the form that holds the
component, not of the component itself. In other words, the component relies on its
owner, the form, to handle its events. This technique is called delegation, and it is
fundamental to the Delphi component-based model.

Events Are Properties

Another important concept is that events are properties. This means that to handle
an event of a component, you assign a method to the corresponding event property,
as we did in the CountOb2 example earlier in this chapter. When you double-click
an event in the Object Inspector, a new method is added to the owner form and
assigned to the proper event property of the component.

This is why it is possible for several events to share the same event handler or
change an event handler at run time. To use this feature, you don’t need much
knowledge of the language. In fact, when you select an event in the Object Inspec-
tor, you can press the arrow button on the right of the event name to see a drop-
down list of “compatible” methods—a list of methods having the same method
pointer type. Using the Object Inspector, it is easy to select the same method for the
same event of different components or for different, compatible events of the same
component.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 147

Adding an Event to the TDate Class

As we’ve added some properties to the TDate class, we can add one event. The event
is going to be very simple. It will be called OnChange, and it can be used to warn the
user of the component that the value of the date has changed. To define an event,
we simply define a property corresponding to it, and we add some data to store the
actual method pointer the event refers to. These are the new definitions added to
the class:

type
 TDate = class
 private
 FOnChange: TNotifyEvent;
 ...
 protected
 procedure DoChange; dynamic;
 ...
 public
 property OnChange: TNotifyEvent
 read FonChange write FOnChange;
 ...
 end;

The property definition is actually very simple. A user of this class can assign a new
value to the property and, hence, to the FOnChange private field. The class doesn’t
assign a value to this FOnChange field. It is the user of the component who does the
assignment. The TDate class simply calls the method stored in the FOnChange field
when the value of the date changes. Of course, the call takes place only if the event
property has been assigned. The DoChange method (declared as a dynamic method
as it is traditional with event firing methods) makes the test and the method call:

procedure TDate.DoChange;
begin
 if Assigned (FOnChange) then
 FOnChange (Self);
end;

The DoChange method in turn is called every time one of the values changes, as in
the following method:

procedure TDate.SetValue (y, m, d: Integer);
begin
 fDate := EncodeDate (y, m, d);
 // fire the event
 DoChange;

Now if we look at the program that uses this class, we can simplify its code consider-
ably. First, we add a new custom method to the form class:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

148 - Chapter 3: Advanced Object Pascal

type
 TDateForm = class(TForm)
 ...
 procedure DateChange(Sender: TObject);

The code of this method simply updates the label with the current value of the Text
property of the TDate object:

procedure TDateForm.DateChange;
begin
 LabelDate.Caption := TheDay.Text;
end;

This event handler is then installed in the FormCreate method:

procedure TDateForm.FormCreate(Sender: TObject);
begin
 TheDay := TDate.Init (7, 4, 1997);
 LabelDate.Caption := TheDay.Text;
 // assign the event handler for future changes
 TheDay.OnChange := DateChange;
end;

Well, this seems like a lot of work. Was I lying when I told you that the event han-
dler would save us some coding? No. Now, after we’ve added some code, we can
completely forget about updating the label when we change some of the data of the
object. Here, as an example, is the handler of the OnClick event of one of the but-
tons:

procedure TDateForm.BtnIncreaseClick(Sender: TObject);
begin
 TheDay.Increase;
end;

The same simplified code is present in many other event handlers. Once we have
installed the event handler, we don’t have to remember to update the label continu-
ally. That eliminates a significant potential source of errors in the program. Also
note that we had to write some code at the beginning because this is not a compo-
nent installed in Delphi but simply a class. With a component, you simply select the
event handler in the Object Inspector and write a single line of code to update the
label. That’s all. How difficult is it to write a new component in Delphi? It’s actually
so simple I’m going to show you how to do it in the next section.

note This is meant to be just a short introduction to the role of properties and events and to writing
components. A basic understanding of these features is important for every Delphi programmer.
If your aim is to write complex new components, you’ll find a lot more information on all of these
topics in Chapter 13.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 149

Creating a TDate Component

The next step, actually a very simple one, is to turn our TDate class into a compo-
nent. First, we have to inherit our class from the TComponent class, instead of the
default TObject class. Here is the code:

type
 TDate = class (TComponent)
 ...
 public
 constructor Create (AOwner: TComponent); overload; override;
 constructor Create (y, m, d: Integer); reintroduce; overload;

As you can see, the second step was to add a new constructor to the class, overriding
the default constructor for components to provide a suitable initial value. Because
there is an overloaded version, we also need to use the reintroduce directive for it,
to avoid a warning message from the compiler. The code of the new constructor
simply sets the date to today’s date, after calling the base class constructor:

constructor TDate.Create (AOwner: TComponent);
var
 Y, D, M: Word;
begin
 inherited Create (AOwner);
 // today...
 fDate := Date;

Having done this, we need to add to the unit that defines our class (the file
DATES.PAS in the DATECOMP directory) a Register procedure. (Make sure this identi-
fier start with an uppercase R, otherwise it won’t be recognized.) This is required in
order to add the component to Delphi’s Components Palette. Simply declare the
procedure, which requires no parameters, in the interface portion of the unit, and
then write this code in the implementation section:

procedure Register;
begin
 RegisterComponents (‘Md’, [TDate]);
end;

This code adds the new component to the Md page of the Components Palette125,
creating the page if necessary. By the way, this is the same page I’ll use for all the
components built in the book.

125 Nowadays, the Palette pane hosts the components. The behavior described here remains the
same.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

150 - Chapter 3: Advanced Object Pascal

The last step is to install the component. For this simple example we won’t create a
new package. Instead, we can install the component in the default Borland User’s
Components package (a file named DCLUSR50.DPK and stored in the LIB directory of
Delphi). We’ll see how to build new packages in Chapter 13.

To make the component available, select the Component Install Component
menu item, choose the Into existing package page (this should be the default),
select the DCLUSR50.DPK package filename126 (again the default if you’ve never
installed components), and enter the unit filename of the component, DATES.PAS.
Now simply click OK and Delphi will update the package, compile it, and ask you to
install it in Delphi (if you haven’t already done so).

If you now move to the Components Palette, it should have a new Md page with the
new component. This will be shown using the default icon for Delphi components.
At this point you can place the component on the form of a new application and
start manipulating its properties in the Object Inspector, as you can see in Figure
3.6. You can also handle the OnChange event in a much easier way than in the last
example.

Besides trying to build your own sample application using this component (some-
thing I really suggest you do), you can now open the DateComp example, which is
an updated version of the component we’ve built step-by-step over the last few sec-
tions of this chapter. This is basically a simplified version of the DateEvt example,
because now the event handler is directly available in the Object Inspector.

Figure 3.6:
The properties of our
new TDate component
in the Object Inspector.
Image from the
original book.

126 The package is still called “dclusr.dpk” today. It’s description, oddly enough, is “CodeGear
User Components”. Notice that in the first page of the dialog box you need to select the com-
ponents source code file, while in the second you can pick the package you want to install it
into.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 151

note If you open the DateComp example before installing the new component, Delphi won’t recognize
the component as it opens the form and will give you an error message. You won’t be able to com-
pile the program or make it work until you install the new component.

Using Interfaces

Contrary to what happens in C++, the Delphi inheritance model doesn’t support
multiple inheritance. This means that each class can have only a single base class.
The usefulness of multiple inheritance is a topic of heated debate. The absence of
this construct in Delphi can be considered both a disadvantage (because you lose
some of the power of C++) and an advantage (because you get a simpler language
and fewer problems). My point is that Delphi’s interfaces provide the flexibility and
power of declaring support for multiple interfaces implemented on a class, while
avoiding the problems of inheriting multiple implementations. Rather than get
bogged down in this debate, I’ll simply assume that it is useful to treat a single
object from multiple “perspectives,” to consider it a generic object of different base
classes. But before I build an example following this principle, we have to introduce
the role of interfaces in Object Pascal.

note The techniques covered in this section are used also to implement COM objects, and I’ll cover
them in more detail in Chapter 15. For the moment, let’s consider them simply as language ele-
ments.

Declaring an Interface

Besides declaring abstract classes (classes with abstract methods), in Delphi you can
also write a purely abstract class; that is, a sort of class with only virtual abstract
methods. This is accomplished using a specific keyword, interface. For this reason
we refer to these classes as interfaces. Technically, in fact, an interface is not a class,
although it may resemble one. Interfaces are not classes, because they are consid-
ered a totally separate element, with its own common base interface, IUnknown127,
which has the same role as TObject for classes.

127 More recently the IUnknown interface has been renamed IInterface, to underline the fact you
can use interface in Delphi even outside of the COM realm. The actual behavior of IInterface,
though, is still identical to the previous one of IUnknown.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

152 - Chapter 3: Advanced Object Pascal

Borland introduced interfaces in Delphi 3 along with the support COM program-
ming. If the interface language syntax may have been created to support COM,
interfaces do not require COM. You can use interfaces to implement abstraction lay-
ers within your applications, without building COM server objects. For example, the
Delphi IDE uses interfaces extensively in its internal architecture. In general, inter-
faces also have some distinctive advantages that can be useful for different types of
programming:

· A class can inherit from a single base class, but it can also implement multiple
interfaces. The drawback is that when a class implements an interface, it must
provide the implementation for each of the methods of the interface.

· Interface type objects are reference-counted and automatically destroyed when
there are no more references to the object. This mechanism is similar to how
Delphi manages long strings and makes memory management almost automatic.

· The VCL already provides a few base classes to implement the basic behavior
required by the IUnknown interface. The simplest one is the TInterfacedObject
class.

note From a more general point of view, interfaces support a slightly different object-oriented pro-
gramming model than classes. Objects implementing interfaces are subject to polymorphism for
each of the interfaces they support. Indeed, the interface-based model is powerful. But having
said that, I’m not interested in trying to assess which approach is better in each case. Certainly,
interfaces favor encapsulation and provide a more loose connection between classes than inheri-
tance.

Here is the syntax of the declaration of an interface (which, by convention, starts
with the letter I):

type
 ICanFly = interface
 [‘{10000000-0000-0000-0000-000000000000}’]
 function Fly: string;
 end;

note To function properly, each interface requires a numeric ID, like the one above. In theory these
should be unique GUIDs, generated in the Delphi editor by pressing Ctrl+Shift+G, but if you don’t
plan to export these objects, any number will do (more on GUIDs in Chapter 15). These GUIDs
are required even if you don’t plan exporting these classes, because they are used by the compiler
to type-check interface types instead of the plain interface and class names.128

128 The GUID in the code snippet above is not a real one. I’d recommend you replace it in the code
with an actual GUID, generated by pressing Ctrl+Shift+G, even if the code works anyway.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 153

Once you’ve declared an interface, you can define a class to implement it, as in:

type
 TAirplane = class (TInterfacedObject, ICanFly)
 function Fly: string; virtual;
 end;

As mentioned, this class can derive from TInterfacedObject to inherit the imple-
mentation of the IUnknown methods. Although it is not compulsory to implement
interface methods with virtual methods, this is a good approach to use if you want to
be able to modify these methods in further sub-classes. An alternative technique is
to re-declare the interface type in a derived class and rebind the interface methods
to static methods declared in that class.

Now that we have defined an implementation of the interface, we can write as usual

var
 Airplane1: TAirplane;
begin
 Airplane1 := TAirplane.Create;
 Airplane1.Fly;
 Airplane1.Free;
end;

But we can also use an interface-type variable:

var
 Flyer1: ICanFly;
begin
 Flyer1 := TAirplane.Create;
 Flyer1.Fly;
end;

As soon as you assign an object to an interface variable, Delphi automatically checks
to see whether the object implements that interface, using a special version of the as
operator. You can explicitly express this operation as follows:

Flyer1 := TAirplane.Create as ICanFly;

Whether we use the direct assignment or the as statement, Delphi does one extra
thing: it calls the _AddRef method of the object, increasing its reference count. At
the same time, as soon as the Flyer1 variable goes out of scope, Delphi calls the
_Release method, which decreases the reference count, checks whether the refer-
ence count is zero, and if necessary, destroys the object. For this reason in the listing
above, there is no code to free the object we’ve created129.

129 There are many other techniques you can use with interfaces these days, including weak inter-
faces and unsafe ones. This is an advanced concept I cannot really cover in a footnote.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

154 - Chapter 3: Advanced Object Pascal

In other words, in Delphi objects referenced by interface variables are reference-
counted, and they are automatically de-allocated when no interface variable refers
to them any more.

note When using interface-based objects, you should generally access them only with object variables
or only with interface variables. Mixing the two approaches breaks the reference counting scheme
provided by Delphi and can cause memory errors that are extremely difficult to track. In practice,
if you’ve decided to use interfaces, you should probably use exclusively interface-based variables.

Interface Properties, Delegation,
Redefinitions

To demonstrate a few technical elements related to interfaces, I’ve written the
IntfDemo example. This example is based on two different interfaces, IWalker and
IJumper, defined as follows:

IWalker = interface
 [‘{0876F200-AAD3-11D2-8551-CCA30C584521}’]
 function Walk: string;
 function Run: string;
 procedure SetPos (Value: Integer);
 function GetPos: Integer;

 property Position: Integer
 read GetPos write SetPos;
end;

IJumper = interface
 [‘{0876F201-AAD3-11D2-8551-CCA30C584521}’]
 function Jump: string;
 function Walk: string;
 procedure SetPos (Value: Integer);
 function GetPos: Integer;

 property Position: Integer
 read GetPos write SetPos;
end;

Notice that the first interface defines also a property. An interface property is just a
name mapped to a read and a write method. You cannot map an interface property
to a field, simply because an interface cannot have a field.

Here comes a sample implementation of the IWalker interface. Notice that you
don’t have to define the property, only its access methods:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 155

TRunner = class (TInterfacedObject, IWalker)
private
 Pos: Integer;
public
 function Walk: string;
 function Run: string;
 procedure SetPos (Value: Integer);
 function GetPos: Integer;
end;

The code is trivial, so I’m going to skip it (you can find it in the IntfDemo example).
In a similar way, I’ve defined a class implementing the IJumper interface:

TJumperImpl = class (TInterfacedObject, IJumper)
private
 Pos: Integer;
public
 function Jump: string;
 function Walk: string;
 procedure SetPos (Value: Integer);
 function GetPos: Integer;
end;

Although this class isn’t different from the other one, I’m going to use it in a differ-
ent way. In the following class, TMyJumper, I don’t want to repeat the
implementation of the IJumper interface with similar methods. Instead, I want to
delegate the implementation of that interface to a class already implementing it.
This cannot be done through inheritance (we cannot have two base classes); instead,
you can use specific features of the language interface delegation:

TMyJumper = class (TInterfacedObject, IJumper)
private
 fJumpImpl: IJumper;
public
 constructor Create;
 property Jumper: IJumper
 read fJumpImpl implements IJumper;
end;

This declaration indicates that the IJumper interface is implemented for the
TMyJumper class by the fJumpImpl field. This field, of course, must actually imple-
ment all the methods of the interface. To make this work, you need to create a
proper object for the field when a TMyJumper object is created:

constructor TMyJumper.Create;
begin
 fJumpImpl := TJumperImpl.Create;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

156 - Chapter 3: Advanced Object Pascal

This example is simple, but in general, things get more complex as you start to mod-
ify some of the methods or add other methods that still operate on the data of the
internal fJumpImpl object. This final step is demonstrated, along with other fea-
tures, by the TAthlete class, which implements both the IWalker and IJumper
interfaces:

TAthlete = class (TInterfacedObject, IWalker, IJumper)
private
 fJumpImpl: TJumperImpl;
public
 constructor Create;
 function Run: string; virtual;
 function Walk1: string; virtual;
 function IWalker.Walk = Walk1;
 procedure SetPos (Value: Integer);
 function GetPos: Integer;

 property Jumper: TJumperImpl
 read fJumpImpl implements IJumper;
end;

One of the interfaces is implemented directly, whereas the other is delegated to the
internal fJumpImpl object. Notice also that by implementing two interfaces, which
have a method in common, we end up with a name clash. The solution is to rename
one of the methods, with the statement

function IWalker.Walk = Walk1;

This declaration indicates that the class implements the Walk method of the IWalker
interface with a method called Walk1 (instead of with a method having the same
name). Finally, in the implementation of all of the methods of this class, we need to
refer to the Position property of the fJumpImpl internal object. By declaring a new
implementation for the Position property, we’ll end up with two positions for a sin-
gle athlete, a rather odd situation. Here are a couple of examples:

function TAthlete.GetPos: Integer;
begin
 Result := fJumpImpl.Position;
end;

function TAthlete.Run:string;
begin
 fJumpImpl.Position := fJumpImpl.Position + 2;
 Result := IntToStr (fJumpImpl.Position) + ‘: Run’;
end;

You can further experiment with the IntfDemo example, which has a simple form
with buttons to create and call methods of the various objects. Nothing fancy,

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 157

though, as you can see in Figure 3.7. Simply keep in mind that each call returns the
position after the requested movement and a description of the movement itself.

Figure 3.7:
The IntfDemo example

An Example of Multiple Inheritance

After this example, let me move to a more complex series of interfaces. Suppose you
have a hierarchy of classes related to animals. You can base the hierarchy on the
standard taxonomic classifications (with categories such as mammals, birds,
insects, and so on), or you can categorize them by capability (flying animals,
quadrupeds or bipeds, meat eaters, and so on).

There is no easy way to express such a complex structure with single inheritance.
You can use multiple inheritance if the language you are using supports this feature,
or you can use interfaces. This is what I’ve done in my example, which represents a
rather common study case for multiple inheritance. This program, named MultInh,
has both a hierarchy of classes (representing the standard zoological classifications)
and a hierarchy of interfaces (expressing the capabilities).

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

158 - Chapter 3: Advanced Object Pascal

Both the hierarchy of classes and the hierarchy of interfaces actually use single
inheritance. It is only when you look at how classes implement the various inter-
faces that the two hierarchies actually merge, as represented in Figure 3.8.

Figure 3.8:
The complex
relationships among
the classes and
interfaces of the
MultInh example.
Image from the
original book, captured
with a picture, as the
original version got
lost.

The declarations of these interfaces and their methods are quite long, so I’ve
decided to skip them. Each of them has a specific GUID and defines one or more
functions returning strings. The actual classes implement one or more of these
interfaces, as depicted in Figure 3.8. Here are a couple of declarations:

type
 TBird = class (TAnimal, IBird)
 function LayEggs: string; virtual;
 end;

 TEagle = class (TBird, ICanFly)
 function Kind: string; override;
 function Fly: string; virtual;
 end;

 TPenguin = class (TBird, ICanWalk, ICanSwim)
 function Kind: string; override;
 function Walk: string; virtual;
 function Swim: string; virtual;

Now that we have designed this infrastructure, how can we use it? How do we create
objects of these classes, and how can we use polymorphism in classes that imple-
ment multiple interfaces?

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 159

Interface Polymorphism

To use polymorphism with interfaces, I’ve declared and filled an array inside the
form of the program:

private
 AnimIntf: array [1..5] of IAnimal;

The program extracts the IAnimal interface from newly created objects to initialize
this array. This is done automatically by Delphi when you write

AnimIntf[1] := TEagle.Create;

which corresponds to writing

AnimIntf[1] := TEagle.Create as IAnimal;

Calling the methods described in the IAnimal interface is straightforward:

for I := 1 to 5 do
 Memo1.Lines.Add (AnimIntf[I].Kind);

This code is actually executed when you press the first button of the main form of
the MultInh example, as you can see in Figure 3.9.

To operate on the methods provided by the other interface, we must first check to
see whether any given object supports it. Because there is no is operator for inter-
faces130, we can accomplish it by calling the QueryInterface method:

var
 Fly1: ICanFly;
begin
 AnimIntf[i].QueryInterface (ICanFly, Fly1);
 if Assigned (Fly1) then
 Memo1.Lines.Add (Fly1.Fly);

130 The is operators for interfaces has later been added to the language.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

160 - Chapter 3: Advanced Object Pascal

Figure 3.9:
The simple user
interface of the
MultInh example.
Image from the
original book.

QueryInterface requires as parameters a variable for the return value and the type
of interface to check for. Because it returns also an error code, we can also check
this, as I’ve done in another case:

var
 Swim1: ICanSwim;
begin
 if AnimIntf[i].QueryInterface (
 ICanSwim, Swim1) <> E_NoInterface then
 Memo1.Lines.Add (Swim1.Swim);

We can also use the as statement using a try-except block, but this is not a solution
I really like. (It is in the source code of the program for you to check, anyway.)

Is This Multiple Inheritance?

The last two code fragments combined indicate that we can use an object and cast it
to the multiple interfaces it supports. In other words, we can consider a duck to be a
swimming animal or a flying animal and call methods of both interfaces for a single
object. We can cast an object to two different base types, so this really is like multi-
ple inheritance.

What we don’t get is the inheritance of the actual implementation of the methods;
there is no code in the ICanFly interface, and if there were any code shared by all
the “flying” objects, it would need to be reimplemented in each class that supports
this interface. However, we already know that it is possible to define a single imple-

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 161

mentation class and delegate to it the implementation of an interface in many other
classes, as I did in the previous example.

As I mentioned earlier, Borland added interfaces to Delphi to support Microsoft’s
COM, but they can really be used as an extra language feature. The biggest draw-
back is that interfaces must have an ID even for internal objects, because the type
checking of interfaces depends on this number. The other minor problem is that
there isn’t an is operator to check whether an object supports a given interface, but
we’ve seen it is very simple to mimic this behavior by calling QueryInterface with a
single method call.

Summing up, does it really make sense to use interface types and variables in a pro-
gram that doesn’t need to support COM? If the program is designed around a
complex hierarchy that might benefit from multiple inheritance, then the answer is
yes. Considering the extra complexity of this design, however, you might disagree.

What’s Next?

By reading this chapter, you might have had the impression that I’ve covered a
number of unrelated topics. This was only partially the case. Class references,
method pointers, properties, events, the published keyword, and exceptions are all
language features upon which Delphi’s Visual Component Library is built. Other
topics, such as as class method or interfaces, are important additions to the lan-
guage every Delphi developer should at least be familiar with.

Having covered the basics of OOP in the last chapter and all these language exten-
sions in the current one, we can now focus on the structure of the VCL in the next
chapter.

There is actually one extra step we’ve done in this chapter: we’ve built a first simple
component, and we’ve installed it in the Delphi environment. This already demon-
strates the fact that a component is actually an Object Pascal class that inherits from
a specific base class, TComponent. Delphi components are classes: this apparently
simple statement describes the nature of the Delphi programming model, underly-
ing its differences with tools as Visual C++ or Visual Basic. The only other language
coming close to Object Pascal in terms of components development is Java.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

162 - Chapter 4: VCL Programming Techniques

Chapter 4: VCL

Programming

Techniques

To simplify the work of programming, Delphi provides many powerful, ready-to-use
functions and classes. It includes, for example, a number of standard routines. (The
Help files no longer have a complete list of these routines, but you can find such a
list at my www.marcocantu.com Web site131.) Even larger and more important is Del-
phi’s set of classes. Some of them are component classes, which show up in the
Component Palette, while others are more general-purpose. This chapter focuses on
the structure of the Delphi class library—known as the Visual Component Library
(VCL), although it includes more than components—and gives an overview of some
general-purpose classes.

131 It’s not there any more, and I doubt I’ll be able to create an updated version

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 163

If you simply want to put the built-in components to work and don’t care about the
ins and outs of the VCL, you may want to skip this chapter for now and move on to
Part II, which focuses on the use of components and other classes related to Win-
dows, or to Part III, which covers database programming (including the standard
data-aware components). Remember to come back to this chapter when you are
ready to leverage your Delphi programming knowledge.

The TObject Class

At the heart of Delphi is a hierarchy of classes. Every class in the system is a sub-
class of the TObject class, so the whole hierarchy has a single root. This allows you
to use the TObject data type as a replacement for the data type of any class type in
the system.

For example, event handlers usually have a Sender parameter of type TObject. This
simply means that the Sender object can be of any class, since every class is ulti-
mately derived from TObject. The typical drawback of such an approach is that to
work on the object, you need to know its data type. In fact, when you have a variable
or a parameter of the TObject type you can apply to it only the methods and proper-
ties defined by TObject. If this variable or parameter happens to refer to an object of
the TButton type, for example, you cannot directly access its Caption property. The
solution to this problem lies in the fact that each object “knows” its actual class, and
you can access this information using the ClassType and ClassName methods. For
example, ClassName returns a string with the name of the class. Because it is a class
method, you can apply it both to an object and to a class. Suppose you have defined
a TButton class and a Button1 object of that class. Then the following statements
have the same effect:

Text := Button1.ClassName;
Text := TButton.ClassName;

There are occasions when you need to use the name of a class, but it can also be use-
ful to retrieve a class reference to the class itself or to its base class. The class
reference, in fact, allows you to operate on the class at run time (as we’ve seen in the
last chapter), while the class name is just a string. We can get these class references
with the ClassType and ClassParent methods. Once you have a class reference, you
can use it as if it were an object—for example, to call the ClassName method.

Another method that might be useful is InstanceSize, which returns the run-time
size of an object. (Although you might think that the SizeOf global function pro-

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

164 - Chapter 4: VCL Programming Techniques

vides this information, that function actually returns the size of an object reference
—a pointer, which is invariably four bytes—instead of the size of the object itself.)

There are other methods you can apply to any object (and also to any class or class
references). Here is a partial list132:

ClassName Returns a string with the name of the class.

ClassNameIs Checks the class name.

ClassParent Returns a class reference to the parent class.

ClassInfo Returns a pointer to the internal Run Time Type
Information (RTTI) of the class, discussed in
Delphi Developer’s Handbook.

ClassType Returns a reference to the object’s class (this cannot be
applied directly to a class, only to an object).

InheritsFrom Tests whether the class inherits (directly or indirectly)
from a given base class (similar to the is operator).

InstanceSize Returns the size of the object’s data.

These methods of TObject are available for objects of every class, since TObject is
the common ancestor class of every class. Here is how we can use these methods to
access class information:

procedure TSenderForm.ShowSender(Sender: TObject);
begin
 Memo1.Lines.Add (‘Class Name: ‘ +
 Sender.ClassName);

 if Sender.ClassParent <> nil then
 Memo1.Lines.Add (‘Parent Class: ‘ +
 Sender.ClassParent.ClassName);

 Memo1.Lines.Add (‘Instance Size: ‘ +
 IntToStr (Sender.InstanceSize));

The code checks to see whether the ClassParent is nil in case you are actually using
an instance of the TObject type, which has no base type. You can use other methods
to perform tests. For example, you can check whether the Sender object is of a spe-
cific type with the following code:

132 There have been several notable additions to the TObject class methods over the years, includ-
ing Equals, GetHashCode, QualifiedClassName, ToString, UnitName. Some of these are vir-
tual methods you can override in your derived classes. See docwiki.embarcadero.com/Li-
braries/en/System.TObject for more details.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://docwiki.embarcadero.com/Libraries/en/System.TObject
https://docwiki.embarcadero.com/Libraries/en/System.TObject

Chapter 4: VCL Programming Techniques - 165

if Sender.ClassType = TButton then ...

You can also check if the Sender parameter corresponds to a given object, with this
test:

if Sender = Button1 then...

All these code fragments are part of the IfSender example.

Instead of checking for a particular class or object, you’ll generally need to test the
type compatibility of an object with a given class; that is, you’ll need to check
whether the class of the object is a given class or one of its subclasses. This lets you
know whether you can operate on the object with the methods defined for the class.
This test can be accomplished using the InheritsFrom method, which is also called
when you use the is operator. The following two tests are equivalent:

if Sender.InheritsFrom (TButton) then ...
if Sender is TButton then ...

All these techniques are demonstrated by the IfSender example, which has a single
event handler, called ShowSender, connected with the OnClick event of several con-
trols: three buttons, a check box, and an edit box. One of the buttons is actually a
Bitmap button, an object of a TButton subclass. You can see an example of the out-
put of this program at run time in Figure 4.1.

Figure 4.1:
The output of the
IfSender example.
Image from the
original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

166 - Chapter 4: VCL Programming Techniques

Showing Class Information

The IfSender example can be extended to show a complete list of base classes. Once
you have a class reference, in fact, you can add all of its base classes to the
ListParent list box with the following code:

with ListParent.Items do
begin
 Clear;
 while MyClass.ClassParent <> nil do
 begin
 MyClass := MyClass.ClassParent;
 Add (MyClass.ClassName);
 end;
end;

You’ll notice that we use a class reference at the heart of the while loop, which tests
for the absence of a parent class (so that the current class is TObject). Alternatively,
we could have written the while statement in either of the following ways:

while not MyClass.ClassNameIs (‘TObject’) do...
while MyClass <> TObject do...

The code in the with statement referring to the ListParent list box is part of the
ClassInfo example, which displays the list of parent classes and some other informa-
tion about a few components of the VCL, basically those on the Standard page of the
Component Palette. These components are manually added to a dynamic array
holding classes and declared as:

private
 ClassArray: array of TClass;

When the program starts the array is used to show all the class names in a list box.
Selecting an item of the list box triggers the visualization of its base classes, as you
can see in the output of the program, in Figure 4.2.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 167

Figure 4.2:
The output of the
ClassInfo example.
Image from the
original book.

note As a further extension to this example, we might show all the base classes of the various compo-
nents in a hierarchy. To do that, I’ve created the VclHierarchy Wizard, which you can find on my
Web site.133

The VCL Hierarchy

The VCL defines a number of subclasses of TObject. Many of these classes are actu-
ally subclasses of other subclasses, forming a very complex hierarchy. Unless you
are interested in developing new components, you’ll usually use only the terminal
classes of this hierarchy—the leaf nodes of the hierarchy tree. This is not really a
precise description, as some of the leaf nodes can be further extended by deriving
new components, and some of the classes in higher-level nodes can be instantiated
directly.

note Delphi’s documentation includes a large poster of the VCL class hierarchy. Although its size
makes it a little cumbersome, this can be a precious reference for understanding the VCL class
hierarchy. Again, you can also find a VCL class hierarchy on my Web site.134

We can divide the VCL hierarchy into three main areas: components, generic
objects, and exceptions. Components can be modified visually in the Delphi IDE,
typically using the Form Designer, while the other types of classes are referenced

133 While I have similar code available and in active use, this specific code is no longer on my site.

134 The poster was a great tool in the early days of the product. As the library kept growing and
the printed documentation started reducing, it was removed. With the switch to digital distri-
bution, there was later no point in considering it.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

168 - Chapter 4: VCL Programming Techniques

only in the source code. As a detailed description would take too much space, this
chapter includes some general notes, mainly on components but also on some other
important classes of the VCL.

Components

Components are the central elements of Delphi applications. When you write a pro-
gram, you basically choose a number of components and define their interactions.
That’s all there is to Delphi visual programming.

There are different kinds of components in Delphi. Most components are included
in the Component Palette, but some of them (including TForm and TApplication)
are not. Technically, components are sub-classes of the TComponent class. As such,
they can be streamed in a DFM file (since they inherit from the TPersistent class,
which provides the information needed for streaming) and they may have published
properties and events you can manipulate visually. We saw a simple example (Date-
Comp) of building a component in the last chapter.

The part of the VCL hierarchy related to components is generally divided into three
areas, as you can see in Figure 4.3135. These groups indicate components with a simi-
lar internal structure:

· Controls or visual components are all the classes that descend from TControl.
Controls have a position and a size on the screen and show up in the form at
design time in the same position they’ll have at run time. Controls have two dif-
ferent specifications, window-based or graphical:

· Window-based controls (also called windowed controls) are vis-
ual components based on an operating system window. From a
technical point of view, this means that these controls have a
window handle and descend from TWinControl. From a user
perspective, windowed controls can receive the input focus and
some of them can contain other controls. This is the biggest
group of components in the Delphi VCL. We can further divide
windowed controls in two groups: wrappers of Windows con-
trols and custom controls.

· Graphical controls (also called nonwindowed controls) are vis-
ual components that are not based on a window. Therefore, they
have no handle, cannot receive the focus, and cannot contain

135 This division in terms of component groups and their role is still 100% applicable today.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 169

other controls. These controls inherit from TGraphicControl and
are painted by their parent form, which sends them mouse-
related and other events. Examples of nonwindowed controls are
the Label and the SpeedButton components. There are just a few
controls in this group, but they are critical to minimizing the use
of system resources, particularly for components used often and
in number, such as labels or toolbar buttons.

· Nonvisual components are all the components that are not controls—all the
classes that descend from TComponent but not from TControl. At design time, a
nonvisual component appears on the form as an icon (optionally with a caption
below it). At run time, some of these components may be visible at times (for
example, the standard dialog boxes), and others are always invisible (for exam-
ple, the database table component). In other words, nonvisual components are
not visible themselves at run time, although they may manage something that is
visual, such as a dialog box.

note You can simply move the mouse cursor over a control or component in the Form Designer to see a
hint with its name and its class type. You can also use an environment option, Show Component
Captions, to see the name of a nonvisual component right under its icon.

Figure 4.3: A
graphical
representation of the
groups of components.
Image based on a
picture of the original
printed book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

170 - Chapter 4: VCL Programming Techniques

Windows Components

You might have asked yourself where the idea of using components for Windows
programming came from. The answer is simple: Windows itself has some compo-
nents, usually called controls. A control is technically a predefined window that has
a specific behavior and some styles and is capable of responding to specific mes-
sages. These controls were the first step in the direction of component development.
The second step was probably Visual Basic controls, and the third step is Delphi
components.

note Actually, Microsoft’s third step is its ActiveX, the designated successor of VBX controls. In Delphi
you can use both ActiveX and native components, but if you look at the technology, Delphi com-
ponents are really ahead of the ActiveX controls. Delphi components use OOP to its full extent,
while ActiveX controls do not fully implement the concept of inheritance. I’ll focus on the details
of using and writing ActiveX controls in Chapter 16.

Windows 3.1 had six kinds of predefined controls, which were generally used in dia-
log boxes. Still used in Win32, they are buttons (push buttons, check boxes, and
radio buttons), static labels, edit fields, list boxes, combo boxes, and scroll bars.
Win32 adds a number of new predefined components, such as the list view, the sta-
tus bar, the spin button, the progress bar, the tab control, and many others. Win32
developers can use the standard common controls provided by the system, and Del-
phi developers have the further advantage of having corresponding easy-to-use
components.

The standard system controls are the basic components of each Windows applica-
tion, regardless of the programming language used to write it, and are very well
known by every Windows user. Delphi literally wraps these Windows predefined
controls in some of its basic components. A Delphi wrapper class, for example
TEdit, simply surfaces the capabilities of the underlying Windows control, making it
easier to use. However, Delphi adds nothing to the capabilities of this control. In
Windows 95/98 an edit or a memo control has a physical limit of 32KB of text, and
this limit is retained by the Delphi component.

Why hasn’t Borland overcome this limit? Why can’t we change the color of a but-
ton136? Simply because by replacing a Windows control with a custom version, we
would lose the close connection with the operating system. Suppose Microsoft

136 This isn’t true any more, as now the VCL library now offers support for styling. The concept of
relying on platform controls still applies, but styles offer a higher degree of visual customiza-
tion for any platform control.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 171

improves some of the controls in the next version of Windows. If we use our own
version of the component, the application we build won’t have the new features.

By using controls that are based on the operating system capabilities, instead, our
programs can easily migrate through different versions of the OS and retain all the
features provided by the specific version.

Of course, if you need a control that does something really different from the exist-
ing ones, you’ll need to write your own custom controls, something the VCL itself
does in the classes inheriting from TCustomControl. For example, a Delphi grid isn’t
related to any Windows control. All the classes in that portion of the VCL tree aren’t
directly related to Windows standard controls or Win32 common controls.

Note that wrapping an existing Windows is an effective way of reusing code and also
helps reduce the size of your compiled code. Implementing yet another button con-
trol from scratch requires custom code in your application, while a wrapper around
the OS-supplied button control requires less code and makes use of system code
shared by all Windows applications.

Objects

Although the VCL is basically a collection of components, there are other classes
that do not fit in this category, because they do not descend from TComponent. All
the noncomponent classes are often identified (by the Delphi Help files and docu-
mentation, among others sources) as objects, although this is not a precise
definition. There are two main uses for these classes. Generally, noncomponent
classes define the data type of component properties, such as the Picture property
of an image component (which is a TGraphic object) or the Items property of a list
box (which is a TStrings object). These classes generally inherit from TPersistent,
so they are streamable, and they can have sub-properties and even events.

The second use of noncomponent classes is a direct use. In the Delphi code you
write, you can allocate and manipulate objects of these classes. You might do this for
a number of purposes, including to store a copy of the value of a property in mem-
ory and modify it without changing the original component, to store a list of values,
to write complex algorithms, and so on. You’ll see several examples in this book that
show how to use non-component classes directly.

There are several groups of non-component classes in the VCL137:

137 The list has been significantly extended over the years, but the core classes listed here are still
available and relevant today.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

172 - Chapter 4: VCL Programming Techniques

· Graphic-related objects include TBitmap, TBrush, TCanvas, TFont, TGraphic,
TGraphicsObject, TIcon, TMetafile, TPen, and TPicture.

· Stream/file-related objects include TBlobStream, TFileStream, THandleStream,
TIniFile, TMemoryStream, TFiler, TReader, and TWriter.

· Lists and collections include TList, TStrings, TStringList, TCollection,
TCollectionItem and the new container classes introduced by Delphi 5. We will
focus on these classes in a later section of this chapter.

· COM-related classes: This is an important area of Delphi programming. COM-
related classes are covered in Chapter 15.

· Exception classes: These are inherited from the Exception class. We discussed
exception handling in Chapter 3, so I won’t repeat the details here.

Common VCL Properties

Although each component has its own set of properties, you may have already
noticed that some properties are common to all of them. Table 4.1 lists some of the
common properties along with very short descriptions138.

Table 4.1: Some Properties Available in Most Components

PROPERTY AVAILABLE FOR DESCRIPTION

Action Some controls Identifies the Action object connected to the control (see
Chapter 5 for details).

Align Some controls Determines how the control is aligned in its parent control
area.

Anchors Most controls Indicates the side of the form the component is connected
with (see Chapter 7 for an example).

AutoSize Some controls Indicates whether the control can determine its own size
depending on its content.

BiDiMode All controls Provides support for languages written right to left (stands

138 This is still a very good list of the most relevant common properties.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 173

for BiDirectional Mode).

BorderWidth Windowed controls The width of the border.

BoundsRect All controls Defines the bounding rectangle of the control (run-time
only).

Caption Most controls The caption of the control.

ComponentCount All components The number of components owned by the current one
(run-time only and read-only).

ComponentIndex All components The position of the component in its owner’s list of
components (run-time only).

Components All components An array of the components owned by the current one
(run-time only and read-only).

Constraints All controls Determines the maximum and minimum size of a control
(or a form) during resizing operations.

ControlCount All controls The number of child controls of the current one (run-time
only and read-only).

Controls All controls An array of the child controls of the current one (run-time
only and read-only).

Color Most controls Indicates the color of the surface or the background.

Ctrl3D139 Most components Determines whether the control has a three-dimensional
look.

Cursor All controls The cursor used when the mouse pointer is over the
control.

DockSite Most windowed
controls

Indicates whether the windowed control is a docking site.
There are other properties related to this, including
DockClientCount, DockClients,
UseDockManager, and DockManager. Docking is
discussed in Chapters 7 and 8.

139 This property is now obsolete.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

174 - Chapter 4: VCL Programming Techniques

DragCursor Most controls The cursor used to indicate that the control accepts
dragging.

DragKind Most controls Lets you choose between dragging and docking, if the drag
mode is automatic.

DragMode Most controls Determines whether the drag-and-drop behavior (allowing
either dragging or docking, as specified in the DragKind
property) will be activated automatically.

Enabled All controls and
some nonvisual
components

Determines whether the control is active or inactive
(grayed).

Font All controls Determines the font of the text displayed inside the
component.

Handle All windowed
controls

The handle of the system window used by the control
(run-time only and read-only).

Height All controls The vertical size of the control.

HelpContext All controls and the
dialog components

A context number used to invoke the context-sensitive
Help automatically.

Hint All controls The string used to display fly-by hints for the control.

Left All controls The horizontal coordinate of the upper-left corner of the
component.

Name All components The unique name of an instance of the component, which
can generally be used in the source code.

Owner All components Indicates the owner component (run-time only and read-
only).

Parent All controls Indicates the parent control (run-time only).

ParentColor Most controls Determines if the component uses the same Color as the
parent.

ParentCtl3D140 Most components Determines whether the component uses the same
Ctrl3D as the parent.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 175

ParentFont All controls Determines whether the component uses the same Font
as the parent.

ParentShowHint All controls Determines whether the component uses the same
ShowHint as the parent.

PopupMenu All controls The pop-up menu used when the user right-clicks on the
control.

ShowHint All controls Determines whether hints are enabled.

Showing All controls Determines whether the control is currently showing on
the screen; that is, if all the controls in the parent chain
have the Visible property set. In other words a control
is Showing if it is Visible, its parent control is
Visible, any parent control of the parent control is
Visible, and so forth. (Run-time only and read-only.)

TabOrder All windowed
controls

Determines the control’s tab order in its parent control.

TabStop All windowed
controls

Determines whether the user can move the control with
the Tab key.

Tag All components A long integer available to store custom undefined data.

Top All controls The vertical coordinate of the upper-left corner of the
component.

UndockHeight Most controls The height of the control when it is undocked.

UndockWidth Most controls The width of the control when it is undocked.

Visible All controls Determines whether the control is visible (provided its
parent is also visible, as described in the Showing
property).

Width All controls The horizontal size of the control.

Since there is inheritance among components, it is interesting to see in which ances-
tor classes the most common properties are introduced. You can look at Figure 4.4
for an overview of the properties introduced by the topmost classes of the VCL hier-

140 This is also irrelevant today

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

176 - Chapter 4: VCL Programming Techniques

archy. The following sections provide basic descriptions of some of these common
properties.

Figure 4.4:
The properties
introduced by the
topmost classes of the
VCL hierarchy and
available in all of the
subclasses. Image
based on a picture of
the original printed
book.

The Name Property

Every component in Delphi should have a name. The name must be unique within
the owner component, which is generally the form into which you place the compo-
nent. This means that an application can have two different forms, each with a
component with the same name, although you might want to avoid this practice to

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 177

prevent confusion. It is generally better to keep component names unique through-
out an application.

Setting a proper value for the Name property is very important: If it’s too long, you’ll
need to type a lot of code to use the object; if it’s too short, you may confuse differ-
ent objects. Usually the name of a component has a prefix with the component type;
this makes the code more readable and allows Delphi to group components in the
combo box of the Object Inspector, where they are sorted by name. There are three
important elements related to the Name property of the components:

· First, the value of the Name property is used to define the name of the object in
the declaration of the form class. This is the name you’re generally going to use
in the code to refer to the object. For this reason, the value of the name property
must be a legal Pascal identifier.

· Second, if you set the Name property of a control before changing its Caption
property, the new name is copied to the caption. That is, if the name and the cap-
tion are identical, then changing the name will also change the caption.

· Third, Delphi uses the name of the component to create the default name of the
methods related to its events. If you have a Button1 component, its default
OnClick event handler will be called Button1Click, unless you specify a different
name. If you later change the name of the component, Delphi will modify the
names of the related methods accordingly. For example, if you change the name
of the button to MyButton, the Button1Click method automatically becomes
MyButtonClick.

The Components Array

Besides accessing a component by name, you can use the Components property of its
owner, usually a form. Here is an example of the code you can use to add to a list
box the names of all the components of a form (this code is actually part of the
ChangeOwner example, presented in the next section):

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 ListBox1.Items.Clear;
 for I := 0 to ComponentCount - 1 do141

 ListBox1.Items.Add (Components [I].Name);

141 These days, you can also navigate the components owned by a component using a for..in loop.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

178 - Chapter 4: VCL Programming Techniques

end;

This code uses the ComponentCount property, which holds the total number of com-
ponents owned by the current form, and the Components property, which is actually
the list of the owned components. When you access a value from this list you get a
value of the TComponent type. For this reason you can directly use only the proper-
ties common to all components, such as the Name property. To use properties
specific to particular components, you have to use the proper type-downcast (as).

In Delphi, there are some components that are also component containers: the
GroupBox, the Panel, the PageControl, and, of course, the Form component. When
you use these controls, you can add other components inside them. In this case, the
container is the parent of the components (as indicated by the Parent property),
while the form is their owner (as indicated by the Owner property). You can use the
Controls property of a form or group box to navigate the child controls, and you can
use the Components property of the form to navigate all the owned components,
regardless of their parent.

Using the Components property, we can always access each component of a form. If
you need access to a specific component, however, instead of comparing each name
with the name of the component you are looking for, you can let Delphi do this
work, by using the FindComponent method of the form. This method simply scans
the Components array looking for a name match.

The Owner Property

Every component usually has an owner. When a component is created at design
time (or from the resulting DFM file) its owner will invariably be its form. When
you create a component at run time, the owner is passed as a parameter to the
Create constructor.

The owner is a read-only property, so you cannot change it. However, you can affect
its value by calling the InsertComponent and RemoveComponent methods of the
owner itself, passing the current component as parameter. Using these methods you
can change a component’s owner. However, you cannot apply them directly in an
event handler of a form, as we attempt to do here:

procedure TForm1.Button1Click(Sender: TObject);
begin
 RemoveComponent (Button1);
 Form2.InsertComponent (Button1);
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 179

This code produces a memory access violation, because when you call
RemoveComponent, Delphi disconnects the component from the form field (Button1),
setting it to nil. The solution is to write a procedure like this:

procedure ChangeOwner (Component, NewOwner: TComponent);
begin
 Component.Owner.RemoveComponent (Component);
 NewOwner.InsertComponent (Component);
end;

This method (extracted from the ChangeOwner example) changes the owner of the
component. It is called along with the simpler code used to change the parent com-
ponent; the two commands combined move the button completely to another form,
changing its owner:

procedure TForm1.ButtonChangeClick(Sender: TObject);
begin
 if Assigned (Button1) then
 begin
 // change parent
 Button1.Parent := Form2;
 // change owner
 ChangeOwner (Button1, Form2);
 end;
end;

The method checks whether the Button1 field still refers to the control, because
while moving the component, Delphi will set Button1 to nil. You can see the effect
of this code in Figure 4.5.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

180 - Chapter 4: VCL Programming Techniques

Figure 4.5:
In the ChangeOwner
example, pressing the
Change button moves
the Button1 component
to the second form.
Image from the
original book.

To demonstrate that the Owner of the Button1 component actually changes, I’ve
added another feature to both forms. The List button fills the list box with the
names of the components each form owns, using the procedure shown in the previ-
ous section. Press the two List buttons before and after moving the component, and
you’ll see what happens behind the scenes. As a final feature, the Button1 compo-
nent has a simple handler for its OnClick event, to display the caption of the owner
form:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ShowMessage (‘My owner is ‘ +
 ((Sender as TButton).Owner as TForm).Caption);
end;

Removing Form Fields

Every time you add a component to a form, Delphi adds its complete description,
including all of its properties, to the DFM file. To the Pascal file, Delphi adds the
corresponding field in the form class declaration. When the form is created, Delphi
loads the DFM file and uses it to re-create all the components and set their proper-
ties back. Then it hooks the new object with the form field corresponding to its Name
property.

For this reason, it is certainly possible to have a component without a name. If your
application will not manipulate the component or modify it at run time, you can

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 181

remove the component name from the Object Inspector. Examples are a static label
with fixed text, or a menu item, or even more obviously menu item separators. By
blanking out the name, you’ll remove the corresponding element from the form
class declaration. This reduces the size of the form object (by only four bytes, the
size of the object reference) and it reduces the DFM file by not including a useless
string (the component name). Reducing the DFM also implies reducing the final
EXE file size, even if only slightly.

note If you blank out component names, just make sure to leave at least one named component of each
class used on the form so that the smart linker will link in the required code. If, as an example,
you remove from a form all the fields referring to labels, the Delphi linker will remove the imple-
mentation of the TLabel class from the executable file. The effect is that when the system loads
the form at run time, it is unable to create an object of an unknown class and issues an error indi-
cating that the class is not available.

You can also keep the component name and manually remove the corresponding
field of the form class. Even if the component has no corresponding form field, it is
created anyway, although using it (through the FindComponent method of the form,
for example) will be a little more difficult.

Hiding Form Fields142

Many OOP purists complain that Delphi doesn’t really follow the encapsulation
rules, because all of the components of a form are mapped to public fields and can
be accessed from other forms and units. However, Delphi does that only as a default
to help beginners learn to use the Delphi visual development environment quickly.
A programmer can follow a different approach and use properties and methods to
operate on forms. The risk, however, is that another programmer of the same team
might inadvertently bypass this approach, directly accessing the components if they
are left in the published section. The solution, which many programmers don’t
know about, is to move the components to the private portion of the class declara-
tion.

As an example, I’ve taken a very simple form with an edit box, a button, and a list
box. When the edit box contains text and the user presses the button, the text is
added to the list box. When the edit box is empty, the button is disabled. This is the
simple code of the HideComp example:

142 This section is still very relevant today, given Delphi’s architecture in terms of the form class
structure hasn’t changed.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

182 - Chapter 4: VCL Programming Techniques

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items.Add (Edit1.Text);
end;

procedure TForm1.Edit1Change(Sender: TObject);
begin
 Button1.Enabled := Length (Edit1.Text) <> 0;
end;

I’ve listed these methods only to show you that in the code of a form we usually refer
to the available components, defining their interactions. For this reason it seems
impossible to get rid of the fields corresponding to the component. However, what
we can do is hide them, moving them from the default published section to the pri-
vate section of the form class declaration:

TForm1 = class(TForm)
 procedure Button1Click(Sender: TObject);
 procedure Edit1Change(Sender: TObject);
 procedure FormCreate(Sender: TObject);
private
 Button1: TButton;
 Edit1: TEdit;
 ListBox1: TListBox;
end;

Now if you run the program you’ll get in trouble: The form will load fine, but
because the private fields are not initialized, the events above will use nil object ref-
erences. Delphi usually initializes the published fields of the form using the
components created from the DFM file. What if we do it ourselves, with the follow-
ing code?

procedure TForm1.FormCreate(Sender: TObject);
begin
 Button1 := FindComponent (‘Button1’) as TButton;
 Edit1 := FindComponent (‘Edit1’) as TEdit;
 ListBox1 := FindComponent (‘ListBox1’) as TListBox;
end;

It will almost work, but it generates a system error, similar to the one we discussed
in the previous section. This time, the private declarations will cause the linker to
link in the implementations of those classes, but the problem is that the streaming
system needs to know the names of the classes in order to locate the class reference
needed to construct the components while loading the DFM file.

The final touch we need is some registration code to tell Delphi at run time about
the existence of the component classes we want to use. We should do this before the
form is created, so I generally place this code in the initialization section of the unit:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 183

initialization
 RegisterClasses ([TButton, TEdit, TListBox]);

Now the question is, is this really worth the effort? What we obtain is a higher
degree of encapsulation, protecting the components of a form from other forms
(and other programmers writing them). I have to say that replicating these steps for
each and every form can be tedious, and I’d really like to have a wizard generating
this code for me on the fly while I do the standard operations in Delphi. However,
for a large project built according to the principles of object-oriented programming,
I recommend you consider this or a similar technique143.

Properties Related to Control Size and
Position

Other important properties, common to all controls, are those related to size and
position. The position of a control is determined by its Left and Top properties; its
size by the Height and Width properties. Technically, all components have a posi-
tion, because when you reopen an existing form at design time, you want to be able
to see the icons for the nonvisual components in exactly the position where you’ve
placed them. This position is visible in the DFM file.

An important feature of the position of a component is that, like any other coordi-
nate in Windows, it always relates to the client area of its parent component (which
is the component indicated by its Parent property). For a form, the client area is the
surface included within its borders (excluding the borders themselves). It would
have been messy to work in screen coordinates, although there are some ready-to-
use methods that convert the coordinates between the form and the screen and vice
versa.

Note, however, that the coordinates of a control are always relative to the parent
control, which is usually a form but can also be a panel or another container compo-
nent. If you place a panel in a form, and a button in a panel, the coordinates of the
button relate to the panel and not to the form containing the panel. In fact, in this
case, the parent component of the button is the panel.

143 I’ve later build a Delphi Form Wizard, which can automate these steps. It is still available as
part of my Cantools, see github.com/marcocantu/cantools.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://github.com/marcocantu/cantools

184 - Chapter 4: VCL Programming Techniques

Activation and Visibility Properties

There are two basic properties you can use to let the user activate or hide a compo-
nent. The simplest is the Enabled property. When a component is disabled (when
Enabled is set to False), there is usually some visual hint to specify this state to the
user. At design time, the “disabled” property does not always have an effect, but at
run time, disabled components are generally grayed.

For a more radical approach, you can completely hide a component, either by using
the corresponding Hide method or by setting its Visible property to False. Be
aware, however, that reading the status of the Visible property does not tell you if
the control is actually visible. In fact, if the container of a control is hidden, even if
the control is set to Visible, you cannot see it. For this reason, there is another
property, Showing, which is a run-time and read-only property. You can read the
value of Showing to know if the control is really visible to the user; that is, if it is visi-
ble, its parent control is visible, the parent control of the parent control is visible,
and so on.

The Customizable Tag Property

The Tag property is a strange one, because it has no effect at all. It is merely an extra
memory location, present in each component class, where you can store custom val-
ues. The kind of information stored and the way it is used are completely up to you.

It is often useful to have an extra memory location to attach information to a com-
ponent without needing to define your component class. Technically, the Tag
property stores a long integer144 so that, for example, you can store the entry number
of an array or list that corresponds to an object. Using typecasting, you can store in
the Tag property a pointer, an object, or anything else that is four bytes wide. This
allows a programmer to associate virtually anything with a component using its tag.
We’ll see how to use this property in several examples in future chapters, including
the ODMenu examples in Chapter 5.

144 The property is now defined as NativeInt, so that its size with be different in a 32-bit or 64-bit
application, matching the pointer size on each platform.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 185

The User Interface: Color and Font

Two properties often used to customize the user interface of a component are Color
and Font. There are several properties related to the color. The Color property itself
usually refers to the background color of the component. Also, there is a Color prop-
erty for fonts and many other graphic elements. Many components also have a
ParentColor and a ParentFont property, indicating whether the control should use
the same font and color as its parent component, which is usually the form. You can
use these properties to change the font of each control on a form by setting only the
Font property of the form itself.

When you set a font, either by entering values for the attributes of the property in
the Object Inspector or by using the standard font selection dialog box, you can
choose one of the fonts installed in the system. The fact that Delphi allows you to
use all the fonts installed on your system has both advantages and drawbacks. The
main advantage is that if you have a number of nice fonts installed, your program
can use any of them. The drawback is that if you distribute your application, these
fonts might not be available on your users’ computers.

If your program uses a font that your user doesn’t have, Windows will select some
other font to use in its place. A program’s carefully formatted output can be ruined
by the font substitution. For this reason, you should probably rely only on standard
Windows fonts (such as MS Sans Serif, System, Arial, Times New Roman, and so
on). The alternative is to ship some fonts with your application, if the font’s user
license allows it.

There are a number of ways to set the value of a color. The type of this property is
TColor. For properties of this type, you can choose a value from a series of prede-
fined name constants or enter a value directly. The constants for colors include
clBlue, clSilver, clWhite, clGreen, clRed, and many others. As a better alterna-
tive, you can use one of the colors used by Windows for system elements, such as
the background of a window (clWindow), the color of the text of a highlighted menu
(clHightlightText), the active caption (clActiveCaption), and the ubiquitous but-
ton face color (clBtnFace). All the color constants mentioned here are listed in
Delphi’s Help under the TColor type topic.

Another option is to specify a TColor as a number (a four-byte hexadecimal value)
instead of using a predefined value. If you use this approach, you should know that
the low three bytes of this number represent RGB color intensities for blue, green,
and red, respectively. For example, the value $00FF0000 corresponds to a pure blue
color, the value $0000FF00 to green, the value $000000FF to red, the value $00000000

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

186 - Chapter 4: VCL Programming Techniques

to black, and the value $00FFFFFF to white. By specifying intermediate values, you
can obtain any of the 16 million possible colors.

Instead of specifying these hexadecimal values directly, you should use the RGB
function, which has three parameters, all ranging from 0 to 255. The first indicates
the amount of red, the second the amount of green, and the last the amount of blue.
Using the RGB function makes programs generally more readable than using a single
hexadecimal constant.

note RGB is almost a Windows API function. It is defined by the Windows-related units and not by
Delphi units, but a similar function does not exist in the Windows API. In C, there is a macro that
has the same name and effect, so this is a welcome addition to the Pascal interface to Windows.

The highest-order byte of the TColor type is used to indicate which palette should be
searched for the closest matching color, but palettes are too advanced a topic to dis-
cuss here. (Sophisticated imaging programs also use this byte to carry transparency
information for each display element on the screen.) Regarding palettes and color
matching, note that Windows sometimes replaces an arbitrary color with the closest
available solid color, at least in video modes that use a palette. This is always the
case with fonts, lines, and so on. At other times, Windows uses a dithering tech-
nique to mimic the requested color by drawing a tight pattern of pixels with the
available colors. In 16-color (VGA) adapters145 and at higher resolutions, you often
end up seeing strange patterns of pixels of different colors and not the color you had
in mind.

Common VCL Methods

Component methods are just like any other methods. There are procedures and
functions you can call to perform the corresponding action. As mentioned earlier,
you can often use methods to accomplish the same effect as reading or writing a
property. Usually, the code is easier to read and understand when you use proper-
ties. However, not all methods have corresponding properties. Most of them are
procedures, which execute an action instead of reading or writing a value. Again,
some methods are available in all of the components; other methods are shared only
by controls (visual components), and so on. Table 4.2 lists some common compo-

145 This tells you how old this book is, as this was current hardware back than!

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 187

nent methods. We’ll see examples of using most of these methods throughout the
book146.

Table 4.2: Some Methods Available for Most VCL Components

METHOD AVAILABLE FOR DESCRIPTION

BeginDrag All controls Starts manual dragging.

BringToFront All controls Puts the control in front of all others.

CanFocus All controls Determines whether the control will accept the keyboard
input focus.

ClientToScreen All controls Translates client coordinates into screen coordinates.

ContainsControl All controls Determines whether a certain control is contained by the
current one.

Create All components Creates a new instance (constructor).

Destroy All components Destroys the instance (destructor). You should actually call
Free.

Dragging All controls Indicates whether the controls are being dragged.

EndDrag All controls Manually terminates dragging.

ExecuteAction All components Activates the action connected with the component.

FindComponent All components Returns the component in the Components array
property having a given name (we’ve just used it in the
HideComp example).

FlipChildren All windowed
controls

Moves child controls from the left side to the right side and
vice versa. Used for supporting right-to-left languages
(such as Arabic or Hebrew), along with the
IsRightToLeft property.

Focused All windowed
controls

Determines whether the control has the focus.

146 These remains a fairly good list today, as well. Same for the list of events below.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

188 - Chapter 4: VCL Programming Techniques

Free All components Deletes the object from memory (forms should use the
Release method).

GetTextBuf All controls Retrieves the text (or caption) of the control.

GetTextLen All controls Returns the length of the text (or caption) of the control.

HandleAllocated All controls Returns True if a system handle has been allocated for
the control.

HandleNeeded All controls Allocates a corresponding system handle if one doesn’t
already exist.

Hide All controls Makes the control invisible (the same as setting the
Visible property to False).

InsertComponent All components Adds a new element to the list of owned components.

InsertControl All controls Adds a new element to the list of controls that are the
children of the current one.

Invalidate All controls Forces a repaint of the control.

ManualDock All controls Manually activates docking.

ManualFloat All controls Sets the docking control as a floating one.

RemoveComponent All components Removes a component from the Components list.

ScaleBy All controls Scales the control by a given percentage.

ScreenToClient All controls Translates screen coordinates into client coordinates.

ScrollBy All controls Scrolls the contents of the control.

SendToBack All controls Puts the control behind all the others.

SetBounds All controls Changes the position and size of the control (faster than
accessing the related properties one by one).

SetFocus All controls Gives the input focus to the control.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 189

SetTextBuf All controls Sets the text (or caption) of the control.

Show All controls Makes the control visible (the same as setting the
Visible property to True).

Update All controls Immediately repaints the control, if there are pending
painting requests.

Common VCL Events

Just as there is a set of properties common to all components, there are some events
that are available for all of them. Table 4.3 provides short descriptions of these
events. Again, this table is meant only as a starting point. You’ll see examples using
most of these events throughout the book.

Table 4.3: Some Events Available for Most Components

EVENT AVAILABLE FOR DESCRIPTION

OnCanResize Many controls Occurs when the control is resized and allows you to
stop the operation.

OnChange Many
components

Occurs when the object or its data change.

OnClick Most controls Occurs when the left mouse button is clicked over the
component.

OnContextPopupMen
u

All controls (new
in Delphi 5)

Occurs when the user right-clicks the control. It allows
you to do a different action than showing the attached
popup menu.

OnDblClick Many controls Occurs when the user double-clicks with the mouse over
the component.

OnDockDrop Windowed
controls

Occurs when the docking operation terminates over the
current control.

OnDockOver Windowed
controls

Occurs when the user drags the mouse over the
component during a docking operation.

OnDragDrop Most controls Occurs when a dragging operation terminates over the
component; it is sent by the component that received
the dragging operation.

OnDragOver Most controls Occurs when the user drags the mouse over the
component.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

190 - Chapter 4: VCL Programming Techniques

OnEndDock Most controls Occurs when the docking operation of the current
control terminates.

OnEndDrag Most controls Occurs when the dragging terminates; it is sent by the
component that started the dragging operation.

OnEnter All windowed
controls

Occurs when the component is activated; that is, the
component receives the focus.

OnExit All windowed
controls

Occurs when the component loses the focus.

OnGetSiteInfo Windowed
controls

Returns the control’s docking information.

OnKeyDown Some windowed
controls

Occurs when the user presses a key on the keyboard; it is
sent to the component with the input focus.

OnKeyPress Some windowed
controls

Occurs when the user presses a key; it is sent to the
component with the input focus.

OnKeyUp Some windowed
controls

Occurs when the user releases a key; it is sent to the
component with the input focus.

OnMouseDown Most controls Occurs when the user presses one of the mouse buttons;
it is sent to the component under the mouse cursor.

OnMouseMove Most controls Occurs when the user moves the mouse over a
component; it is sent to the component under the mouse
cursor.

OnMouseUp Most controls Occurs when the user releases one of the mouse buttons;
it is sent to the component under the mouse cursor.

OnMouseWheel,
OnMouseWheelDown,
OnMouseWheelUp

Windowed
controls

Occur when the user rotates the mouse wheel or clicks
on it as if it was a button.

OnResize Most controls Occurs when the resizing operation terminates.

OnStartDock Most controls Occurs when the user starts docking.

OnStartDrag Most controls Occurs when the user starts dragging; it is sent to the
component originating the dragging operation.

OnUnDock Windowed
controls

Occurs when another control is undocked from the
current one.

Understanding Frames

Chapter 1 introduced frames as one of the new features of Delphi 5. We’ve seen that
you can create a new frame, place some components in it, write some event han-
dlers for the components, and then add the frame to a form. In other words, a frame

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 191

is similar to a form, but it defines only a portion of a window, not a complete win-
dow. This is certainly not a feature worth a new construct. The totally new element
of frames is that you can create multiple instances of a frame at design time and you
can modify the class and the instance at the same time. This makes frames an effec-
tive tool for creating customizable composite controls at design time, something
close to a visual component-building tool.

You are probably familiar with the Delphi concept of visual form inheritance (dis-
cussed in Chapter 2). You can work on both a base form and a derived form at
design time, and any changes you make to the base form are propagated to the
derived one, unless this overrides some property or event. With frames, you work
on a class (as usual in Delphi), but the difference is that you can also customize one
or more instances of the class created at design time. When you work on a form, you
cannot change a property of the TForm1 class for the Form1 object at design time.
With frames, you can.

Once you realize you are working with a class and one or more of its instances at
design time, there is nothing more to understand about frames. In practice, frames
are useful when you want to use the same group of components in multiple forms
within an application. In this case, in fact, you can customize each of the instances
at design time. Wasn’t this already possible with component templates? It was, but
component templates were based on the concept of copying and pasting some com-
ponents and their code. There was no way to change the original definition of the
template and see the effect in every place it was used. That is what happens with
frames (and in a different way with visual form inheritance); changes to the original
version (the class) are reflected in the copies (the instances).

There are many other uses of frames, which will become more apparent as Delphi
programmers adopt this feature. Frames can be very useful when building multiple-
page forms, as I’ll demonstrate in Chapter 8.

Let’s discuss a few more elements of frames with an example, called Frames2. This
program has a frame with a list box, an edit box, and three buttons with simple code
operating on the components. The frame also has a bevel aligned to its client area,
because frames have no border. This is the definition of the frame in its own DFM
file:

object FrameList: TFrameList
 Left = 0
 Top = 0
 Width = 202
 Height = 306
 TabOrder = 0
 object Bevel: TBevel
 Align = alClient

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

192 - Chapter 4: VCL Programming Techniques

 Shape = bsFrame
 end
 object ListBox: TListBox...
 object Edit: TEdit
 Text = ‘Some text’
 end
 object btnAdd: TButton
 Caption = ‘&Add’
 OnClick = btnAddClick
 end
 object btnRemove: TButton
 Caption = ‘&Remove’
 OnClick = btnRemoveClick
 end
 object btnClear: TButton
 Caption = ‘&Clear’
 OnClick = btnClearClick
 end
end

Of course, the frame has also a corresponding class, which looks like a normal form
class:

type
 TFrameList = class(TFrame)
 ListBox: TListBox;
 Edit: TEdit;
 btnAdd: TButton;
 btnRemove: TButton;
 btnClear: TButton;
 Bevel: TBevel;
 procedure btnAddClick(Sender: TObject);
 procedure btnRemoveClick(Sender: TObject);
 procedure btnClearClick(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

What is different is that you can add the frame to a form. I’ve used two instances of
the frame in the example (as you can see in Figure 4.6) and modified the behavior
slightly. The first instance of the frame has the list box items sorted. When you
change a property of a component of a frame, the DFM file of the hosting form will
list the differences, as it does with visual form inheritance:

object FormFrames: TFormFrames
 Caption = ‘Frames2’
 inline FrameList1: TFrameList
 Left = 8
 Top = 8

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 193

 inherited ListBox: TListBox
 Sorted = True
 end
 end
 inline FrameList2: TFrameList
 Left = 232
 Top = 8
 inherited btnClear: TButton
 OnClick = FrameList2btnClearClick
 end
 end
end

Figure 4.6:
A frame and two
instances of it at design
time, in the Frames2
example. Image from
the original book.

As you can see from the listing, the DFM file for a form that has frames uses a new
DFM keyword, inline. The references to the modified components of the frame,
instead, use the inherited keyword, although this term is used with an extended
meaning. inherited here doesn’t refer to a base class we are inheriting from, but to
the class we are instancing (or inheriting) an object from. It was probably a good
idea, though, to use an existing feature of visual form inheritance and apply it to the
new context. The effect of this approach, in fact, is that you can use the Revert to
Inherited command of the Object Inspector or of the form to cancel the changes and
get back to the default value of properties.

Notice also that unmodified components of the frame class are not listed in the
DFM file of the form using the frame, and that the form has two frames with differ-
ent names, but the components on the two frames have the same name. In fact,
these components are not owned by the form, but are owned by the frame. This
implies that the form has to reference those components through the frame, as you
can see in the code for the buttons that copy items from one list box to the other:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

194 - Chapter 4: VCL Programming Techniques

procedure TFormFrames.btnLeftClick(Sender: TObject);
begin
 FrameList1.ListBox.Items.AddStrings (
 FrameList2.ListBox.Items);
end;

Finally, besides modifying properties of any instance of a frame, you can change the
code of any of its event handlers. If you double-click one of the buttons of a frame
while working on the form (not on the stand-alone frame), Delphi will generate this
code for you:

procedure TFormFrames.FrameList2btnClearClick(Sender: TObject);
begin
 FrameList2.btnClearClick(Sender);

end;

The line of code automatically added by Delphi corresponds to a call to the inherited
event handler of the base class in visual form inheritance. This time, however, to get
the default behavior of the frame we need to call an event handler and apply it to a
specific instance—the frame object itself. The current form, in fact, doesn’t include
this event handler and knows nothing about it.

Whether you leave this call in place or remove it depends on the effect you are look-
ing for. In the example I’ve decided to conditionally execute the default code,
depending on the user confirmation:

procedure TFormFrames.FrameList2btnClearClick(Sender: TObject);
begin
 if MessageDlg (‘OK to empty the list box?’,
 mtConfirmation, [mbYes, mbNo], 0) = idYes then
 // execute standard frame code
 FrameList2.btnClearClick(Sender);
end;

note By the way, note that because the event handler has some code, leaving it empty and saving the
form won’t remove it as usual: in fact, it isn’t empty! Instead, if you simply want to omit the
default code for an event, you need to add at least a comment to it, to avoid it being automatically
removed by the system!

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 195

Lists and Container Classes

It is often important to handle groups of components or objects. Besides using stan-
dard arrays and dynamic arrays, there are a few classes of the VCL that represent
lists of other objects. These classes can be divided into three groups: simple lists,
collections, and containers. The last group has been introduced in Delphi 5.

Lists are represented by the generic list of objects, TList, and by the two lists of
strings, TStrings and TStringList:

· TList defines a list of pointers, which can be used to store objects of any class147.
A TList is more flexible than a dynamic array, because it is expanded automati-
cally, simply by adding new items to it. The advantage of dynamic arrays over a
TList, instead, is that dynamic arrays allow you to indicate a specific type for
contained objects and perform the proper compile-time type checking.

· TStrings is an abstract class to represent all forms of string lists, regardless of
their storage implementations. This class defines an abstract list of strings. For
this reason, TStrings objects are used only as properties of components capable
of storing the strings themselves, such as a list box.

· TStringList, a subclass of TStrings, defines a list of strings with their own stor-
age. You can use this class to define a list of strings in a program.

The second group, collections, contains only two classes, TCollection and
TCollectionItem. TCollection defines a homogeneous list of objects, which are
owned by the collection class. The objects in the collection must be descendants of
the TCollectionItem class. If you need a collection storing specific objects, you have
to create both a subclass of TCollection and a subclass of TCollectionItem. Collec-
tions are invariably used to specify values of properties of components. It is very
unusual to work with collections directly inside programs. All these lists have a
number of methods and properties. You can operate on lists using the array nota-
tion (“[” and “]”) both to read and to change elements. There is a Count property, as
well as typical access methods, such as Add, Insert, Delete, Remove, and search
methods (for example, IndexOf).

TStringList and TStrings objects have both a list of strings and a list of objects
associated with the strings. This opens up a number of different uses for these

147 Along with the introduction of the support for Generic programming in the Delphi language,
the run-time library added a new TList<T> generic class, which can hold a list of objects of any
specific class (and its sub-classes). Using a generic TList<T> makes applications more type
safe and robust and it’s highly recommended.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

196 - Chapter 4: VCL Programming Techniques

classes. For example, you can use them for dictionaries of associated objects or to
store bitmaps or other elements to be used in a list box.

note The TListbox component actually uses a TStringList object when it needs to store strings
while its window handle is invalid; it uses a different descendant of TStrings object when it
finally associates with a Windows list box control, which stores its own strings.

The two classes of lists of strings also have ready-to-use methods to store or load
their contents to or from a text file, SaveToFile and LoadFromFile. To loop through
a list, you can use a simple for statement based on its index, as if the list were an
array.

Using Lists of Objects

We can write an example focusing on the use of the generic TList class. When you
need a list of any kind of data, you can generally declare a TList object, fill it with
the data, and then access the data while casting it to the proper type. The ListDemo
example demonstrates just this. It also shows the pitfalls of this approach148. Its
form has a private variable, holding a list of dates:

private
 ListDate: TList;

This list object is created when the form itself is created:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Randomize;
 ListDate := TList.Create;
end;

A button of the form adds a random date to the list (of course, I’ve included in the
project the unit containing the date component built in the previous chapter):

procedure TForm1.ButtonAddClick(Sender: TObject);
begin
 ListDate.Add (TDate.Create (1900 + Random (200),
 1 + Random (12), 1 + Random (30)));
end;

148 This pitfalls can be overcome using the generic TList<T>.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 197

When you extract the items from the list, you have to cast them back to the proper
type, as in the following method, which is connected to the List button (you can see
its effect in Figure 4.7):

procedure TForm1.ButtonListDateClick(Sender: TObject);
var
 I: Integer;
begin
 ListBox1.Clear;
 for I := 0 to ListDate.Count - 1 do
 Listbox1.Items.Add ((
 TObject(ListDate [I]) as TDate).Text);
end;

Figure 4.7:
The list of dates shown
by the ListDemo
example. Image from
the original book.

At the end of the code above, before we can do an as downcast, we first need to
hard-cast the pointer returned by the TList into a TObject reference. This kind of
expression can result in an invalid typecast exception, or it can generate a memory
error when the pointer is not a reference to an object149.

To demonstrate that things can indeed go wrong, I’ve added one more button,
which adds a TButton object to the list:

procedure TForm1.ButtonWrongClick(Sender: TObject);
begin
 // add a button to the list
 ListDate.Add (Sender);
end;

149 Again, this can be addressed by using the generic class TList<T> based on the specific type of
elements we want to add to the list.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

198 - Chapter 4: VCL Programming Techniques

If you click this button and then update one of the lists, you’ll get an error. Finally,
remember that when you destroy a list of objects, you should remember to destroy
all of the objects of the list first. The ListDemo program does this in the
FormDestroy method of the form:

procedure TForm1.FormDestroy(Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to ListDate.Count - 1 do
 TObject(ListDate [I]).Free;
 ListDate.Free;
end;

Delphi 5 Container Classes

Delphi 5 introduces a new series of container classes, defined in the Contnrs unit.
These classes extend the TList classes, by adding the idea of ownership and defin-
ing specific extraction rules (mimicking stacks and queues). The basic difference
between TList and the new TObjectList150 class is that the latter is defined as a list
of TObject objects, not a list of pointers. Even more important, however, is the fact
that if the object list has the OwnsObjects property set to True, it automatically
deletes an object when it is replaced by another one and deletes each object when
the list itself is destroyed. Here’s a list of all the new container classes:

· The TObjectList class I’ve already described represents a list of objects, eventu-
ally owned by the list itself.

· The inherited class TComponentList represents a list of components, with full
support for destruction notification (an important safety feature when two com-
ponents are connected using their properties; that is, when a component is the
value of a property of another component).

· The TClassList class is a list of class references. It inherits from TList and
requires no destruction.

· The classes TStack151 and TObjectStack represent lists of pointers and objects,
from which you can only extract elements starting from the last one you’ve
inserted. A stack follows the LIFO order (Last In, First Out). The typical methods

150 There is now also a generic version, TObjectList<T>, available in the System.Generics.Collec-
tions unit.

151 Or the better equivalent TStack<T> in the System.Generics.Collections unit.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 199

of a stack are Push for insertion, Pop for extraction, and Peek to preview the first
item without removing it. You can still use all the methods of the base class,
TList.

· The classes TQueue152 and TObjectQueue represent lists of pointers and objects,
from which you always remove the first item you’ve inserted (FIFO: First In,
First Out). The methods of these classes are the same as those of the stack classes
but behave differently.

note Unlike the TObjectList, the TObjectStack and the TObjectQueue do not own the inserted
objects and will not destroy those objects left in the data structure when it is destroyed. You can
simply Pop all the items, destroy them once you’re finished using them, and then destroy the con-
tainer.

To demonstrate the use of these classes, I’ve modified the earlier ListDate example
into the new Contain example. First, I changed the type of the ListDate variable to
TObjectList. In the FormCreate method, I’ve modified the list creation to the fol-
lowing code, which activates the list ownership:

ListDate := TObjectList.Create (True);

At this point, we can simplify the destruction code, as applying Free to the list will
automatically free the dates it holds.

I’ve also added to the program a stack and a queue object, filling each of them with
numbers. One of the form’s two buttons displays a list of the numbers in each con-
tainer, and the other removes the last item (displayed in a message box):

procedure TForm1.btnQueueClick(Sender: TObject);
var
 I: Integer;
begin
 ListBox1.Clear;
 for I := 0 to Stack.Count - 1 do
 begin
 ListBox1.Items.Add (IntToStr (Integer (Queue.Peek)));
 Queue.Push(Queue.Pop);
 end;
 ShowMessage (‘Removed: ‘ + IntToStr (Integer (Stack.Pop)));
end;

By pressing the two buttons, you can see that calling Pop for each container returns
the last item. The difference is that the TQueue class inserts elements at the begin-
ning, and the TStack class inserts them at the end.

152 Or the better equivalent TQueue<T> in the System.Generics.Collections unit.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

200 - Chapter 4: VCL Programming Techniques

Type-Safe Containers and Lists

Containers and lists have a problem: They are not type safe, as I’ve shown in both
examples by adding a button object to a list of dates. To ensure that the data in a list
is homogenous, you can check the type of the data you extract before you insert it,
but as an extra safety measure you might also want to check the type of the data
while extracting it. However, adding run-time type checking slows down a program
and is risky—a programmer might fail to check the type in some cases.

To solve both problems, you can create specific list classes for given data types and
fashion the code from the existing TList or TObjectList classes (or another con-
tainer class). There are two approaches to accomplish this153:

· Derive a new class from the list class and customize the Add method and the
access methods, which relate to the Items property. This is also the approach
used by Borland for the container classes, which all derive from TList.

· Create a brand-new class that contains a TList object, and map the methods of
the new class to the internal list using proper type checking. This approach
defines a wrapper class, a class that “wraps” around an existing one to provide a
different or limited access to its methods (in our case, to perform a type conver-
sion).

I’ve implemented both solutions in the DateList example, which defines lists of
TDate objects. In the listing below you’ll find the declaration of the two classes, the
inheritance-based TDateListI class and the wrapper class TDateListW.

type
// inheritance based
TDateListI = class (TObjectList)
protected
 procedure SetObject (Index: Integer; Item: TDate);
 function GetObject (Index: Integer): TDate;
public
 function Add (Obj: TDate): Integer;
 procedure Insert (Index: Integer; Obj: TDate);
 property Objects [Index: Integer]: TDate
 read GetObject write SetObject; default;
end;
// wrapper based
TDateListW = class(TObject)
private
 FList: TObjectList;

153 There is now a much better and easier approach, which is using the generic container classes
in the System.Generics.Collections unit.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 201

 function GetObject (Index: Integer): TDate;
 procedure SetObject (Index: Integer; Obj: TDate);
 function GetCount: Integer;
public
 constructor Create;
 destructor Destroy; override;
 function Add (Obj: TDate): Integer;
 function Remove (Obj: TDate): Integer;
 function IndexOf (Obj: TDate): Integer;
 property Count: Integer read GetCount;
 property Objects [Index: Integer]: TDate
 read GetObject write SetObject; default;
end;

Obviously, the first class is simpler to write—it has fewer methods, and they simply
call the inherited ones. The good thing is that a TDateListI object can be passed to
parameters expecting a TList. The problem is that the code that manipulates an
instance of this list via a generic TList variable will not be calling the specialized
methods, because they are not virtual and might end up adding to the list objects of
other data types.

Instead, if you decide not to use inheritance, you end up writing a lot of code,
because you need to reproduce each and every one of the original TList methods,
simply calling the methods of the internal FList object. The drawback is that the
TDateListW class is not type compatible with TList, which limits its usefulness. It
can’t be passed as parameter to methods expecting a TList.

Both of these approaches provide good type checking. After you’ve created an
instance of one of these list classes, you can add only objects of the appropriate type,
and the objects you extract will naturally be of the correct type. This is demon-
strated by the DateList example. This program has a few buttons, a combo box to let
a user choose which of the lists to show, and a list box to show the actual values of
the list. The program stretches the lists by trying to add a button to the list of TDate
objects. To add an object of a different type to the TDateListI list, we can simply
convert the list to its base class, TList. This might accidentally happen if you pass
the list as a parameter to a method that expects a base class object. In contrast, for
the TDateListW list to fail we must explicitly cast the object to TDate before inserting
it, something a programmer should never do:

procedure TForm1.ButtonAddButtonClick(Sender: TObject);
begin
 ListW.Add (TDate(TButton.Create (nil)));
 TList(ListI).Add (TButton.Create (nil));
 UpdateList;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

202 - Chapter 4: VCL Programming Techniques

The UpdateList call triggers an exception, displayed directly in the list box, because
I’ve used an as type cast in the custom list classes. A wise programmer should never
write the above code.

To summarize, writing a custom list for a specific type makes a program much more
robust. Writing a wrapper list instead of one that’s based on inheritance tends to be
a little safer, although it requires more coding.

note Instead of rewriting wrapper-style list classes for different types, you can use my List Template
Wizard, discussed in Delphi Developer’s Handbook and available on my Web site.154

What’s Next?

As we have seen in this chapter, Delphi includes a full-scale class library that is just
as complete as Microsoft’s MFC C++ class library. Delphi’s VCL, of course, is much
more component-oriented, and its classes offer a higher-level abstraction over the
Windows API than the C++ libraries usually do.

To use components, you only need a clear understanding of the terminal nodes of
the VCL hierarchy; that is, the components that show up in the Component Palette
plus a few others. You really don’t need a deeper knowledge of the VCL internals to
use components; this knowledge is only necessary when you write new components
or modify existing ones.

This chapter ends Part I of the book, which has covered the foundations of Delphi
programming. Part II is fully devoted to examples of the use of the various compo-
nents. We’ll start in Chapter 5 with the advanced use of traditional Windows
controls and menus, cover the TForm class in Chapter 6, and then examine toolbars,
status bars, dialog boxes, and MDI applications in later chapters.

154 This is not available any more, given it’s pretty much useless after the introduction of generics
to the Delphi language and of generic collections in the RTL.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 203

Chapter 5:

Advanced Use Of

The Standard

Components

Now that you’ve been introduced to the Delphi environment and have seen an over-
view of the Object Pascal language and the Visual Component Library, we are ready
to delve into the second part of the book: the use of components. This is really what
Delphi is about. Visual programming using components is the key feature of this
development environment.

Delphi comes with a number of ready-to-use components. I will not describe every
component in detail, examining each of its properties and methods. If you need this

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

204 - Chapter 5: Advanced Use of the Standard Components

information, you can find it easily in the Help system. The aim of Part II of this book
is to show you how to use some of the advanced features offered by the Delphi pre-
defined components to build applications.

I’ll start by trying to list all the various component alternatives you have, since
choosing the right component is often a way to get into a project faster. This chapter
presents the components in the Standard page of the Component Palette and some
of the Win32 controls.

Opening the Component Tool Box

So you want to write a Delphi application155. You open a new Delphi project and find
yourself faced with a large number of components. The problem is that for every
operation there are multiple alternatives. For example, you can show a list of values
using a list box, a combo box, a radio group, a string grid, a list view, or even a tree
view if there is a hierarchical order. Which one should you use? That is difficult to
say. There are many considerations, depending on what you want your application
to do. For this reason I’ve provided a highly condensed summary of alternative
options for a few common tasks.

note For some of the controls described in the following sections Delphi also includes a data-aware ver-
sion, usually indicated by the DB prefix. As you’ll see in Chapter 9, the DB version of a control
typically serves a role similar to that of its “standard” equivalent; but the properties and the ways
you use it are often quite different. For example, in an Edit control you use the Text property,
while in a DBEdit component you access the Value of the related field object.

The Text Input Component

Although a form or a component can handle keyboard input directly, using the
OnKeyPress event, this isn’t a common operation. Windows provides ready-to-use
controls you can use to get string input and even build a simple text editor. Delphi
has several slightly different components in this area.

155 At the time of this book, using VCL for the UI was the only option. These days you can choose
between VCL and FireMonkey, which has similar UI controls but is based on a completely dif-
ferent architecture. FireMonkey is not covered in this book, which is focused on VCL and Win-
dows programming, because that’s what was available in the Delphi 5 timeframe.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 205

The Edit Component

The Edit component allows the user to enter a single line of text156. (You can also
display a single line of text with a Label or a StaticText control, but these compo-
nents are generally used only for fixed text or program-generated output, not for
input.) The Edit component uses the Text property, whereas many other controls
use the Caption property to refer to the text they display. The only condition you can
impose on user input is the number of characters to accept. If you want to accept
only specific characters, you can handle the OnKeyPress event of the edit box. For
example, we can write a method that tests whether the character is a number or the
Backspace key (which has a numerical value of 8). If it’s not, we change the value of
the key to the null character (#0), so that it won’t be processed by the edit control
and will produce a warning beep:

procedure TForm1.Edit1KeyPress(
 Sender: TObject; var Key: Char);
begin
 // check if the key is a number or backspace
 if not (Key in [‘0’..’9’, #8]) then
 begin
 Key := #0;
 Beep;
 end;
end;

The MaskEdit Component

To customize the input of an edit box further, you can use the MaskEdit component,
which has an EditMask property. This is a string indicating for each character
whether it should be uppercase, lowercase, or a number, and other similar condi-
tions. You can see the editor of the EditMask property in Figure 5.1.

note You can display any property’s editor by selecting the property in the Object Inspector and click-
ing the ellipsis (…) button.

The Input Mask editor allows you to enter a mask, but it also asks you to indicate a
character to be used as a placeholder for the input and to decide whether to save the
literals present in the mask, together with the final string. For example, you can
choose to display the parentheses around the area code of a phone number only as

156 There is now also a NumberBox component, which is specific meant for the input of numeric
values, including integers, floating point numbers, and currency. It’s a much better solution
comapred to the code in the snippet below to make an edit accept only numeric characters.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

206 - Chapter 5: Advanced Use of the Standard Components

an input hint or to save them with the string holding the resulting number. These
two entries in the Input Mask editor correspond to the last two fields of the mask
(separated by semicolons).

Figure 5.1:
The MaskEdit
component’s EditMask
property editor. Images
captured in Delphi 5
and Delphi 12.

note Pressing the Masks button of the Mask Editor lets you choose predefined input masks for differ-
ent countries.

The Memo and RichEdit Components

Both of the controls discussed so far allow a single line of input. The Memo compo-
nent, by contrast, can host several lines of text but (on the Win95/98 platforms) still
retains the 16-bit Windows 32KB text limit and allows only a single font for the
entire text. You can work on the text of the memo line by line (using the Lines string
list) or access the entire text at once (using the Text property).

If you want to host a large amount of text or change fonts and paragraph align-
ments, you should use the RichEdit control, a Win32 common control based on the

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 207

RTF document format. You can find an example of a complete editor based on the
RichEdit component among the sample programs that ship with Delphi. (The exam-
ple is named RichEdit, too.)

The RichEdit component has a DefAttributes property indicating the default styles
and a SelAttributes property indicating the style of the current selection. These
two properties are not of the TFont type, but they are compatible with fonts, so we
can use the Assign method to copy the value, as in the following code fragment:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if RichEdit1.SelLength > 0 then
 begin
 FontDialog1.Font.Assign (RichEdit1.DefAttributes);
 if FontDialog1.Execute then
 RichEdit1.SelAttributes.Assign (FontDialog1.Font);
 end;
end;

Selecting Options

There are two standard Windows controls that allow the user to choose different
options, as well as controls for grouping sets of options.

The CheckBox and RadioButton Components

The first is the check box, which corresponds to an option that can be selected
regardless of the status of other check boxes. Setting the AllowGrayed property of
the check box allows you to display three different states (selected, not selected, and
grayed), which alternate as a user clicks on the check box.

The second type of control is the radio button, which corresponds to an exclusive
selection. Two radio buttons on the same form or inside the same radio group con-
tainer cannot be selected at the same time, and one of them should always be
selected (as programmer, you are responsible for selecting one of the radio buttons
at design time).

The GroupBox Components

To host several groups of radio buttons, you can use a GroupBox control to hold
them together, both functionally and visually. To build a group box with radio but-
tons, simply place the GroupBox component on a form and then add the radio
buttons to the group box.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

208 - Chapter 5: Advanced Use of the Standard Components

You can handle the radio buttons individually, but it’s easier to navigate through the
array of controls owned by the group box, as discussed in the previous chapter. Here
is a small code excerpt used to get the text of the selected radio button of a group:

var
 I: Integer;
 Text: string;
begin
 for I := 0 to GroupBox1.ControlCount - 1 do
 if (GroupBox1.Controls[I] as TRadioButton).Checked then
 Text := (GroupBox1.Controls[I] as TRadioButton).Caption;

The RadioGroup Component

Delphi has a similar component that can be used specifically for radio buttons, the
RadioGroup component. A RadioGroup is a group box with some radio button
clones painted inside it. The term clone in this context refers to the fact that the
RadioGroup component is a single control, a single window, with elements similar
to radio buttons painted on its surface.

Using the radio group is generally easier than using the group box, since the various
items are part of a list, as in a list box. This is how you can get the text of the selected
item:

Text := RadioGroup1.Items [RadioGroup1.ItemIndex];

Technically, a RadioGroup uses fewer resources and less memory, and it should be
faster to create and paint. Also, the RadioGroup component can automatically align
its radio buttons in one or more columns (as indicated by the Columns property),
and you can easily add new choices at run time, by adding strings to the Items string
list. By contrast, adding new radio buttons to a group box would be quite complex.

Lists

When you have many selections, radio buttons are not appropriate. The usual num-
ber of radio buttons is no more than five or six, to avoid cluttering the user
interface; when you have more choices, you can use a list box or one of the other
controls that display lists of items and allow the selection of one of them.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 209

The ListBox Component

The selection of an item in a list box uses the Items and ItemIndex properties as in
the code shown above for the RadioGroup control. If you need access to the text of
selected list box items often, you can write a small wrapper function like this:

function SelText (List: TListBox): string;
var
 nItem: Integer;
begin
 nItem := List.ItemIndex;
 if nItem >= 0 then
 Result := List.Items [nItem]
 else
 Result := ‘’;
end;

Another important feature is that by using the ListBox component, you can choose
between allowing only a single selection, as in a group of radio buttons, and allow-
ing multiple selections, as in a group of check boxes. You make this choice by
specifying the value of the MultiSelect property. There are two kinds of multiple
selections in Windows and in Delphi list boxes: multiple selection and extended
selection. In the first case a user selects multiple items simply by clicking on them,
while in the second case the user can use the Shift and Ctrl keys to select multiple
consecutive or nonconsecutive items. This second choice is determined by the
ExtendedSelect property.

For a multiple-selection list box, a program can retrieve information about the num-
ber of selected items by using the SelCount property, and it can determine which
items are selected by examining the Selected array. This array of Boolean values
has the same number of entries as the list box. For example, to concatenate all the
selected items into a string, you can scan the Selected array as follows:

var
 SelItems: string;
 nItem: Integer;
begin
 SelItems := '';
 for nItem := 0 to ListBox1.Items.Count - 1 do
 if ListBox1.Selected [nItem] then
 SelItems := SelItems + ListBox1.Items[nItem] + ' ';

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

210 - Chapter 5: Advanced Use of the Standard Components

The ComboBox Component

List boxes take up a lot of screen space, and they offer a fixed selection. That is, a
user can choose only among the items in the list box and cannot enter any choice
that the programmer did not specifically foresee.

You can solve both problems by using a ComboBox control, which combines an edit
box and a drop-down list. The behavior of a ComboBox component changes a lot
depending on the value of its Style property. The csDropDown style defines a typical
combo box, which allows direct editing and displays a list box on request, the
csDropDownList style defines a combo box that does not allow editing (but uses the
keystrokes to select an item), and the csSimple style defines a combo box that
always displays the list box below it.

Note also that accessing the text of the selected value of a ComboBox is easier than
doing the same operation for a list box, since you can simply use the Text property.
A useful and common trick for combo boxes is to add a new element to the list when
a user enters some text and presses the Enter key. The following method first tests
whether the user has pressed that key, by looking for the character with the numeric
(ASCII) value of 13. It then tests to make sure the text of the combo box is not empty
and is not already in the list—if its position in the list is less than zero. Here is the
code:

procedure TForm1.ComboBox1KeyPress(Sender: TObject; var Key: Char);
begin
 // if the user presses the Enter key
 if Key = Chr (13) then
 with ComboBox3 do
 if (Text <> '') and (Items.IndexOf (Text) < 0) then
 Items.Add (Text);
end;

The CheckListBox Component

Another extension of the list box control is represented by the CheckListBox compo-
nent, a list box with each item preceded by a check box (as you can see in Figure
5.2). A user can select a single item of the list, but can also click on the check boxes
to toggle their status. This makes the CheckListBox a very good component for mul-
tiple selections or for highlighting the status of a series of independent items (as in a
series of check boxes).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 211

Figure 5.2:
The user interface of
the CheckListBox
control, basically a list
of check boxes. Image
from the original book.

To check the current status of each item, you can use the Checked and the State
array properties (use the latter if the check boxes can be grayed). Delphi 5 intro-
duces the ItemEnabled array property, which you can use to enable or disable each
item of the list. We’ll use the CheckListBox in the DragList example, later on in this
chapter.

note Most of the list-based controls share a common and important feature. Each item of the list has
an associated 32-bit value, usually indicated by the TObject type. This value can be used as a tag
for each list item, and it’s very useful for storing additional information along with each item. This
approach is connected to a specific feature of the native Windows list box control, which offers
four bytes of extra storage for each list box item. We’ll use this feature in the ODList example later
on in this chapter.

The ListView and TreeView Components

If you want an even more sophisticated list, you can use the ListView Win32 com-
mon control, which will make the user interface of your application look very
modern. This component is slightly more complex to use, as described toward the
end of this chapter. Other alternatives for listing values are the TreeView common
control, which shows items in a hierarchical output, and the StringGrid control,
which shows multiple elements for each line. The string grid control is described in
Chapter 22, “Graphics in Delphi”.157

If you use the common controls in your application, users will already know how to
interact with them, and they will regard the user interface of your program as up to

157 This was originally a bonus chapter available as a separate download on the publisher web
site, but it’s now part of this ebook.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

212 - Chapter 5: Advanced Use of the Standard Components

date. TreeView and ListView are the two key components of Windows Explorer, and
you can assume that many users will be familiar with them, even more than with the
traditional Windows controls.

Ranges

Finally, there are a few components you can use to select values in a range. Ranges
can be used for numeric input and for selecting an element in a list.

The ScrollBar Component

The stand-alone ScrollBar control is the original component of this group, but it is
seldom used by itself. Scroll bars are usually associated with other components,
such as list boxes and memo fields, or are associated directly with forms. In all these
cases, the scroll bar can be considered part of the surface of the other components.
For example, a form with a scroll bar is actually a form that has an area resembling a
scroll bar painted on its border, a feature governed by a specific Windows style of
the form window. By resembling, I mean that it is not technically a separate window
of the ScrollBar component type. These “fake” scroll bars are usually controlled in
Delphi using specific properties of the form and the other components hosting
them.

The TrackBar and ProgressBar Components

Direct use of the ScrollBar component is quite rare, especially with the TrackBar
component introduced with Windows 95, which is used to let a user select a value in
a range. Among Win32 common controls there is the companion ProgressBar con-
trol, which allows the program to output a value in a range, showing the progress of
a lengthy operation.

The UpDown Component

Another related control is the UpDown component, which is usually connected to an
edit box so that the user can either type a number in it or increase and decrease the
number using the two small arrow buttons. To connect the two controls, you set the
Associate property of the UpDown component. Nothing prevents you from using
the UpDown component as a stand-alone control, displaying the current value in a
label or in some other way.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 213

The PageScroller Component

The Win32 PageScroller control is a container allowing you to scroll the internal
control. For example, if you place a toolbar in the page scroller and the toolbar is
larger than the available area, the PageScroller will display two small arrows on the
side. Pressing these arrows will scroll the internal area. This component can be used
as a scrollbar, but it also partially replaces the ScrollBox control.

The ScrollBox Component

The ScrollBox control represents a region of a form, which can scroll independently
from the rest of the surface. For this reason the ScrollBox has two scrollbars used to
move the embedded components. You can easily place other components inside a
ScrollBox, as you do with a panel. In fact, a ScrollBox is basically a panel with scroll
bars to move its internal surface, an interface element used in many Windows appli-
cations. When you have a form with many controls and a toolbar or status bar, you
might use a ScrollBox to cover the central area of the form, leaving its toolbars and
status bars outside of the scrolling region. By relying on the scrollbars of the form,
in fact, you might allow the user to move the toolbar or status bar out of view, a very
odd situation.

Dragging from One Component to Another

Now that you’ve been introduced to the standard controls, we’ll examine a couple of
general techniques: dragging and focus handling. Let me start with a simple exam-
ple of dragging, called DragList. The form of this example, shown in Figure 5.3 at
run time, contains a ListBox and a CheckListBox. You can drag items from one con-
trol to the other. It also has an edit box you can use to enter new items and drag
them to either list. If you run the program, you’ll see that there is also a rule: Lists
cannot have duplicated items. This means we have to check whether the item is
already in the list before inserting it.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

214 - Chapter 5: Advanced Use of the Standard Components

Figure 5.3:
The form of the
DragList example at
run time, during a
dragging operation.
Image from the
original book.

The two list boxes use the dmAutomatic value for the DragMode property (with the
DragKind property left to the default value dkDrag). For the edit box, by contrast, we
have to use manual dragging to let the edit box behave as usual when a user clicks
on it. For this reason, as a user presses the mouse button over the edit box, we must
initiate the dragging operation, delaying it as indicated by the first parameter of the
BeginDrag method:

procedure TDragForm.Edit1MouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 Edit1.BeginDrag (False, 10);
end;

The two lists share the same handler for the OnDragOver event, which is used to
determine whether the control accepts dragging from a given source. In this han-
dler, when the user is dragging from the edit box, the program checks to see
whether the text is already in the list and disallows the dragging operation if it is.
We can easily write a single event handler for both controls because they inherit
from the same base class, TCustomListBox:

procedure TDragForm.ListDragOver(Sender, Source: TObject;
 X, Y: Integer; State: TDragState; var Accept: Boolean);
begin
 Accept := True;
 // if the source is the edit and the items
 // is already in the destination list, reject it
 if (Source = Edit1) and
 ((Sender as TCustomListBox).Items.IndexOf (Edit1.Text) >= 0) then
 Accept := False;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 215

The handlers of the OnDragDrop events, however, are quite different, so I’ve decided
to separate them. The list box allows only a single item to be selected, while the list
check box can have multiple selected items; this makes the code quite different in
the two cases. What can be shared is the code to add an item to a list only if it is not
already there. I’ve added this shared code to a method of the form, which is called
by both event handlers:

function TDragForm.AddNotDup (List: TCustomListBox;
 Text: string): Boolean;
begin
 // return if the string was not already in the list
 Result := List.Items.IndexOf (Text) < 0;
 if Result then
 List.Items.Add (Text);
end;

The code for the two drag-drop methods is quite simple. For the check list box, the
program copies the text of the edit box or that of the selected list box item and
removes it from the source:

procedure TDragForm.CheckListBox1DragDrop(Sender,
 Source: TObject; X, Y: Integer);
var
 nItem: Integer;
begin
 if Source = Edit1 then
 // copy the text of the edit box
 CheckListBox1.Items.Add (Edit1.Text)
 else if Source = ListBox1 then
 begin
 // copy if not duplicate
 nItem := ListBox1.ItemIndex;
 if AddNotDup (CheckListBox1, ListBox1.Items [nItem]) then
 // remove source item
 ListBox1.Items.Delete (nItem);
 end;
end;

For the list box, we have to scan all the items of the check list box to see which one is
selected. Since we want to delete the items we copy, we must do this operation in
reverse order, because deleting an item changes the position of the items that follow
it:

procedure TDragForm.ListBox1DragDrop(Sender,
 Source: TObject; X, Y: Integer);
var
 I: Integer;
begin
 if Source = Edit1 then
 // copy the text of the edit box

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

216 - Chapter 5: Advanced Use of the Standard Components

 ListBox1.Items.Add (Edit1.Text)
 else if Source = CheckListBox1 then
 begin
 // copy all the selected items (unless duplicate)
 // and delete them (using reverse order!)
 for I := CheckListBox1.Items.Count - 1 downto 0 do
 if CheckListBox1.Checked [I] then
 begin
 if AddNotDup (ListBox1, CheckListBox1.Items [I]) then
 CheckListBox1.Items.Delete (I);
 end;
 end;
end;

note We’ll see an example of dragging operations within a TreeView control at the end of this chapter.

Handling the Input Focus

Using the TabStop and TabOrder properties available in most controls, you can spec-
ify the order in which controls will receive the input focus when the user presses the
Tab key. Instead of setting the tab order property of each component of a form man-
ually, you can use the shortcut menu of the Form Designer to activate the Edit Tab
Order dialog box, as shown in Figure 5.4.

Besides these basics settings, it is important to know that each time a component
receives or loses the input focus, it receives a corresponding OnEnter or OnExit
event. This allows you to fine-tune and customize the order of the user operations.
Some of these techniques are demonstrated by the InFocus example, which creates
a fairly typical password-login window. Its form has three edit boxes with labels
indicating their meaning, as shown in Figure 5.5. At the bottom of the window is a
status area with prompts guiding the user. Each item needs to be entered in
sequence.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 217

Figure 5.4:
The Edit Tab Order
dialog box. Images
captured in Delphi 5
and Delphi 12.

Figure 5.5:
The InFocus example
at run time. Image
from the original book.

For the output of the status information I’ve used the StatusBar component, with a
single output area (obtained by setting its SimplePanel property to True). Here is a
summary of the properties for this example. Notice the & character in the labels,
indicating a shortcut key, and the connection of these labels with corresponding edit
boxes (using the FocusControl property):

object FocusForm: TFocusForm
 ActiveControl = EditFirstName
 Caption = ‘InFocus’
 object Label1: TLabel
 Caption = ‘&First name’
 FocusControl = EditFirstName
 end
 object EditFirstName: TEdit
 OnEnter = GlobalEnter
 OnExit = EditFirstNameExit
 end
 object Label2: TLabel

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

218 - Chapter 5: Advanced Use of the Standard Components

 Caption = ‘&Last name’
 FocusControl = EditLastName
 end
 object EditLastName: TEdit
 OnEnter = GlobalEnter
 end
 object Label3: TLabel
 Caption = ‘&Password’
 FocusControl = EditPassword
 end
 object EditPassword: TEdit
 PasswordChar = ‘*’
 OnEnter = GlobalEnter
 end
 object StatusBar1: TStatusBar
 SimplePanel = True
 end
end

The program is very simple and does only two operations. The first is to identify, in
the status bar, the edit control that has the focus. It does this by handling the con-
trols’ OnEnter event, possibly using a single generic event handler to avoid repetitive
code. In the example, instead of storing some extra information for each edit box,
I’ve checked each control of the form to determine which label is connected to the
current edit box (indicated by the Sender parameter):

procedure TFocusForm.GlobalEnter(Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to ControlCount - 1 do
 // if the control is a label
 if (Controls [I] is TLabel) and
 // and the label is connected to the current edit box
 (TLabel(Controls[I]).FocusControl = Sender) then
 // copy the text leaving off the initial & character
 StatusBar1.SimpleText := ‘Enter ‘ +
 Copy (TLabel(Controls[I]).Caption, 2, 1000);
end;

The second event handler of the form relates to the OnExit event of the first edit
box. If the control is left empty, it refuses to release the input focus and sets it back
before showing a message to the user. The methods also look for a given input value,
automatically filling the second edit box and moving the focus directly to the third
one:

procedure TFocusForm.EditFirstNameExit(Sender: TObject);
begin
 if EditFirstName.Text = ‘’ then
 begin

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 219

 // don’t let the user get out
 EditFirstName.SetFocus;
 MessageDlg (‘First name is required’,
 mtError, [mbOK], 0);
 end
 else if EditFirstName.Text = ‘Admin’ then
 begin
 // fill the second edit and jump to the third
 EditLastName.Text := ‘Admin’;
 EditPassword.SetFocus;
 end;
end;

Working with Menus

Working with menus and menu items is generally quite simple. This section offers
only some very brief notes and a few more advanced examples. The first thing to
keep in mind about menu items is that they can serve different purposes:

· Commands are menu items used to execute an action.

· State-setters are menu items used to toggle an option on and off, to
change the state of a particular element. These commands usually have
a check mark on the left to indicate they are active.

· Radio items have a round check mark and are grouped to represent
alternative selections, like radio buttons. To obtain radio menu items,
simply set the RadioItem property to True and set the GroupIndex prop-
erty for the alternative menu items to the same value.

· Dialog menu items cause a dialog box to appear and are usually indi-
cated by an ellipsis (three dots) after the text.

As you enter new elements in the Menu Designer, Delphi creates a new component
for each menu item and lists it in the Object Inspector (although nothing is added to
the form). To name each component, Delphi uses the caption you enter and
appends a number (so that Open becomes Open1). Because Delphi removes spaces
and other special characters in the caption when it creates the name, and the menu
item separators are set up using a hyphen as caption, these items would have an
empty name. For this reason Delphi adds the letter N to the name, appending the
number and generating items called N1, N2, and so on.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

220 - Chapter 5: Advanced Use of the Standard Components

note Do not use the Break property, which is used to lay out a pull-down menu on multiple columns.
The mbMenuBarBreak value indicates that this item will be displayed in a second or subsequent
line, the mbMenuBreak value that this item will be added to a second or subsequent column of
the pull-down.

Accelerator Keys in Delphi 5

In Delphi 5 you don’t need to enter the & character in the Caption of a menu item; it
provides an automatic accelerator key if you omit one. The Delphi 5 automatic
accelerator key system can also figure out if you have entered conflicting accelerator
keys and fix them on the fly. This doesn’t mean you should stop adding custom
accelerator keys with the & character, because the automatic system simply uses the
first available letter, and it doesn’t follow the default standards. You might also find
better mnemonic keys than those chosen by the automatic system.

This new Delphi 5 feature is controlled by the AutoHotkeys property, which is avail-
able in the main menu component and in each of the pull-down menus and menu
items. In the main menu, this property defaults to maAutomatic, while in the pull-
downs and menu items it defaults to maParent, so that the value you set for the main
menu component will be used automatically by all the subitems, unless they have a
specific value of maAutomatic or maManual.

The engine behind this system is the RethinkHotkeys method of the TMenuItem
class, and the companion InternalRethinkHotkeys. There is also a RethinkLines
method, which checks whether a pull-down has two consecutive separators, or
begins or ends with a separator. In all these cases the separator is automatically
removed.

One of the reasons Delphi includes this new feature is the new ITE (Integrated
Translation Environment)158. When you need to translate the menu of an applica-
tion, it is convenient if you don’t have to deal with the accelerator keys, or at least if
you don’t have to worry about whether two items on the same menu conflict. Having
a system that can automatically resolve similar problems is definitely an advantage.
Another motivation was Delphi’s IDE itself. With all the dynamically loaded pack-
ages that install menu items in the IDE main menu or in pop-up menus, and with
different packages loaded in different versions of the product, it’s next to impossible

158 The VCL translation support has recently been removed as an official feature of the product
and is only available as an additional download in the GetIt Package Manager. The founda-
tions of the concepts remain valid and can be applicable to other, third-party, translation
tools.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 221

to get non-conflicting accelerator-key selections in each menu. That is why this
mechanism isn’t a wizard that does static analysis of your menus at design time; it
was created to deal with the real problem of managing menus created dynamically
at run time.

note This new feature is certainly very handy, but because it is active by default, it can break existing
code. I had to modify two of this chapter’s program examples from the previous edition of the
book, just to avoid run-time errors caused by this change. As we’ll see later, the problem is that I
use the caption in the code, and the extra & broke my code. The change was quite simple, though,
as all I had to do was to set the AutoHotkeys property of the main menu component to
maManual.

Pop-Up Menus and the OnContextPopup
Event

Besides the MainMenu component, you can use the similar PopupMenu compo-
nent. This is typically displayed when the user right-clicks a component that uses
the given pop-up menu as the value for its PopupMenu property.

However, besides connecting the pop-up menu to a component with the corre-
sponding property, you can call its Popup method, which requires the position of the
pop-up in screen coordinates. The proper values can be obtained by converting a
local point to a screen point with the ClientToScreen method of the local compo-
nent, in this code fragment a label:

procedure TForm1.Label3MouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
var
 ScreenPoint: TPoint;
begin
 // if some condition applies...
 if Button = mbRight then
 begin
 ScreenPoint := Label3.ClientToScreen (
 Point (X, Y));
 PopupMenu1.Popup (ScreenPoint.X, ScreenPoint.Y)
 end;
end;

An alternative approach provided by Delphi 5 is the use of the OnContextMenu event.
This brand-new event fires when a user right-clicks on a component, exactly what
we’ve traced above with the test if Button = mbRight. The advantage is that the
same event is also fired in response to a Shift+F10 key combination, as well as by
any other user input methods defined by Windows Accessibility options or hard-

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

222 - Chapter 5: Advanced Use of the Standard Components

ware (including the shortcut menu key of some Windows-compatible keyboards).
We can use this event to fire a pop-up menu with little code:

procedure TFormPopup.Label1ContextPopup(Sender: TObject;
 MousePos: TPoint; var Handled: Boolean);
var
 ScreenPoint: TPoint;
begin
 // add dynamic items
 PopupMenu2.Items.Add (NewLine);
 PopupMenu2.Items.Add (NewItem (TimeToStr (Now),
 0, False, True, nil, 0, ‘’));
 // show popup
 ScreenPoint := ClientToScreen (MousePos);
 PopupMenu2.Popup (ScreenPoint.X, ScreenPoint.Y);
 Handled := True;
 // remove dynamic items
 PopupMenu2.Items [4].Free;
 PopupMenu2.Items [3].Free;
end;

This example adds some dynamic behavior to the shortcut menu, adding a tempo-
rary item indicating when the pop-up menu is displayed. This is not particularly
useful, but I’ve done it to highlight that if you need to display a plain pop-up menu,
you can easily use the PopupMenu property of the control in question or one of its
parent controls. Handling the OnContextMenu event makes sense only when you
want to do some extra processing.

The Handled parameter is initialized to False, so that if you do nothing in the event
handler, the normal pop-up menu processing will occur. If you do something in
your event handler to replace the normal pop-up menu processing (such as popping
up a dialog or a customized menu, as in this case), you should set Handled to True
and the system will stop processing the message. Setting Handled to True should be
fairly rare, as you’ll generally handle the OnContextPopup to dynamically create or
customize the pop-up menu, but then you can let the default handler actually show
the menu.

The handler of an OnContextPopup event isn’t limited to displaying a pop-up menu.
It can do any other operation, such as directly display a dialog box. Here is an exam-
ple of a right-click operation used to change the color of the control:

procedure TFormPopup.Label2ContextPopup(Sender: TObject;
 MousePos: TPoint; var Handled: Boolean);
begin
 ColorDialog1.Color := Label2.Color;
 if ColorDialog1.Execute then
 Label2.Color := ColorDialog1.Color;
 Handled := True;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 223

end;

All the code snippets of this section are available in the simple CustPop example.

Creating Menu Items Dynamically

Besides defining the structure of a menu with the Menu Designer and modifying the
status of the items using the Checked, Visible, and Caption properties, you can cre-
ate an entire menu or portions of one at run time. This makes sense, for example,
when you have many repetitive items, or when the menu items depend on some sys-
tem configuration or user permissions.

The basic idea is that each object of the TMenuItem class—which Delphi uses for both
menu items and pull-down menus—contains a list of menu items. Each of these
items has the same structure, in a kind of recursive way. A pull-down menu has a
list of submenus, and each sub-menu has a list of sub-menus, each with its own list
of submenus, and so on. The properties you can use to explore the structure of an
existing menu are Items, which contains the actual list of menu items, and Count,
which contains the number of subitems. Adding new menu items or entire pull-
down menus to an existing menu is fairly easy, particularly if you can write a single
event handler for all of them.

This is demonstrated by the DynaMenu example, which also illustrates the use of
menu check marks, radio items, and many other features of menus that aren’t
described in detail in the text. As soon as you start this program, it creates a new
pull-down with menu items used to change the font size of a big label hosted by the
form. Instead of creating a bunch of menu items with captions indicating sizes rang-
ing from 8 to 48, you can let the program do this repetitive work for you.

The new pull-down menu should be inserted in the Items property of the MainMenu1
component. You can calculate the position by asking the MainMenu component for
the previous pull-down menu:

procedure TFormColorText.FormCreate(Sender: TObject);
var
 PullDown, Item: TMenuItem;
 Position, I: Integer;
begin
 // create the new pull-down menu
 PullDown := TMenuItem.Create (Self);
 PullDown.AutoHotkeys := maManual;
 PullDown.Caption := ‘&Size’;
 PullDown.OnClick := SizeClick;
 // compute the position and add it

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

224 - Chapter 5: Advanced Use of the Standard Components

 Position := MainMenu1.Items.IndexOf (Options1);
 MainMenu1.Items.Insert (Position + 1, PullDown);
 // create menu items for various sizes
 I := 8;
 while I <= 48 do
 begin
 // create the new item
 Item := TMenuItem.Create (Self);
 Item.Caption := IntToStr (I);
 // make it a radio item
 Item.GroupIndex := 1;
 Item.RadioItem := True;
 // handle click and insert
 Item.OnClick := SizeItemClick;
 PullDown.Insert (PullDown.Count, Item);
 I := I + 4;
 end;
 // add extra item at the end
 Item := TMenuItem.Create (Self);
 Item.Caption := ‘More...’;
 // make it a radio item
 Item.GroupIndex := 1;
 Item.RadioItem := True;
 // handle it by showing the font selection dialog
 Item.OnClick := Font1Click;
 PullDown.Insert (PullDown.Count, Item);
end;

As you can see in the code above, the menu items are created in a while loop, set-
ting the radio item style and calling the Insert method with the number of items as
a parameter to add each item at the end of the pull-down. At the end, the program
adds one extra item, which is used to set a different size than those listed. The
OnClick event of this last menu item is handled by the Font1Click method (also
connected to a specific menu item), which displays the font selection dialog box.
You can see the dynamic menu in Figure 5.6.

note Because the program uses the Caption of the new items dynamically, we should either disable
the AutoHotkeys property of the main menu component, or disable this feature for the pull-
down menu we are going to add (and thus automatically disable it for the menu items). This is
what I’ve done in the code above by setting the AutoHotkeys property of the dynamically cre-
ated pull-down component to maManual. An alternative approach is to let the menu display the
automatic captions and then call the new StripHotkeys function before converting then cap-
tion to a number. There is also a new GetHotkey function, which returns the active character of
the caption.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 225

Figure 5.6:
The Size pull-down
menu of the
DynaMenu example is
created at run time,
along with all of its
menu items. Image
from the original book.

The handler for the OnClick event of these dynamically created menu items uses the
caption of the Sender menu item to set the size of the font:

procedure TFormColorText.SizeItemClick(Sender: TObject);
begin
 with Sender as TMenuItem do
 Label1.Font.Size := StrToInt (Caption);
end;

This code doesn’t set the proper radio item mark next to the selected item, because
the user can select a new size also by changing the font. The proper radio item is
checked in the OnClick event handler of the entire pull-down menu, which is con-
nected just after the pull-down is created and activated just before showing the pull-
down. The code scans the items of the pull-down menu (the Sender object) and
checks whether the caption matches the current Size of the font. If no match is
found, the program checks the last menu item, to indicate that a different size is
active:

procedure TFormColorText.SizeClick (Sender: TObject);
var
 I: Integer;
 Found: Boolean;
begin
 Found := False;
 with Sender as TMenuItem do
 begin
 // look for a match, skipping the last item
 for I := 0 to Count - 2 do
 if StrToInt (Items [I].Caption) =
 Label1.Font.Size then
 begin
 Items [I].Checked := True;
 Found := True;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

226 - Chapter 5: Advanced Use of the Standard Components

 System.Break; // skip the rest of the loop
 end;
 if not Found then
 Items [Count - 1].Checked := True;
 end;
end;

When you want to create a menu or a menu item dynamically, you can use the cor-
responding components, as I’ve done in the DynaMenu example. As an alternative,
you can also use some global functions available in the Menus unit: NewMenu,
NewPopupMenu, NewSubMenu, NewItem, and NewLine.

Using Menu Images

In Delphi it is very easy to improve a program’s user interface by adding images to
menu items. This is becoming common in Windows applications and it is very nice
that Borland has added all the required support, making the development of graphi-
cal menu items trivial.

All you have to do is add an image list control to the form, add a series of bitmaps to
the image list, connect the image list to the menu using its Images property, and set
the proper ImageIndex property for the menu items. You can see the effect of these
simple operations in Figure 5.7. (You can also associate a bitmap with the menu
item directly, using the Bitmap property.)

note Delphi 5 makes the definition of images for menus more flexible, by allowing you to associate an
image list with any specific pull-down menu (and even a specific menu item) using the new
SubMenuImages property. Having a specific and smaller image list for each pull-down menu,
instead of one single huge image list for the entire menu, allows for more run-time customization
of an application.

Figure 5.7:
The simple graphical
menu of the MenuImg
example. Image from
the original book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 227

To create the image list you can double-click on the component, activating the cor-
responding editor (shown in Figure 5.8), and then import existing bitmap or icon
files. You can actually prepare a single large bitmap and let the image editor divide
it according to the Height and Width properties of the ImageList component, which
refer to the size of the individual bitmaps in the list.

Figure 5.8:
The Image List editor,
with the bitmaps of the
MenuImg example.
Image from the
original book.

note As an alternative, you can use the series of images that ship with Delphi159 and are stored by
default in the Program Files/Common Files/Borland Shared/Images/Buttons direc-
tory. Each bitmap contains both an “enabled” and a “disabled” image. As you import them, the
Image List editor will ask you whether to split them in two, a suggestion you should accept. This
operation adds to the image list a normal image and a disabled one, which is not generally used
(as it can be built automatically when needed). For this reason I generally delete the disabled part
of the bitmap from the Image List.

The program’s code is very simple. The only element I want to emphasize is that if
you set the Checked property of a menu item with an image instead of displaying a
check mark, the item paints its image as sunken. You can see this in the Large Font
menu of the MenuImg example in Figure 5.7. Here is the code for that menu item
selection:

procedure TForm1.LargeFont1Click(Sender: TObject);
begin
 if Memo1.Font.Size = 8 then
 Memo1.Font.Size := 12
 else

159 These images are no longer available. The GetIt Package manager offers a nice collection of
images, called Icons8 (licensed under Creating Commons), but you can find many others
available online.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

228 - Chapter 5: Advanced Use of the Standard Components

 Memo1.Font.Size := 8;
 // changes the image style near the item
 LargeFont1.Checked := not LargeFont1.Checked;
end;

Customizing the System Menu

In some circumstances, it is interesting to add menu commands to the system menu
itself, instead of (or besides) having a menu bar. This might be useful for secondary
windows, toolboxes, windows requiring a large area on the screen, and “quick-and-
dirty” applications. Adding a single menu item to the system menu is straightfor-
ward:

AppendMenu (GetSystemMenu (Handle, FALSE),
 MF_SEPARATOR, 0, ‘’);
AppendMenu (GetSystemMenu (Handle, FALSE),
 MF_STRING, idSysAbout, ‘&About...’);

This code fragment (extracted from the OnCreate event handler of the SysMenu
example) adds a separator and a new item to the system menu item. The
GetSystemMenu API function, which requires as a parameter the handle of the form,
returns a handle to the system menu. The AppendMenu API function is a general-pur-
pose function you can use to add menu items or complete pull-down menus to any
menu (the menu bar, the system menu, or an existing pull-down menu). When
adding a menu item, you have to specify its text and a numeric identifier. In the
example I’ve defined this identifier as:

const
 idSysAbout = 100;

Adding a menu item to the system menu is easy, but how can we handle its selec-
tion? Selecting a normal menu generates the wm_Command Windows message. This is
handled internally by Delphi, which activates the OnClick event of the correspond-
ing menu item component. The selection of system menu commands, instead,
generates a wm_SysCommand message, which is passed by Delphi to the default han-
dler. Windows usually needs to do something in response to a system menu
command.

We can intercept this command and check to see whether the command identifier
(passed in the CmdType field of the TWmSysCommand parameter) of the menu item is
our idSysAbout. Since there isn’t a corresponding event in Delphi, we have to define
a new message-response method for the form class:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 229

public
 procedure WMSysCommand (var Msg: TMessage);
 message wm_SysCommand;

The code of this procedure is not very complex. We just need to check whether the
command is our own and call the default handler:

procedure TForm1.WMSysCommand (var Msg: TWMSysCommand);
begin
 if Msg.CmdType = idSysAbout then
 ShowMessage (‘Mastering Delphi: SysMenu example’);
 inherited;
end;

To build a more complex system menu, instead of adding and handling each menu
item as we have just done, we can follow a different approach. Just add a MainMenu
component to the form, create its structure (any structure will do), and write the
proper event handlers. Then reset the value of the Menu property of the form, remov-
ing the menu bar.

Now we can add some code to the SysMenu example to add each of the items from
the hidden menu to the system menu. This operation takes place when the button of
the form is pressed. The corresponding handler uses generic code that doesn’t
depend on the structure of the menu we are appending to the system menu:

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 // add a separator
 AppendMenu (GetSystemMenu (Handle, FALSE), MF_SEPARATOR, 0, ‘’);
 // add the main menu to the system menu
 with MainMenu1 do
 for I := 0 to Items.Count - 1 do
 AppendMenu (GetSystemMenu (Self.Handle, FALSE),
 mf_Popup, Items[I].Handle, PChar (Items[I].Caption));
 // disable the button
 Button1.Enabled := False;
end;

note This code uses the expression Self.Handle to access the handle of the form. This is required
because we are currently working on the MainMenu1 component, as specified by the with state-
ment.160

160 This is, in fact, a very good reason to avoid the use of the with statement in the first place. In
retrospective, I don’t like the fact I was encouraging this and I really don’t like this code snip-
pet. I decided to keep it offers me a good opportunity to explain this is not good code.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

230 - Chapter 5: Advanced Use of the Standard Components

The menu flag used in this case, mf_Popup, indicates that we are adding a pull-down
menu. In this function call the fourth parameter is interpreted as the handle of the
pull-down menu we are adding (in the previous example we passed the identifier of
the menu, instead). Since we are adding to the system menu items with sub-menus,
the final structure of the system menu will have two levels, as you can see in Figure
5.9.

Figure 5.9:
The second-level
system menu items of
the SysMenu example
are the result of
copying a complete
main menu to the
system menu. Images
captured in Delphi 5
and Delphi 12.

note The Windows API uses the terms pop-up menu and pull-down menu interchangeably. This is
really odd, because most of us use the terms to mean different things. Pop-up menus are shortcut
menus, and pull-down menus are the secondary menus of the menu bar. Apparently, Microsoft
uses the terms in this way because the two elements are implemented with the same kind of inter-
nal windows; and the fact that they are two distinct user-interface elements is probably something
that was later conceptually built over a single basic internal structure.

Once you have added the menu items to the system menu, you need to handle them.
Of course, you can check for each menu item in the WMSysCommand method, or you
can try building a smarter approach. Since in Delphi it is easier to write a handler
for the OnClick event of each item, we can look for the item corresponding to the
given identifier in the menu structure. Delphi helps us by providing a FindItem
method.

When (and if) we have found a main menu item that corresponds to the item
selected in the system menu, we can call its Click method (which invokes the
OnClick handler). Here is the code I’ve added to the WMSysCommand method:

var
 Item: TMenuItem;
begin
 ...
 Item := MainMenu1.FindItem (Msg.CmdType, fkCommand);

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 231

 if Item <> nil then
 Item.Click;

In this code, the CmdType field of the message structure that is passed to the
WMSysCommand procedure holds the command of the menu item being called.

note You can also use a simple if or case statement to handle one of the system menu’s predefined
menu items that have special codes for this identifier, such as sc_Close, sc_Minimize,
sc_Maximize, and so on. For more information, you can see the description of the
wm_SysCommand message in the Windows API Help file.

This application works but has one glitch. If you click the right mouse button over
the Taskbar icon representing the application, you get a plain system menu (actually
different from the default one). The reason is that this system menu belongs to a
different window, the window of the Application global object. I’ll discuss the
Application object, and update this example to make it work with the Taskbar but-
ton, in Chapter 6.

The ActionList Component161

As explained in the previous chapter, Delphi’s event architecture is very open: You
can write a single event handler and connect it to the OnClick events of a toolbar
button and a menu. You can also connect the same event handler to different but-
tons or menu items, as the event handler can use the Sender parameter to refer to
the object that fired the event by using the Sender parameter. It’s a little more diffi-
cult to synchronize the status of toolbar buttons and menu items. If you have a
menu item and a toolbar button that both toggle the same option, every time the
option is toggled, you must both add the check mark to the menu item and change
the status of the button to show it pressed.

To overcome this problem, Delphi 4 introduced an event-handling architecture
based on actions. An action (or command) both indicates the operation to do when a
menu item or button is clicked and determines the status of all the elements con-
nected to the action. The connection of the action with the user interface of the

161 This is a fundamental feature of the VCL architecture, still incredibly modern and still largely
unused by Delphi developers. I want to underline the fact this was a great idea and it remains
very important today to move form a pure RAD visual development to a much more flexible
architecture based on visual design, but separating the UI from the application logic.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

232 - Chapter 5: Advanced Use of the Standard Components

linked controls is very important and should not be underestimated, because it is
where you can get the real advantages of this architecture.

note If you have ever written code using the MFC class library of Visual C++, you’ll recognize that a
Delphi action maps to both a command and a CCommandUpdateUI object. The Delphi architec-
ture is more flexible, though, because it can be extended by sub-classing the action classes.

There are many players in this event-handling architecture. The central role is cer-
tainly played by the action objects. Action objects have a name, like any other
component, and they have other properties that will be applied to the linked con-
trols (called action clients). These properties include the Caption, the graphical
representation (ImageIndex), the status (Checked, Enabled, and Visible), and the
user feedback (Hint and HelpContext). The base class for an action object is
TBasicAction. There is a TAction class, but it inherits from TCustomAction, which
derives from TContainedAction, which in turn descends from TBasicAction, a
TComponent subclass.

Each action object is connected to one or more client objects through an ActionLink
object. Multiple controls, possibly of different types, can share the same action
object, as indicated by their Action property. Technically, the ActionLink objects
maintain a bidirectional connection between the client object and the action. The
ActionLink object is required because the connection works in both directions. An
operation on the object (such as a click) is forwarded to the action object and results
in a call to its OnExecute event; an update to the status of the action object is
reflected in the connected client controls. In other words, one or more client con-
trols can create an ActionLink, which registers itself with the action object.

You should not set the properties of the client controls you connect with an action,
because the action will override the property values of the client controls. For this
reason you should generally write the actions first and then create the menu items
and buttons you want to connect with them. Note also that when an action has no
OnExecute handler, the client control is automatically disabled (or grayed), unless
the DisableIfNoHandler property is set to False.

The client controls connected to actions are usually menu items and various types of
buttons (push buttons, check boxes, radio buttons, speed buttons, toolbar buttons,
and the like), but nothing prevents you from creating new components that hook
into this architecture. Component writers can even define new actions and new link
action objects.

Besides a client control, some actions can also have a target component. Some pre-
defined actions hook to a specific target component (for examples, see the coverage
of the DataSet components in the Chapter 9 section “Looking for Records in a

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 233

Table”). Other actions automatically look for a target component in the form that
supports the given action, starting with the active control.

Finally, the action objects are held by an ActionList component, the only class of this
architecture that shows up on the Component Palette. The action list receives the
execute actions that aren’t handled by the specific action objects, firing the
OnExecuteAction. If even the action list doesn’t handle the action, Delphi calls the
OnExecuteAction event of the Application object. The ActionList component
has a special editor you can use to create a number of actions, as you can see in Fig-
ure 5.10.

Figure 5.10:
The ActionList
component editor, with
a list of predefined
actions you can use.
Image from the
original book.

In the editor, actions are displayed in different groups, as indicated by their
Category property. By simply setting this property to a brand-new value, you
instruct the editor to introduce a new category. These categories are basically logical
groups, although in some cases a group of actions can work only on a specific type of
target component. You might want to define a category for every pull-down menu or
group them in some other logical way.

With the action list editor, you can create a brand new action or choose one of the
existing actions registered in the system. These are listed in a secondary dialog box,
as shown in Figure 5.10. There are many predefined actions, which can be divided
into logical groups162:

162 There are many additional groups added to the predefined list of actions, including DataSnap
Client, Dialog, File, Format (for RichEdit operations), Internet, Search, Tab, and Tools. There
are almost 70 predefined actions in Delphi 12.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

234 - Chapter 5: Advanced Use of the Standard Components

· Edit actions, illustrated in the next example. They include Cut, Copy,
and Paste actions.

· MDI window actions, which will be demonstrated in Chapter 8, as we
examine the Multiple Document Interface approach. They include all
the most common MDI operations: Arrange, Cascade, Close, Tile, and
Minimize all.

· Dataset actions, which relate to database tables and queries and will
be discussed in Chapter 11. There are many dataset actions, representing
all the main operations you can perform on a dataset.

· Help actions, which allow you to activate the contents page or index of
the Help file attached to the application.

note You can also define new custom actions and register them in Delphi’s IDE, as we’ll see in Chapter
13.

Besides handling the OnExecute event of the action and changing the status of the
action to affect the user interface of the client controls, an action can also handle the
OnUpdate event, which is activated when the application is idle. This gives you the
opportunity to check the status of the application or the system and change the user
interface of the controls accordingly. For example, the standard PasteEdit action
enables the client controls only when there is some text in the Clipboard.

Actions in Practice

Now that you understand the main ideas behind this very important Delphi feature,
let’s try out an example. The program is called Actions and demonstrates a number
of features of the action architecture.

I began building it by placing a new ActionList component in its form and adding
the three standard edit actions and a few custom ones. The form also has a panel
with some speed buttons, a main menu, and a Memo control (the automatic target
of the edit actions). This is the list of the actions, extracted from the DFM file:

object ActionList1: TActionList
 Images = ImageList1
 object ActionCopy: TEditCopy
 Category = ‘Edit’
 Caption = ‘&Copy’
 Hint = ‘Copy’
 ImageIndex = 1

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 235

 ShortCut = <Ctrl+C>
 end
 object ActionCut: TEditCut
 Category = ‘Edit’
 Caption = ‘Cu&t’
 Hint = ‘Cut’
 ImageIndex = 0
 ShortCut = <Ctrl+X>
 end
 object ActionPaste: TEditPaste
 Category = ‘Edit’
 Caption = ‘&Paste’
 Hint = ‘Paste’
 ImageIndex = 2
 ShortCut = <Ctrl+V>
 end
 object ActionNew: TAction
 Category = ‘File’
 Caption = ‘&New’
 Hint = ‘New’
 ImageIndex = 3
 ShortCut = <Ctrl+N>
 OnExecute = ActionNewExecute
 end
 object ActionExit: TAction
 Category = ‘File’
 Caption = ‘E&xit’
 Hint = ‘Exit’
 ImageIndex = 5
 ShortCut = <Alt+F4>
 OnExecute = ActionExitExecute
 end
 object NoAction: TAction
 Category = ‘Test’
 Caption = ‘&No Action’
 Hint = ‘No Action’
 end
 object ActionCount: TAction
 Category = ‘Test’
 Caption = ‘&Count Chars’
 Hint = ‘Count Characters’
 ImageIndex = 6
 OnExecute = ActionCountExecute
 OnUpdate = ActionCountUpdate
 end
 object ActionBold: TAction
 Category = ‘Edit’
 Caption = ‘&Bold’
 Hint = ‘Bold’
 ImageIndex = 4
 ShortCut = <Ctrl+B>
 OnExecute = ActionBoldExecute
 end

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

236 - Chapter 5: Advanced Use of the Standard Components

 object ActionEnable: TAction
 Category = ‘Test’
 Caption = ‘&Enable NoAction’
 Hint = ‘Enable No Action’
 OnExecute = ActionEnableExecute
 end
 object ActionSender: TAction
 Category = ‘Test’
 Caption = ‘Test &Sender’
 Hint = ‘Test Sender’
 OnExecute = ActionSenderExecute
 end
end

note The shortcut keys are stored in the DFM files using virtual key numbers, which also include val-
ues for the Ctrl and Alt keys. In this and other listings throughout the book I’ve replaced the
numbers with the literal values, enclosing them in angle brackets.

All of these actions are connected with the items of a MainMenu component and
some of them also with the buttons of a Toolbar control (more on the Toolbar con-
trol in Chapter 7). Notice that the images selected in the ActionList control affect the
actions in the editor only, as you can see in Figure 5.11. For the images of the Image-
List to show up also in the menu items and in the toolbar buttons, you must also
select the image list in the MainMenu and in the Toolbar components.

Figure 5.11:
The ActionList editor
of the Actions example.
Image from the
original book.

The three predefined actions for the Edit menu don’t have associated handlers, but
these special objects have internal code to perform the related action on the active
edit or memo control. These actions also enable and disable themselves, depending
on the content of the Clipboard and on the existence of selected text in the active

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 237

edit control. Most other actions have custom code, except for the NoAction object.
Having no code, the menu item and the button connected with this command are
disabled, even if the Enabled property of the action is set to True.

I’ve added to the example, and to the Test menu, another action that enables the
menu item connected to the NoAction object:

procedure TForm1.ActionEnableExecute(Sender: TObject);
begin
 NoAction.Enabled := True;
 NoAction.DisableIfNoHandler := False;
 ActionEnable.Enabled := False;
end;

Simply setting Enabled to True will produce the effect for only a very short time,
unless you set the DisableIfNoHandler property, as discussed in the previous sec-
tion. Once this operation is done, I disable the current action, since there is no need
to issue the same command again.

This is different from an action you can toggle, such as the Edit Bold menu item
and the corresponding speed button. Here is the code of the Bold action:

procedure TForm1.ActionBoldExecute(Sender: TObject);
begin
 with Memo1.Font do
 if fsBold in Style then
 Style := Style - [fsBold]
 else
 Style := Style + [fsBold];
 // toggle status
 ActionBold.Checked := not ActionBold.Checked;
end;

The ActionCount object has very simple code, but it demonstrates an OnUpdate han-
dler; when the memo control is empty, it is automatically disabled. We could have
obtained the same effect by handling the OnChange event of the memo control itself,
but in general it might not always be possible or easy to determine the status of a
control simply by handling one of its events. Here is the code of the two handlers of
this action:

procedure TForm1.ActionCountExecute(Sender: TObject);
begin
 ShowMessage (‘Characters: ‘ + IntToStr (
 Length (Memo1.Text)));
end;

procedure TForm1.ActionCountUpdate(Sender: TObject);
begin
 ActionCount.Enabled := Memo1.Text <> ‘’;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

238 - Chapter 5: Advanced Use of the Standard Components

end;

Finally, I’ve added a special action to test the sender object of the action event han-
dler and get some other system information. Besides showing the object class and
name, I’ve added code that accesses the action list object. I’ve done this mainly to
show that you can access this information and how to do it:

procedure TForm1.ActionSenderExecute(Sender: TObject);
begin
 Memo1.Lines.Add (
 ‘Sender class: ‘ + Sender.ClassName);
 Memo1.Lines.Add (
 ‘Sender name: ‘ + (Sender as TComponent).Name);
 Memo1.Lines.Add (
 ‘Category: ‘ + (Sender as TAction).Category);
 Memo1.Lines.Add (
 ‘Action list name: ‘ + (Sender as TAction).ActionList.Name);
 end;

You can see the output of this code in Figure 5.12, along with the user interface of
the example. Notice that the Sender is not the menu item you’ve selected, even if the
event handler is connected to it. The Sender object, which fires the event, is the
action, which intercepts the user operation.

Finally, keep in mind that you can also write handlers for the events of the Action-
List object itself, which play the role of global handlers for all the actions of the list
(something I haven’t done in the example).

Figure 5.12:
The Actions example,
with a detailed
description of the
Sender of an Action
object’s OnExecute
event. Image from the
original book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 239

Owner-Draw Controls

Let’s return briefly to menu graphics. Besides using an ImageList to add glyphs to
the menu items, you can turn a menu into a completely graphical element, using the
owner-draw technique. The same technique also works for other controls, such as
list boxes. In Windows, the system is usually responsible for painting buttons, list
boxes, edit boxes, menu items, and similar elements. Basically these controls know
how to paint themselves. As an alternative, however, the system allows the owner of
these controls, generally a form, to paint them. This technique, available for but-
tons, list boxes, combo boxes, and menu items, is called owner-draw.

In Delphi the situation is slightly more complex. The components can take care of
painting themselves in this case (as in the TBitBtn class for bitmap buttons) and
possibly activate corresponding events. Basically, the system sends the request for
painting to the owner (usually the form), and the form forwards the event back to
the proper control, firing its event handlers.

note Most of the Win32 common controls have support for the owner-draw technique, generally called
custom drawing. You can fully customize the appearance of a ListView, a TreeView, a TabControl,
a PageControl, a HeaderControl, a StatusBar, and a ToolBar. In Delphi 5 the ToolBar, ListView
and TreeView controls also support advanced custom drawing, a more fine-tuned drawing capa-
bility introduced by Microsoft in the latest versions of the Win32 common controls library. The
downside to owner-draw is that when the Windows user interface style changes in the future (and
it always does), your owner-draw controls that fit in perfectly with the current user interface
styles will look outdated and out of place. Since you are creating a custom user interface, you’ll
need to keep it updated yourself. By contrast, if you use the standard output of the controls, your
applications will automatically adapt to a new version of such controls.

Owner-Draw Menu Items

Delphi makes the development of graphical menu items quite simple compared to
the traditional approach of the Windows API. You set the OwnerDraw property of a
menu item component to True and handle its OnMeasureItem and OnDrawItem
events.

In the OnMeasureItem event you can determine the size of the menu items. This
event handler is activated once for each menu item when the pull-down menu is
displayed and has two reference parameters you can set:

procedure ColorMeasureItem (Sender: TObject;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

240 - Chapter 5: Advanced Use of the Standard Components

 ACanvas: TCanvas; var Width, Height: Integer);

The other parameter, ACanvas, is typically used to determine the height of the cur-
rent font.

In the OnDrawItem event you paint the actual image. This event handler is activated
every time the item has to be repainted. This happens when Windows first displays
the items and each time the status changes; for example, when the mouse moves
over an item, it should become highlighted. In fact, to paint the menu items, we
have to consider all the possibilities, including drawing the highlighted items with
specific colors, drawing the check mark if required, and so on. Luckily enough the
Delphi event passes to the handler the Canvas where it should paint, the output rec-
tangle, and the status of the item (selected or not):

 procedure ColorDrawItem(Sender: TObject;
 ACanvas: TCanvas; ARect: TRect; Selected: Boolean);

In the ODMenu example I’ll handle the highlighted color, but skip other advanced
aspects (such as the check marks). I’ve set the OwnerDraw property of the menu and
written handlers for some of the menu items. To write a single handler for each
event of the three color-related menu items, I’ve set their Tag property to the value
of the actual color in the OnCreate event handler of the form:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Blue1.Tag := clBlue;
 Red1.Tag := clRed;
 Green1.Tag := clGreen;
end;

This makes the handler of the actual OnClick event of the items quite straightfor-
ward:

procedure TForm1.ColorClick(Sender: TObject);
begin
 ShapeDemo.Brush.Color :=
 (Sender as TComponent).Tag
end;

The handler of the OnMeasureItem event doesn’t depend on the actual items, but
uses a fixed value (different from the handler of the other pull-down):

procedure TForm1.ColorMeasureItem(Sender: TObject;
 ACanvas: TCanvas; var Width, Height: Integer);
begin
 Width := 80;
 Height := 30;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 241

The most important portion of the code is in the handlers of the OnDrawItem events.
For the color, we use the value of the tag to paint a rectangle of the given color, as
you can see in Figure 5.13. Before doing this, however, we have to fill the back-
ground of the menu items (the rectangular area passed as a parameter) with the
standard color for the menu (clMenu) or the selected menu items (clHighlight):

procedure TForm1.ColorDrawItem(Sender: TObject;
 ACanvas: TCanvas; ARect: TRect; Selected: Boolean);
begin
 // set the background color and draw it
 if Selected then
 ACanvas.Brush.Color := clHighlight
 else
 ACanvas.Brush.Color := clMenu;
 ACanvas.FillRect (ARect);
 // show the color
 ACanvas.Brush.Color := (Sender as TComponent).Tag;
 InflateRect (ARect, -5, -5);
 ACanvas.Rectangle (ARect.Left, ARect.Top,
 ARect.Right, ARect.Bottom);
end;

Figure 5.13:
The owner-draw menu
of the ODMenu
example. Image from
the original book.

The three handlers for this event of the Shape pull-down menu items are all differ-
ent, although they use similar code:

procedure TForm1.Ellipse1DrawItem(Sender: TObject; ACanvas: TCanvas;
 ARect: TRect; Selected: Boolean);
begin
 // set the background color and draw it
 if Selected then
 ACanvas.Brush.Color := clHighlight
 else
 ACanvas.Brush.Color := clMenu;
 ACanvas.FillRect (ARect);
 // draw the ellipse

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

242 - Chapter 5: Advanced Use of the Standard Components

 ACanvas.Brush.Color := clWhite;
 InflateRect (ARect, -5, -5);
 ACanvas.Ellipse (ARect.Left, ARect.Top,
 ARect.Right, ARect.Bottom);
end;

note To accommodate the increasing number of states in the Windows 2000 user interface style, Del-
phi 5 includes a new OnAdvancedDrawItem event for menus.

A ListBox of Colors

As we have just seen for menus, list boxes have an owner-draw capability, which
means a program can paint the items of a list box. The same support is provided for
combo boxes. To create an owner-draw list box, we set its Style property to
lbOwnerDrawFixed or lbOwnerDrawVariable. The first value indicates that we are
going to set the height of the items of the list box by specifying the ItemHeight prop-
erty and that this will be the height of each and every item. The second owner-draw
style indicates a list box with items of different heights. In this case the component
will trigger the OnMeasureItem event for each item, to ask the program for their
heights.

In the ODList example, I’ll stick with the first, simpler, approach. The example
stores color information along with the items of the list box and then draws the
items in colors (instead of using a single color for the whole list). Here are the prop-
erties of the components of the main form of this example:

object ODListForm: TODListForm
 Caption = ‘Owner-draw Listbox’
 OnCreate = FormCreate
 object ListBox1: TListBox
 Align = alClient
 Font.Charset = ANSI_CHARSET
 Font.Color = clBlack
 Font.Height = -32
 Font.Name = ‘Arial’
 Font.Style = [fsBold]
 ItemHeight = 16
 ParentFont = False
 Sorted = True
 Style = lbOwnerDrawFixed
 OnDblClick = ListBox1DblClick
 OnDrawItem = ListBox1DrawItem
 end
 object ColorDialog1: TColorDialog...

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 243

end

Notice the value of the TextHeight attribute of the form, which indicates the num-
ber of pixels required to display text. This is the value we should use for the
ItemHeight property of the list box. An alternative solution is to compute this value
at run time, so that if we later change the font at design time we don’t have to
remember to set the height of the items accordingly.

note I’ve just described TextHeight as an attribute of the form, not a property. And in fact it isn’t a
property but a local value of the form. If it is not a property, you might ask, how does Delphi save
it in the DFM file? Well, the answer is that Delphi’s streaming mechanism is based on properties
plus special property-clones created by the DefineProperties method. You can refer to the
Delphi Help file or to Delphi Developer’s Handbook for information about this advanced topic.

Since TextHeight is not a property, although it is listed in the form description, we
cannot access it directly. Studying the VCL source code, I found that this value is
computed by calling a private method of the form, GetTextHeight. Since it is pri-
vate, we cannot call this function. What we can do is to duplicate its code (which is
actually quite simple) in the FormCreate method of the form, after selecting the font
of the list box:

Canvas.Font := ListBox1.Font;
ListBox1.ItemHeight := Canvas.TextHeight(‘0’);

The next thing we have to do is add some items to the list box. Since this is a list box
of colors, we want to add color names to the Items of the list box and the corre-
sponding color values to the Objects data storage related to each item of the list.
Instead of adding the two values separately, I’ve written a procedure to add new
items to the list:

procedure TODListForm.AddColors (Colors: array of TColor);
var
 I: Integer;
begin
 for I := Low (Colors) to High (Colors) do
 ListBox1.Items.AddObject (
 ColorToString (Colors[I]),
 TObject(Colors[I]));
end;

This method uses an open-array parameter, an array of an undetermined number of
elements of the same type. (See the online tutorial Essential Pascal at
www.marcocantu.com if you are unfamiliar with this language construct.) For each
item passed as a parameter, we add the name of the color to the list, and we add its
value to the related data, by calling the AddObject method. To obtain the string cor-

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

244 - Chapter 5: Advanced Use of the Standard Components

responding to the color, we call the Delphi ColorToString function. This returns a
string containing either the corresponding color constant, if any, or the hexadecimal
value of the color. The color data is added to the list box after casting its value to the
TObject data type (a four-byte reference), as required by the AddObject method.

note Besides ColorToString, which converts a color value into the corresponding string with the
identifier or the hexadecimal value, there is also a Delphi function to convert a properly formatted
string into a color, StringToColor.

In the ODList example this method is called in the OnCreate event handler of the
form (after previously setting the height of the items):

AddColors ([clRed, clBlue, clYellow, clGreen, clFuchsia, clLime,
 clGray, RGB (213, 23, 123), RGB (0, 0, 0),
 clAqua, clNavy, clOlive, clPurple, clTeal]);

The code used to draw the items is not particularly complex. We simply retrieve the
color associated with the item, set it as the color of the font, and then draw the text:

procedure TODListForm.ListBox1DrawItem(Control: TWinControl;
 Index: Integer; Rect: TRect; State: TOwnerDrawState);
begin
 with Control as TListbox do
 begin
 // erase
 Canvas.FillRect(Rect);
 // draw item
 Canvas.Font.Color := TColor (Items.Objects [Index]);
 Canvas.TextOut(Rect.Left, Rect.Top, Listbox1.Items[Index]);
 end;
end;

The system already sets the proper background color, so the selected item is dis-
played properly even without any extra code on our part. You can see an example of
the output of this program at startup in Figure 5.14. The example also allows you to
add new items, by double-clicking on the list box:

procedure TODListForm.ListBox1DblClick(Sender: TObject);
begin
 if ColorDialog1.Execute then
 AddColors ([ColorDialog1.Color]);
end;

If you try using this capability, you’ll notice that some colors you add are turned into
color names (one of the Delphi color constants) while others are converted into
hexadecimal numbers.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 245

Figure 5.14:
The output of the
ODList example, with a
colored owner-draw
list box. Image from
the original book.

ListView and TreeView

Although using an owner-draw list box is quite simple, this kind of list box is often
replaced by the more powerful ListView and TreeView controls. Again, these two
controls are part of the Win32 common controls, stored in the ComCtl32.DLL
library.

Microsoft has kept expanding this library over the last two years, adding new con-
trols such as the calendar and the coolbar, all available since Delphi 4, and
extending the existing ones. Some of the versions of the library (distributed in par-
ticular along with the numerous versions of Microsoft Internet Explorer) have
created compatibility problems with the controls, although the situation has appar-
ently become more stable over the last year.

Some of these controls are complex, can be customized in a number of ways, and
even support custom drawing features. Here I’ll show you a couple of simple exam-
ples of the use of the TreeView and ListView components. In Chapters 7 and 8 we’ll

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

246 - Chapter 5: Advanced Use of the Standard Components

use other common controls. In any case, I cannot provide extensive coverage of all
of the features of these controls, which would require too much space.

A Graphical Reference List

When you use a ListView component, you can provide bitmaps both indicating the
status of the element (for example, the selected item) and describing the contents of
the item in a graphical way.

How do we connect the images to a list or tree? We need to refer to the ImageList
component we’ve already used for the images of the menu. A ListView can actually
have three image lists, one for the large icons (the LargeImages property), one for
the small icons (the SmallImages property), and one used for the state of the items
(the StateImages property).

To define the images of the RefList example, however, I used an alternative
approach: I created a single big bitmap (16 x 80 pixels for five small images and 32 x
160 pixels for five large images) with all the images inside. Figure 5.15 shows these
two bitmaps in the Delphi Image Editor163. Then I added the bitmap to a resource
file and wrote some code to load it all at once (not one image at a time).

Figure 5.15:
All the images of the
ListView of the RefList
example are stored in
two bitmaps. Image
from the original book
(the Image Editor isn’t
available with Delphi
any more).

I created two ImageList components at run time. As you can see in the parameter of
the Create constructor, I assigned the form as their owner, so that I don’t have to

163 This image editing tool is not available any more.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 247

manually destroy them at the end. Here is the code of the handler for the first part
of the form’s OnCreate event:

procedure TForm1.FormCreate(Sender: TObject);
var
 ImageList1, ImageList2: TImageList;
begin
 // load the large images
 ImageList1 := TImageList.Create (self);
 ImageList1.Height := 32;
 ImageList1.Width := 32;
 ImageList1.ResourceLoad (rtBitmap,
 ‘LargeImages’, clWhite);
 ListView1.LargeImages := ImageList1;

 // load the small images
 ImageList2 := TImageList.Create (self);
 ImageList2.ResourceLoad (rtBitmap,
 ‘SmallImages’, clWhite);
 ListView1.SmallImages := ImageList2;

Each of the items of the ListView has an ImageIndex, which refers to its image in the
list. For this to work properly, the elements in the two image lists should follow the
same order. When you have a fixed image list, you can add items to it using Delphi’s
ListView Item Editor, which is connected to the Items property. You can see an
example of the use of this editor in Figure 5.16. In this editor you can define items
and so-called subitems. The subitems are displayed only in the detailed view (when
you set the vsReport value of the ViewStyle property) and are connected with the
titles set in the Columns property.

Figure 5.16:
The ListView Item
Editor. Image from the
original book.

In my RefList example (a simple list of references to books, magazines, CD-ROMs,
and Web sites) the items are stored to a file, since users of the program can edit the
content of the list, which are automatically saved as the program exits. This way,
edits made by the user become persistent.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

248 - Chapter 5: Advanced Use of the Standard Components

Saving and loading the contents of a ListView is not trivial, since the TListItems
type doesn’t have an automatic mechanism to save the data. As an alternative sim-
ple approach, I’ve copied the data to and from a string list, using a custom format.
The string list can then be saved to a file and reloaded with a single command.

The file format is simple, as you can see in the following saving code. For each item
of the list, the program saves the caption on one line, the image index on another
line (prefixed by the @ character), and the subitems on the following lines, indented
with a tab character:

procedure TForm1.FormDestroy(Sender: TObject);
var
 I, J: Integer;
 List: TStringList;
begin
 // store the items
 List := TStringList.Create;
 try
 for I := 0 to ListView1.Items.Count - 1 do
 begin
 // save the caption
 List.Add (ListView1.Items[I].Caption);
 // save the index
 List.Add (‘@’ + IntToStr (ListView1.Items[I].ImageIndex));
 // save the subitems (indented)
 for J := 0 to ListView1.Items[I].SubItems.Count - 1 do
 List.Add (#9 + ListView1.Items[I].SubItems [J]);
 end;
 List.SaveToFile (
 ExtractFilePath (Application.ExeName) + ‘Items.txt’);
 finally
 List.Free;
 end;
end;

The items are then reloaded in the second part of the FormCreate method:

procedure TForm1.FormCreate(Sender: TObject);
var
 List: TStringList;
 NewItem: TListItem;
 I: Integer;
begin
 ...
 // load the items
 ListView1.Items.Clear;
 List := TStringList.Create;
 try
 List.LoadFromFile (
 ExtractFilePath (Application.ExeName) + ‘Items.txt’);
 for I := 0 to List.Count - 1 do

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 249

 if List [I][1] = #9 then
 NewItem.SubItems.Add (Trim (List [I]))
 else if List [I][1] = ‘@’ then
 NewItem.ImageIndex := StrToIntDef (List [I][2], 0)
 else
 begin
 // a new item
 NewItem := ListView1.Items.Add;
 NewItem.Caption := List [I];
 end;
 finally
 List.Free;
 end;
end;

The program has a menu you can use to choose one of the different views supported
by the ListView control, and to add check boxes to the items, as in a CheckListBox.
You can see some of the various combinations of these styles in Figure 5.17164.

Figure 5.17:
Different examples of
the output of a
ListView component of
the RefList program,
obtained by changing
the ViewStyle property
and adding the check
boxes. Image from the
original book.

Another important feature, which is common in the detailed or report view of the
control, is to let a user sort the items on one of the columns. To accomplish this

164 The content of this demo, that is the list of books and magazine, it really a blast form the past.
You can notice even the company web site, inprise.com!

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

250 - Chapter 5: Advanced Use of the Standard Components

requires three operations. The first is to set the SortType property of the ListView to
stBoth or stData. In this way, the ListView will operate the sorting not based on the
captions, but calling the OnCompare event for each two items it has to sort. Since we
want to do the sorting on each of the columns of the detailed view, we also handle
the OnColumnClick event (which takes place when the user clicks on the column
titles in the detailed view, but only if the ShowColumnHeaders property is set to
True). Each time a column is clicked, the program saves the number of that column
in the nSortCol private field of the form class:

procedure TForm1.ListView1ColumnClick(Sender: TObject;
 Column: TListColumn);
begin
 nSortCol := Column.Index;
 ListView1.AlphaSort;
end;

Then, in the third step, the sorting code uses either the caption or one of the
subitems according to the current sort column:

procedure TForm1.ListView1Compare(Sender: TObject;
 Item1, Item2: TListItem;
 Data: Integer; var Compare: Integer);
begin
 if nSortCol = 0 then
 Compare := CompareStr (Item1.Caption, Item2.Caption)
 else
 Compare := CompareStr (Item1.SubItems [nSortCol - 1],
 Item2.SubItems [nSortCol - 1]);
end;

The final features I’ve added to the program relate to mouse operations. When the
user left-clicks an item, the RefList program shows a description of the selected
item. Right-clicking the selected item sets it in edit mode, and a user can change it
(keep in mind that the changes will automatically be saved when the program termi-
nates). Here is the code for both operations, in the OnMouseDown event handler of the
ListView control:

procedure TForm1.ListView1MouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
var
 strDescr: string;
 I: Integer;
begin
 // if there is a selected item
 if ListView1.Selected <> nil then
 if Button = mbLeft then
 begin
 // create and show a description
 strDescr := ListView1.Columns [0].Caption + #9 +

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 251

 ListView1.Selected.Caption + #13;
 for I := 1 to ListView1.Selected.SubItems.Count do
 strDescr := strDescr + ListView1.Columns [I].Caption + #9 +
 ListView1.Selected.SubItems [I-1] + #13;
 ShowMessage (strDescr);
 end
 else if Button = mbRight then
 // edit the caption
 ListView1.Selected.EditCaption;
end;

Although it is not feature-complete, this example shows some of the potential of the
ListView control. I’ve also activated the Windows 98 “hot-tracking” feature, which
lets the list view highlight and underline the item under the mouse, as Figure 5.18
demonstrates. The relevant properties of the ListView can be seen in its textual
description:

object ListView1: TListView
 Align = alClient
 Columns = <
 item
 Caption = ‘Reference’
 Width = 230
 end
 item
 Caption = ‘Author’
 Width = 180
 end
 item
 Caption = ‘Country’
 Width = 80
 end>
 Font.Height = -13
 Font.Name = ‘MS Sans Serif’
 Font.Style = [fsBold]
 FullDrag = True
 HideSelection = False
 HotTrack = True
 HotTrackStyles = [htHandPoint, htUnderlineHot]
 SortType = stBoth
 ViewStyle = vsList
 OnColumnClick = ListView1ColumnClick
 OnCompare = ListView1Compare
 OnMouseDown = ListView1MouseDown
end

This program is actually quite interesting, and I’ll further extend it in Chapter 8,
adding a dialog box to it.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

252 - Chapter 5: Advanced Use of the Standard Components

Figure 5.18:
The new hot-tracking
feature of the ListView
control. Notice that the
items are sorted by
author. Image from the
original book.

A Tree of Data

Now that we’ve seen an example based on the ListView, we can close the chapter by
looking at the TreeView control. The TreeView has a user interface that is flexible
and powerful (with support for editing and dragging elements). It is also standard,
because it is the user interface of the Windows Explorer. There are a number of
properties and various ways to customize the bitmap of each line or of each type of
line.

To define the structure of the nodes of the TreeView at design time, you can use the
TreeView Items property editor (see Figure 5.19). In this case, however, I’ve decided
to load it in the TreeView data at startup, in a way similar to the last example.

Figure 5.19:
The TreeView Items
property editor. Image
from the original book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 253

The Items property of the TreeView component has many member functions you
can use to alter the hierarchy of strings. For example, we can build a two-level tree
with the following lines:

var
 Node: TTreeNode;
begin
 Node := TreeView1.Items.Add (nil, ‘First level’);
 TreeView1.Items.AddChild (Node, ‘Second level’);

Using these two methods (Add and AddChild) we can build a complex structure at
run time. But how do we load the information? Again, you can use a StringList at
run time, load a text file with the information, and parse it.

However, since the TreeView control has a LoadFromFile method, the DragTree
example uses the following simpler code:

procedure TForm1.FormCreate(Sender: TObject);
begin
 TreeView1.LoadFromFile (
 ExtractFilePath (Application.ExeName) + ‘TreeText.txt’);
end;

The LoadFromFile method basically loads the data in a string list and checks the
level of each item by looking at the number of tab characters. (If you are curious, see
the TTreeStrings.GetBufStart method, which you can find in the ComCtrls unit in
the VCL source code included in Delphi.) By the way, the data I’ve prepared for the
TreeView is the organizational chart of a multinational company.

Besides loading the data, the program saves it when it terminates, making the
changes persistent. It also has a few menu items to customize the font of the Tree-
View control and change some other simple settings. The specific feature I’ve
implemented in this example is support for dragging items and entire subtrees. I’ve
set the DragMode property of the component to dmAutomatic and written the event
handlers for the OnDragOver and OnDragDrop events.

In the first of the two handlers, the program makes sure the user is not trying to
drag an item over a child item (which would be moved along with the item, leading
to an infinite recursion):

procedure TForm1.TreeView1DragOver(Sender, Source: TObject;
 X, Y: Integer; State: TDragState; var Accept: Boolean);
var
 TargetNode, SourceNode: TTreeNode;
begin
 TargetNode := TreeView1.GetNodeAt (X, Y);
 // accept dragging from itself
 if (Source = Sender) and (TargetNode <> nil) then

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

254 - Chapter 5: Advanced Use of the Standard Components

 begin
 Accept := True;
 // determines source and target
 SourceNode := TreeView1.Selected;
 // look up the target parent chain
 while (TargetNode.Parent <> nil) and
 (TargetNode <> SourceNode) do
 TargetNode := TargetNode.Parent;
 // if source is found
 if TargetNode = SourceNode then
 // do not allow dragging over a child
 Accept := False;
 end
 else
 Accept := False;
end;

The effect of this code is that (except for the particular case we need to disallow) a
user can drag an item of the TreeView over another one, as shown in Figure 5.20.
Writing the actual code for moving the items is simple, because the TreeView con-
trol provides the support for this operation, through the MoveTo method of the
TTreeNode class:

procedure TForm1.TreeView1DragDrop(Sender,
 Source: TObject; X, Y: Integer);
var
 TargetNode, SourceNode: TTreeNode;
begin
 TargetNode := TreeView1.GetNodeAt (X, Y);
 if TargetNode <> nil then
 begin
 SourceNode := TreeView1.Selected;
 SourceNode.MoveTo (TargetNode, naAddChildFirst);
 TargetNode.Expand (False);
 TreeView1.Selected := TargetNode;
 end;
end;

note Among the Demos shipping with Delphi, there is an interesting one showing a custom-draw Tree-
View control. The example is in the CustomDraw subdirectory.165

165 The CustomDraw example is no longer available as part of the official Delphi demos.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 255

Figure 5.20:
The DragTree example
during a dragging
operation

What’s Next?

In this chapter, we have started to explore some of the basic components available
in Delphi. These components correspond to the standard Windows controls and
some of the Win32 common controls, and they are extremely common in applica-
tions. We have also seen how to create main menus and pop-up menus, and we’ve
seen how to add extra graphics to some of these controls.

We also explored a very important and still little-used component, the ActionList,
and its architecture for handling menu-item and toolbar-button events. We’ll get
back to this topic in other examples, and we’ll cover the standard MDI and dataset
actions in the related chapters.

The next step, however, is to explore in depth one of the most common elements of
Delphi programming: forms. We’ve already used forms many times, but there are
still plenty of new features to discuss, including some quite important ones.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

256 - Chapter 6: Forms, Windows, and Applications

Chapter 6: Forms,

Windows, And

Applications

If you’ve read the previous chapter, you should now be able to use Delphi’s standard
components in your applications. So let’s turn our attention to the central element
of development in Delphi: the form. We have used forms since the initial chapters,
but I’ve never described in detail what you can do with a form, which properties you
can use, or which methods of the TForm class are particularly interesting.

This chapter looks at some of the properties and styles of forms and at sizing and
positioning them. I’ll also introduce applications with multiple forms and cover the
global VCL objects that handle the interaction among them, Screen and
Application. I’ll also devote some time to input on a form, both from the keyboard
and the mouse. Let me start this chapter with a general, theoretical discussion of
forms and windows.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 257

Forms versus Windows

In Windows, most elements of the user interface are windows. For this reason, in
Delphi most components are also based on windows—most of them, but not all. Of
course, this is not what a user perceives. The distinction is not obvious, so you
should consider the following definitions carefully. Then we can make some further
observations.

· From a user standpoint, a window is a portion of the screen surrounded by a bor-
der, having a caption and usually a system menu, that can be moved on the
screen, closed, and at times also minimized and maximized. Windows can be
moved on the screen or inside other windows, as in MDI (Multiple Document
Interface) applications. These user windows can be divided into two general cat-
egories: main windows and dialog boxes.

· Technically speaking, a window is an entry in an internal memory area of the
Windows system, often corresponding to an element visible on the screen, that
has some associated code. One of the Windows system libraries contains a list of
all the windows that have been built by every application and assigns to each of
them a unique number (usually known as a handle). Some of these windows are
perceived as such by users (see the first definition above), others have the role of
controls or visual components, others are temporarily created by the system (for
example, to show a pull-down menu), and still others are created by the applica-
tion but remain hidden from the user.

The common denominator of all windows is that they are known by the Windows
system and refer to a function for their behavior; each time something happens in
the system, a notification message is sent to the proper window, which responds by
executing some code. Each window of the system, in fact, has an associated function
(generally called its window procedure), which handles the various messages the
window is interested in.

In a Delphi application, the system converts these lower-level messages into events.
But at times, as we have already seen in some examples, we handle low-level mes-
sages directly in a form. Delphi allows us to work at a higher level than the system,
making application development much easier.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

258 - Chapter 6: Forms, Windows, and Applications

note The memory area of the Windows system allocated to listing all the windows that have been built
is limited. Building too many windows reduces the so-called system resources. Windows 3.1 had a
severe limit to the number of windows available in the system. In Windows 95 and 98, this limit
has been greatly enlarged, and in Windows NT it doesn’t even exist. Once there are too many win-
dows in the system (including all the controls and hidden windows), you cannot create even one
more window, something that will block most applications. This is why, in Delphi, there are a
number of non-windowed components, including labels. This approach lets you save a lot of this
system memory without having to worry (or even know) about it. As already mentioned in Chap-
ter 4, graphical non-windowed controls have also other advantages, including faster creation and
redraw and less overhead overall166.

With these general definitions in mind, we can now move back to Delphi and try to
understand the role of forms. Forms represent windows from a user standpoint and
can be used to build main windows, MDI windows, and dialog boxes. Their behavior
is defined mostly by the code written for them but also by a couple of very important
properties, FormStyle and BorderStyle, which we’ll explore shortly. Many other
components are based on windows, but only forms appear to be windows from a
user’s point of view. The other windowed components, or controls, can be consid-
ered windows only according to the technical definition.

As an example, simply create a new application and place a button in it, save the
files in a directory with default names, and run the program. Using the WinSight
tool supplied with Delphi167, you can see the list of the windows of the system; notice
in particular the windows created by the application, as shown in Figure 6.1. These
include the following windows:

· A main window, the form, with the title Form1. It is an overlapped window of
class TForm1.

· A child window, the button inside the form, with the title Button1. This is a child
window of class TButton.

· A hidden main window, the application window, entitled Project1. This is a pop-
up window of class TApplication.

Notice that the names in brackets in WinSight, which are internal names of the sys-
tem, correspond to the names of the classes of the Delphi components.

166 If if the Windows handle limit is not relevant today, using graphical controls with no handle
still offers advantages, for controls with limited user interaction and not mapped to platform
controls.

167 WinSight is not available as part of the product, and I haven’t been able to find it online. A
newer, similar tools is Spy++ by Microsoft.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 259

Figure 6.1: The
windows of a simple
application as they
appear in WinSight.
Image from the
original book.

Overlapped, Pop-Up, and Child Windows

To understand the role of the various windows of this program, we need to look at some
technical elements related to the Windows environment. These are not simple concepts, but they
are worth knowing about.

1. Each window you create has one of three general styles that determine its behavior. These
styles are overlapped, pop-up, and child:
Overlapped windows are main windows of the application, which behave as you would probably
expect.

2. Pop-up windows are often used for dialog boxes and message boxes and can be considered a
holdover from older versions of the system. In fact, in Windows 1, the windows were not
overlapped but tiled, and only the pop-up windows could cover other windows. Pop-up windows
are generally very similar to overlapped windows.

3. The third group, child windows, was originally used for controls inside a dialog box. You can
use this style for any window that cannot move outside the client area of the parent window. The
obvious extension is to use child windows to build MDI applications; but this behavior is not
automatic.

It is important to note that, technically speaking, only child windows can have a parent. Any
other window, however, can have an owner. An owner is a window that has a continuous
message exchange with the windows it owns—for example, when the window is reduced to an
icon, when it is activated, and so on. Usually a parent is also the owner, but it forces its child to
live inside its client area. The child windows don’t use screen coordinates; instead, they use the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

260 - Chapter 6: Forms, Windows, and Applications

client area coordinates of their parent window—to display themselves they borrow pixels not
from the screen but from their parent window.

Notice that the Windows API uses the same term (Parent) to indicate both the parent and the
owner. Even the GetParent API function can return both items. Within the system, however,
the two handles (that of the parent window and that of the owner window) are stored separately.
This is indeed very odd, and it causes a lot of confusion.

In Delphi, all forms are overlapped windows, including dialog boxes, and the form owns all the
windowed components (the controls) you place inside it. However, their parent can be either the
form or one of the special container components, such as the GroupBox or the Panel. When you
place a radio button inside a group box, the group box is its parent, but the form is its owner.
What about pop-up windows? In Delphi, they are used for the hidden application window, the
drop-down list of custom combo boxes, and hint windows. In the system, they are used for
message boxes and pop-up or pull-down menus, just to mention two examples.

The Parent property of a control indicates what is responsible for displaying it. When you drop
a component into a form in the designer, the form will become both parent and owner. When you
create the control at run time, you’ll need to set the owner (using the Create constructor
parameter), but you must also set the Parent property, or the control won’t be visible.

The Application Is a Window

From the analysis of the WinSight information, you might have noticed that the pro-
gram has an extra window for the application. Similarly, in the last chapter, we saw
that items added to the system menu of the main form were not added to the
Taskbar icon, as well. The application window, in fact, is hidden from sight but
appears on the Taskbar. This is why Delphi names the window Form1 and the corre-
sponding Taskbar icon Project1168.

The window related to the Application object—the application window—serves to
keep together all the windows of an application. The fact that all the top-level forms
of a program have this hidden owner window, for example, is fundamental when the

168 There is a a significant change in the VCL pertaining to what its displayed in the task bar. You
have the option to use the main form rather than the Application hidden window. This is im-
portant today, since the taskbar button offers a form preview and other related features. The
default project source code adds by default the line “Application.MainFormOnTaskbar :=
True;” which does what the name implies: It displays the main form rather then the Applica-
tion handle in the taskbar. When you open an old Delphi application (like those in the original
source code of this book), that code is missing and you get the old behavior.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 261

application is activated. In fact, when the windows of your program are behind
other windows, clicking on one window in your application will bring all of your
application’s windows to the front. In other words, the hidden application window is
used to connect the different forms of the application. Actually the application win-
dow is not hidden, because that would affect its behavior; it simply has zero height
and width, and therefore it is not visible.

When you create a new, blank application, Delphi generates a code for the project
file, which includes the following169:

begin
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end.

This code uses the global object Application, which is of class TApplication and is
defined by the VCL in the Forms unit. This object is indeed a component, although
you cannot set its properties using the Object Inspector. The properties include the
name of the executable file (ExeName), the Title of the application (by default, the
name of the executable file without the extension), and the Icon displayed in the
Taskbar. You can see the application’s Title in the Windows Taskbar170. The same
name appears when you scan the running applications with the Alt+Tab keys. To
avoid a discrepancy between the two titles, you can change the application’s title at
design time, in the Application page of the Project Options dialog box. Or at run
time, you can copy the form’s caption to the title of the application with this code171:

Application.Title := Form1.Caption;

You can also set other properties of the global Application object using the same
dialog box. To handle the events of the Application object, until Delphi 4 you had
to write the code manually. Delphi 5, instead, includes the new ApplicationEvents
component, specifically intended to handle events of the Application object. Beside
the easier connection of event handlers at design time, the advantage of using this
new component lies in the fact it allows for multiple handlers. If you simply place
two instances of the ApplicationEvents component in two different forms, each of
them can handle the same event, and both event handlers will be executed. In other
words, multiple ApplicationEvents components can chain the handlers.

169 As mentioned in the previous note, there is now an extra line, “Application.MainFormOn-
Taskbar := True;”.

170 That is, unless you set MainFormOnTaskbar to True.

171 This isn’t recommended any more, given the better alternative available.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

262 - Chapter 6: Forms, Windows, and Applications

Some of these application-wide events, including OnActivate, OnDeactivate,
OnMinimize, and OnRestore, allow you to keep track of the status of the application.
Other events are forwarded to the application by the controls receiving them, as
OnActionExecute, OnActionUpdate, OnHelp, OnHint, OnShortCut, and OnShowHint.
Finally, there is the OnException global exception handler we’ve used in Chapter 3,
the OnIdle event used for background computing and the OnMessage event, which
fires whenever a message is posted to any of the windows or windowed controls of
the application.

In most applications, you don’t care about the application window, apart from set-
ting its Title and icon and handling some of its events. There are some simple
operations you can do anyway. Setting the ShowMainForm property to False in the
project source code indicates that the main form should not be displayed at start-
up. Inside a program, instead, you can use the MainForm property of the
Application object to access the main form, which is the first form created in the
program.

Displaying the Application Window

There is no better proof that there is indeed a window for the Application object
than to display it. Actually, we don’t need to show it—we just need to resize it and
set a couple of window attributes, such as the presence of a caption and a border.
We can perform these operations by using Windows API functions on the window
indicated by the Handle property of the Application object:

procedure TForm1.Button1Click(Sender: TObject);
var
 OldStyle: Integer;
begin
 // add border and caption to the app window
 OldStyle := GetWindowLong (
 Application.Handle, gwl_Style);
 SetWindowLong (Application.Handle, gwl_Style,
 OldStyle or ws_ThickFrame or ws_Caption);
 // set the size of the app window
 SetWindowPos (Application.Handle,
 0, 0, 0, 200, 100, swp_NoMove or swp_NoZOrder);
end;

The two GetWindowLong and SetWindowLong API functions are used to access the
system information related to the window. In this case, we are using the gwl_Style
parameter to read or write the styles of the window, which include its border, title,
system menu, border icons, and so on. The code above gets the current styles and
adds (using an or statement) a standard border and a caption to the form. As we’ll

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 263

see later in this chapter, you seldom need to use these low-level API functions in
Delphi, because there are properties of the TForm class that have the same effect. We
need this code here because the application window is not a form.

Executing this code displays the project window, as you can see in Figure 6.2172.
Although there’s no need to implement something like this in your own programs,
running this program will reveal the relationship between the application window
and the main window of a Delphi program. This is a very important starting point if
you want to understand the internal structure of Delphi applications.

Figure 6.2: The
hidden application
window revealed by the
ShowApp program.
Image from the
original book.

note In Windows, the minimize and maximize operations are associated by default with system sounds
and a visual animated effect. Applications built with Delphi up to version 4 didn’t play the sounds
or show the visual effect (unless you write some specific code). Delphi 5 applications, instead, pro-
duce the sound and display the visual effect by default. Simply recompile your programs and
they’ll exhibit this extra feature! Technically, the reason this didn’t happen in earlier releases is
that the main form’s minimize and maximize system messages were not being passed to the
default window procedure, where Windows implements system sound behavior, was to avoid an
unwanted animation effect in the Taskbar. Having found a fix for this problem in Delphi 5, the
default behavior has been restored by passing the messages to the operating system.173

172 This still happens today with Delphi 12 and Windows 11. If you try it, the application window
on screen looks really weird. The point, of course, is just to make you see it exists, it has no role
in an actual application.

173 Even if for different reasons, VCL main forms minimize and maximize without using the most
common Windows APIs calls for this operations, therefore missing some of the standard ef-
fects. I don’t think this is a significant issue.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

264 - Chapter 6: Forms, Windows, and Applications

The Application System Menu

Unless you write a very odd program like the example we’ve just looked at, users
will only see the application window in the Taskbar. There, they can activate the
window’s system menu by right-clicking on it. As I mentioned, when discussing the
system menu in the last chapter, an application’s menu is not the same as that of the
main form. In the SysMenu example in Chapter 5, I added custom items to the sys-
tem menu of the main form. Now in the SysMenu2 example, I want to customize the
system menu of the application window in the Taskbar.

First we have to add the new items to the system menu of the application window
when the program starts. Here is the updated code of the FormCreate method:

procedure TForm1.FormCreate(Sender: TObject);
begin
 // add a separator and a menu item to the system menu
 AppendMenu (GetSystemMenu (Handle, FALSE),
 MF_SEPARATOR, 0, ‘’);
 AppendMenu (GetSystemMenu (Handle, FALSE),
 MF_STRING, idSysAbout, ‘&About...’);
 // add the same items to the application system menu
 AppendMenu (GetSystemMenu (Application.Handle, FALSE),
 MF_SEPARATOR, 0, ‘’);
 AppendMenu (GetSystemMenu (Application.Handle, FALSE),
 MF_STRING, idSysAbout, ‘&About...’);
end;

The first part of the code adds the new separator and item to the system menu of the
main form. The other two calls add the same two items to the application’s system
menu, simply by referring to Application.Handle. This is enough to display the
updated system menu, as you can see by running this program. The next step is to
handle the selection of the new menu item.

To handle form messages, we can simply write new event handlers or message-han-
dling methods. We cannot do the same with the application window, simply because
inheriting from the TApplication class is quite a complex issue. Most of the time we
can simply handle the OnMessage event of this class, which is activated for every
message the application retrieves from the message queue.

To handle the OnMessage event of the global Application object, simply add an
ApplicationEvents component to the main form, and define a handler for the
OnMessage event of this component. In this case, we simply need to handle the
wm_SysCommand message, and we only need to do that if the wParam parameter indi-
cates that the user has selected the menu item we’ve just added, idSysAbout:

procedure TForm1.ApplicationEvents1Message(var Msg: tagMSG;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 265

 var Handled: Boolean);
begin
 if (Msg.Message = wm_SysCommand) and
 (Msg.wParam = idSysAbout) then
 begin
 ShowMessage (‘Mastering Delphi: SysMenu2 example’);
 Handled := True;
 end;
end;

This method is very similar to the one used to handle the corresponding system
menu item of the main form:

procedure WMSysCommand (var Msg: TWMSysCommand);
 message wm_SysCommand;
...
procedure TForm1.WMSysCommand (var Msg: TWMSysCommand);
begin
 // handle a specific command
 if Msg.CmdType = idSysAbout then
 ShowMessage (‘Mastering Delphi: SysMenu2 example’);
 inherited;
end;

Activating Applications and Forms

To show how the activation of forms and applications works, I’ve written a simple,
self-explanatory example called ActivApp. This example has two forms. Each form
has a Label component (LabelForm) used to display the status of the form. The pro-
gram uses text and color for this, as the handlers of the OnActivate and
OnDeactivate events of the first form demonstrate:

procedure TForm1.FormActivate(Sender: TObject);
begin
 LabelForm.Caption := ‘Form2 Active’;
 LabelForm.Color := clRed;
end;

procedure TForm1.FormDeactivate(Sender: TObject);
begin
 LabelForm.Caption := ‘Form2 Not Active’;
 LabelForm.Color := clBtnFace;
end;

The second form has a similar label and similar code. The main form also displays
the status of the entire application. It uses an ApplicationEvents component to han-
dle the OnActivate and OnDeactivate events of the Application object. These two

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

266 - Chapter 6: Forms, Windows, and Applications

event handlers are similar to the two listed previously, with the only difference
being that they modify the text and color of a second label of the form.

If you try running this program, you’ll see whether this application is the active one
and, if so, which of its forms is the active one. By looking at the output (see Figure
6.3) and listening for the beep, you can understand how each of the activation
events is triggered by Delphi. Run this program and play with it for a while to
understand how it works. We’ll get back to other events related to the activation of
forms in a while.

Figure 6.3: The
ActivApp example
shows whether the
application is active
and which of the
application’s forms is
active. Image from the
original book.

Setting Form and Border Styles

Among the properties of a form, two of them determine the fundamental rules of its
behavior: FormStyle and BorderStyle. The first of these two special properties
allows you to choose between a normal SDI (Single Document Interface) and one of
the windows that make up an MDI (Multiple Document Interface) application174.

These are the possible values of the FormStyle property:

· fsNormal: The form is a normal SDI window or a dialog box.

· fsMDIChild: The form is an MDI child window.

· fsMDIForm: The form is an MDI parent window—that is, the frame window of the
MDI application.

174 MDI has long been deprecated by Microsoft, but some VCL developers still use it. That’s why
Delphi in version 12 overhauled MDI with quality and features improvements .

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 267

· fsStayOnTop: The form is an SDI window, but it always remains on top of all
other windows except for any that also happen to be stay-on-top windows.

Because an application that conforms to the Multiple Document Interface standard
needs windows of two different kinds (frame and child), two values of the
FormStyle property are involved. To build an MDI application, you can use the stan-
dard application template or look at Chapter 8, which focuses on the MDI in detail.
For now, though, it might be interesting to explore the use of the fsStayOnTop style.

To create a topmost form (a form whose window is always on top), you need only set
the FormStyle property, as indicated above. This property has two different effects,
depending on the kind of form you apply it to:

· The main form of an application will remain in front of every other application
(unless other applications have the same topmost style, too).

· A secondary form will remain in front of any other form of the application it
belongs to. The windows of other applications are not affected, though.

The Border Style

The second property of a form is BorderStyle. This property refers to a visual ele-
ment of the form, but it has a much more profound influence on the behavior of the
window, as you can see in Figure 6.4.

At design time, the form is always shown using the default value of the BorderStyle
property, bsSizeable. This corresponds to a Windows style known as thick frame.
When a main window has a thick frame around it, a user can resize it by dragging its
border. This is made clear by the special resize cursors (with the shape of a double-
pointer arrow) displayed when the user moves the mouse onto this thick window
border.175

175 The user interface of windows borders has changed a lot in Windows over recent editions.
While the technical foundations described here are still the same, the UI and behavior are sig-
nificantly different.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

268 - Chapter 6: Forms, Windows, and Applications

Figure 6.4: Sample
forms with the
different border styles,
created by the Borders
example. Image from
the original book.

A second important choice for this property is bsDialog. If you select it, the form
uses as its border the typical dialog-box frame—a thick frame that doesn’t allow
resizing. In addition to this graphical element, note that if you select the bsDialog
value, the form becomes a dialog box. This involves a number of changes. For exam-
ple, the items on its system menu are different, and the form will ignore some of the
elements of the BorderIcons set property.

note Setting the BorderStyle property at design time produces no visible effect. In fact, several com-
ponent properties do not take effect at design time, because they would prevent you from working
on the component while developing the program. For example, how could you resize the form
with the mouse if it were turned into a dialog box? When you run the application, though, the
form will have the border you requested.

There are four more values we can assign to the BorderStyle property. The style
bsSingle can be used to create a main window that’s not resizable. Many games and
applications based on windows with controls (such as data-entry forms) use this
value, simply because resizing these forms makes no sense. Enlarging a form to see
an empty area or reducing its size to make some components less visible often
doesn’t help a program’s user (although Delphi’s automatic scroll bars partially
solve the last problem). The value fsNone is used only in very special situations and
inside other forms. You’ll never see an application with a main window that has no
border or caption (except maybe as an example in a programming book to show you
that it makes no sense).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 269

The last two values, bsToolWindow and bsSizeToolWin, are related to the specific
Win32 extended style ws_ex_ToolWindow. This style turns the window into a floating
toolbox, with a small title font and close button. This style should not be used for the
main window of an application.

To test the effect and behavior of the different values of the BorderStyle property,
I’ve written a simple program called Borders. You’ve already seen its output, in Fig-
ure 6.4. However, I suggest you run this example and experiment with it for a while
to understand all the differences in the forms.

The main form of this program contains only a radio group and a button. There is
also a secondary form, with no components and the Position property set to
poDefaultPosOnly. This affects the initial position of the secondary form we’ll create
by pressing the button. (I’ll discuss the Position property later in this chapter.)

The code of the program is very simple. When you press the button, a new form is
dynamically created, depending on the selected item of the radio group:

procedure TForm1.BtnNewFormClick(Sender: TObject);
var
 NewForm: TForm2;
begin
 NewForm := TForm2.Create (Application);
 NewForm.BorderStyle := TFormBorderStyle (
 BorderRadioGroup.ItemIndex);
 NewForm.Caption := BorderRadioGroup.Items[
 BorderRadioGroup.ItemIndex];
 NewForm.Show;
end;

This code actually uses a trick: it casts the number of the selected item into the
TFormBorderStyle enumeration. This works because I’ve given the radio buttons
the same order as the values of this enumeration:

type
 TFormBorderStyle = (bsNone, bsSingle, bsSizeable,
 bsDialog, bsToolWindow, bsSizeToolWin);

The BtnNewFormClick method then copies the text of the radio button to the caption
of the secondary form. This program refers to TForm2, the secondary form defined in
a secondary unit of the program, saved as SECOND.PAS. For this reason, to compile
the example, you must add the following lines to the implementation section of the
unit of the main form:

uses
 Second;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

270 - Chapter 6: Forms, Windows, and Applications

note Whenever you need to refer to another unit of a program, place the corresponding uses state-
ment in the implementation portion instead of the interface portion if possible. This speeds
up the compilation process, results in cleaner code (because the units you include are separate
from those included by Delphi), and never generates circular references between different units.
To accomplish this, you can also use the File Use Unit menu command.

The Border Icons

Another important element of a form is the presence of icons on its border176. By
default, a window has a small icon connected to the system menu, a Minimize but-
ton, a Maximize button, and a Close button on the far right. You can set different
options using the BorderIcons property, a set with four possible values:
biSystemMenu, biMinimize, biMaximize, and biHelp.

note The biHelp border icon enables the “What’s this?” Help. When this style is included and the
biMinimize and biMaximize styles are excluded, a question mark appears in the form’s title
bar. If you click on this question mark and then click on a component inside the form (but not on
the form itself!), Delphi activates the Help about that object inside a pop-up window. This is
demonstrated by the BIcons example, which has a simple Help file with a page connected to the
HelpContext property of the button in the middle of the form.

The BIcons example demonstrates the behavior of a form with different border
icons and shows how to change this property at run time. The form of this example
is very simple: it has only a menu, with a pull-down containing four menu items,
one for each of the possible elements of the set of border icons. I’ve written a single
method, connected with the four commands, that reads the check marks on the
menu items to determine the value of the BorderIcons property. This code is there-
fore also a good exercise in working with sets:

procedure TForm1.SetIcons(Sender: TObject);
var
 BorIco: TBorderIcons;
begin
 (Sender as TMenuItem).Checked :=
 not (Sender as TMenuItem).Checked;
 if SystemMenu1.Checked then
 BorIco := [biSystemMenu]

176 The ability of customizing the border has been largely expanded over time. The VCL library in-
cludes a TitleBarPanel component offering complete control on the title bar, as you can place
other controls on it (effectively displaying the in the title bar). This is the component the Del-
phi IDE also uses to host buttons, a combo boxe, and a search box it its title bar.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 271

 else
 BorIco := [];
 if MaximizeBox1.Checked then
 Include (BorIco, biMaximize);
 if MinimizeBox1.Checked then
 Include (BorIco, biMinimize);
 if Help1.Checked then
 Include (BorIco, biHelp);
 BorderIcons := BorIco;
end;

While running the BIcons example, you can easily set and remove the various visual
elements of the form’s border. You’ll immediately see that some of these elements
are closely related: if you remove the system menu, all of the border icons will dis-
appear; if you remove either the Minimize or the Maximize button, it will be grayed;
if you remove both these buttons, they will disappear. Notice also that in these last
two cases, the corresponding items of the system menu are automatically disabled.
This is the standard behavior for any Windows application. When the Maximize and
Minimize buttons have been disabled, you can activate the Help button. As a short-
cut to obtain this effect, you can press the button inside the form. Also, you can click
on the button after pressing the Help Menu icon to see a Help message, as you can
see in Figure 6.5.

Figure 6.5: The Help
button displayed by the
BIcons example. By
dragging the Help
cursor over the button
you get the Help
displayed in the figure.
Image from the
original book.

As an extra feature, the program also displays the time that the Help was invoked in
the caption, by handling the OnHelp event of the form. This effect is visible in the fig-
ure.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

272 - Chapter 6: Forms, Windows, and Applications

Setting More Window Styles

The border style and border icons are indicated by two different Delphi properties,
which can be used to set the initial value of the corresponding user interface ele-
ments. We have seen that besides changing the user interface, these properties
affect the behavior of a window. It is important to know that these border-related
properties and the FormStyle property mainly correspond to different settings in
the style and extended style of a window. These two terms reflect two parameters of
the CreateWindowEx API function Delphi uses to create forms.

It is important to acknowledge this, because Delphi allows you to modify these two
parameters freely by overriding the CreateParams virtual method:

public
 procedure CreateParams (
 var Params: TCreateParams); override;

This is the only way to use some of the peculiar window styles that are not directly
available through form properties. For a list of window styles and extended styles,
see the API Help under the topics CreateWindow and CreateWindowEx. You’ll
notice that the Win32 API has a number of styles for these functions, including
those related to tool windows.

To show how to use this approach, I’ve written the NoTitle example, which lets you
create a program with a custom caption. First we have to remove the standard cap-
tion but keep the resizing frame by setting the corresponding styles:

procedure TForm1.CreateParams (var Params: TCreateParams);
begin
 inherited CreateParams (Params);
 Params.Style := (Params.Style or ws_Popup) and
 not ws_Caption;
end;

note Besides changing the style and other features of a window when it is created, you can change
them at run time, although some of the settings do not take effect. To change most of the creation
parameters at run time, you can use the SetWindowLong API function, which allows you to
change the internal information of a window. The companion GetWindowLong function can be
used to read the current status. Two more functions, GetClassLong and SetClassLong, can
be used to read and modify class styles (the information of the WindowClass structure of
TCreateParams). You’ll seldom need to use these low-level Windows API functions in Delphi,
unless you write advanced components.

To remove the caption, we need to change the overlapped style to a pop-up style;
otherwise, the caption will simply stick. Now how do we add a custom caption? I’ve

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 273

placed a label aligned to the upper border of the form and a small button on the far
end. You can see this effect at run time in Figure 6.6.

Figure 6.6: The
NoTitle example has no
real caption but a fake
one made with a label.
Image from the
original book.

To make the fake caption work, we have to tell the system that a mouse operation on
this area corresponds to a mouse operation on the caption. This can be done by
intercepting the wm_NCHitTest Windows message, which is frequently sent to Win-
dows to determine where the mouse currently is. When the hit is in the client area
and on the label, we can pretend the mouse is on the caption by setting the proper
result:

procedure TForm1.HitTest (var Msg: TWmNCHitTest);
 // message wm_NcHitTest
begin
 inherited;
 if (Msg.Result = htClient) and (Msg.YPos <
 Label1.Height + Top + GetSystemMetrics (sm_cyFrame)) then
 Msg.Result := htCaption;
end;

The GetSystemMetrics API function used in the listing above is used to query the
operating system about the size of the various visual elements177. It is important to
make this request every time (and not cache the result) because users can customize
most of these elements by using the Appearance tab of the Desktop options (in Con-
trol Panel) and other Windows settings. The small button, instead, has a call to the
Close method in its OnClick event handler. The button is kept in its position even
when the window is resized by using the [akTop,akRight] value for the Anchors

177 These days the VCL intercepts the GetSystemMetrics API to make is DPI aware.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

274 - Chapter 6: Forms, Windows, and Applications

property. The form also has size constraints, so that a user cannot make it too small,
as described in the “Form Constraints” section later in this chapter.

Scaling Forms

When you create a form with a number of components, it is common to make the
form nonresizable to avoid having some of the components fall outside the visible
portions of the form. This is not a big problem, because Delphi automatically adds
scroll bars to the form so you can reach every control easily. (Form scrolling is one
of the subjects of Chapter 7.)

Be aware of this problem when you create a big form: if you build a form on a high-
resolution screen, it might be bigger than the available screen size on your end-
user’s systems. This is a pity, and it is more common that you might expect. If you
can, never build a form larger than 640 x 480 pixels178.

If you have to build a bigger form and using scroll bars is not a solution, Delphi has
some nice scaling features. There are two basic techniques:

· The form’s ScaleBy method allows you to scale the form and each of its compo-
nents. You can use this method at startup, after you’ve determined the screen
resolution, or in response to a specific request by the user.

· The PixelsPerInch and Scaled properties allow Delphi to resize an application
automatically when the application is run with a different system font size, often
because of a different screen resolution179. Of course, you can change the values
of these properties manually, as described in the next section, and let the system
scale the form only when you want.

note Form scaling is calculated based on the difference between the font height at run time and the
font height at design time. Scaling ensures that edit and other controls are large enough to display
their text using the user’s font preferences without clipping the text. The form scales as well, as we
will see later on, but the main point is to make edit and other controls readable.

178 This size makes little sense with today’s screens. Also this entire sections ignores the issues
with HiDPI Windows configurations, system scaling, and all of the options that have been
dded to the operating system and the VCL to handle these scenarios. I won’t call out these dif-
ferences for each of the references in this section that are subject to these changes, or I could
add a footnote for almost each line!

179 This is mostly true for HiDPI configurations.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 275

In both cases, to make the form scale its window, be sure to also set the AutoScroll
property to False. Otherwise, the contents of the form will be scaled, but the form
border itself will not.

Manual Form Scaling

Any time you want to scale a form, including its components, you can use the
ScaleBy method, which has two integer parameters, a multiplier and a divisor—it’s
a fraction. You can apply the same method to a single component. For example,
with this statement

ScaleBy (3, 4);

the size of the current form is divided by 4 and multiplied by 3; that is, the form is
reduced to three-quarters of its original size. Generally, it is easier to use percentage
values. The same statement can be written this way:

ScaleBy (75, 100);

When you scale a form, all the proportions are maintained, but if you go below or
above certain limits, the text strings can alter their proportions slightly. If you
reduce the size of a form too much, most of the components will become unusable
or even disappear completely. The problem is that in Windows, components can be
placed and sized only in whole pixels, while scaling almost always involves multiply-
ing by fractional numbers. So any fractional portion of a component’s origin or size
will be truncated.

To avoid similar problems, you should let the user perform only a limited number of
scaling operations or re-create the form from scratch before each new scaling so
that round-off errors do not accumulate.

note If you apply the ScaleBy method to a form, the form won’t actually be scaled. Only the compo-
nents inside the form will change their size. As I mentioned before, to overcome this problem, you
should disable the form’s AutoScroll property. What is the relationship between scaling and
scrolling? My guess is that if scrolling is enabled, the component can be moved outside the form’s
visible area without many problems; otherwise, the form is resized, too.

I’ve built a simple example, Scale, to show how you can scale a form manually,
responding to a request by the user. The form of this application (see Figure 6.7) has
two buttons, a label, an edit box, and an UpDown control.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

276 - Chapter 6: Forms, Windows, and Applications

Figure 6.7: The form
of the Scale example
after a scaling with 50
and 200. Image from
the original book.

The UpDown component connects to the edit box, using its Associate property.
With this setting, a user can type numbers in the box or click on the two small
arrows to increase or decrease the number in the edit box by a fixed amount (indi-
cated by the Increment property of the UpDown component). To extract the input
value, you can use the Text property of the edit box or the Position of the UpDown
control. You can also prevent input errors by setting the Min and Max properties of
the UpDown, as I’ve done in this example:

 object UpDown1: TUpDown
 Associate = Edit1
 Min = 30
 Max = 300
 Increment = 10
 Position = 100
 Wrap = False
 end

When you press the ScaleButton button, the current input value is used to deter-
mine the scaling percentage of the form:

procedure TForm1.ScaleButtonClick(Sender: TObject);
begin
 AmountScaled := UpDown1.Position;
 ScaleBy (AmountScaled, 100);
 UpDown1.Height := Edit1.Height;
 ScaleButton.Enabled := False;
 RestoreButton.Enabled := True;
end;

This method stores the current input value in the form’s AmountScaled private field
and enables the Restore button, disabling the one that was pressed. Later, when the

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 277

user presses the Restore button, the opposite scaling takes place, by calling ScaleBy
(100, AmountScaled). In both cases, I’ve added a line of code to set the Height of
the UpDown component to the same Height as the edit box it is attached to. This
prevents small differences between the two.

note If you want to scale the text of the form properly, including the captions of components, the items
in list boxes, and so on, you should use TrueType fonts exclusively. The system font (MS Sans
Serif) doesn’t scale well. The font issue is important because the size of many components
depends on the text height of their captions, and if the caption does not scale well, the component
might not work properly. For this reason, in the Scale example I’ve used an Arial font.180

Automatic Form Scaling

Instead of playing with the ScaleBy method, you can ask Delphi to do the work for
you. When Delphi starts, it asks the system for the display configuration and stores
the value in the PixelsPerInch property of the Screen object, a special global object
of the VCL, available in any application.

PixelsPerInch sounds like it has something to do with the pixel resolution of the
screen, but unfortunately, it doesn’t. If you change your screen resolution from 640
x 480 to 800 x 600 to 1024 x 768 or even 1600 x 1280181, you will find that Windows
reports the same PixelsPerInch value in all cases, unless you change the system
font. What PixelsPerInch really refers to is the screen pixel resolution that the cur-
rently installed system font was designed for. When the end user changes the
system font scale, usually to make menus and other text easier to read, the user will
expect all applications to honor those settings. An application that does not reflect
the user desktop preferences will look out of place and, in extreme cases, may be
unusable to visually impaired users who rely on very large fonts and high-contrast
color schemes.

The most common PixelPerInch values are 96 (small fonts) and 120 (large fonts),
but other values are possible. Windows 98 even allows the user to set the system
font size to an arbitrary scale182. At design time, the PixelsPerInch value of the
screen, which is a read-only property, is copied to every form of the application.

180 I’d say this is now hardly the case any more, as the Windows OS had many improvements in
this area.

181 Which is still very small compared to a 4K monitor… again, some of the core concepts still ap-
ply, but a lot has changed in Windows and in the VCL in this area.

182 This has now become a very commonly used feature, with many user setting their display at
150% or 200% scalcing.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

278 - Chapter 6: Forms, Windows, and Applications

Delphi then uses the value of PixelsPerInch, if the Scaled property is set to True, to
resize the form when the application starts.

As I’ve already mentioned, both automatic scaling and the scaling performed by the
ScaleBy method operate on components by changing the size of the font. The size of
each control, in fact, depends on the font it uses. With automatic scaling, the value
of the form’s PixelsPerInch property (the design-time value) is compared to the
current system value (indicated by the corresponding property of the Screen
object), and the result is used to change the font of the components on the form.
Actually, to improve the accuracy of this code, the final height of the text is com-
pared to the design-time height of the text, and its size is adjusted if they do not
match.

Thanks to Delphi automatic support, the same application running on a system with
a different system font size automatically scales itself, without any specific code. The
application’s edit controls will be the correct size to display their text in the user’s
preferred font size, and the form will be the correct size to contain those controls.
Although automatic scaling has problems in some special cases, if you comply with
the following rules, you should get good results183:

· Set the Scaled property of forms to True. (This is the default.)

· Use only TrueType fonts.

· Use Windows small fonts (96dpi) on the computer you use to develop the forms.

· Set the AutoScroll property to False, if you want to scale the form and not just
the controls inside it. (AutoScroll defaults to True, so don’t forget to do this step.)

· Set the form position either near the upper-left corner or in the center of the
screen (with the poScreenCenter value) to avoid having an out-of-screen form.
Form position is discussed in the next section.

Setting the Form’s Position and Size

In addition to PixelsPerInch, there are more run-time properties you can set to
control the appearance of a form. The Position property indicates the initial posi-
tion of the form on the screen when it is first created. The default poDesigned value

183 Add to this using PerMonivotrv2 configuration as a must have, along with enabling themes.
There is a lot more to be said, but covering modern HiDPI and proper forms and controls scal-
ing and positioning will require an entire chapter, not a footnote.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 279

indicates that the form will appear where you designed it and use the positional and
size properties of the form. Some of its other choices (poDefault,
poDefaultPosOnly, and poDefaultSizeOnly) depend on a feature of the system:
using a specific flag, Windows can position and/or size new windows using a cas-
cade layout. Finally, with the poScreenCenter value, the form is displayed in the
center of the screen, with the size you set at design time.

note The default positions are ignored when the form has a dialog border style.

The second parameter that affects the initial size and position of a window is its
state. You can use the WindowState property at design time to display a maximized
or minimized window at startup. This property, in fact, can have only three values:
wsNormal, wsMinimized, and wsMaximized. The meaning of this property is intuitive.
If you set a minimized window state, it will be properly displayed in the Windows
Taskbar.

Of course, you can maximize or minimize a window at run time, too. Simply chang-
ing the value of the WindowState property to wsMaximized or to wsNormal produces
the expected effect. Setting the property to wsMinimized, however, creates a mini-
mized window that is placed over the Taskbar, not within it. This is not the expected
action for a main form, but that for a secondary form! The simple solution to this
problem is to call the Minimize method of the Application object. There is also a
Restore method in the TApplication class that you can use when you need to
restore a form, although most often the user will do this using the Restore command
of the system menu.

The Size of a Form and Its Client Area

At design time, there are two ways to set the size of a form: by setting the value of
the Width and Height properties or by dragging its borders. At run time, if the form
has a resizable border, the user can resize it (producing the OnResize event).

However, if you look at a form’s properties in source code or in the online Help, you
can see that there are two properties referring to its width and two referring to its
height. Height and Width refer to the size of the form, including the borders;
ClientHeight and ClientWidth refer to the size of the internal area of the form,
excluding the borders, the caption, scroll bars (if any), and the menu bar. The client
area of the form is the surface you can use to place components on the form, to cre-
ate output, and to receive user input.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

280 - Chapter 6: Forms, Windows, and Applications

Since you might be interested in having a certain available area, at times it makes
sense to set the client size of a form instead of its global size. This is straightforward,
because as you set one of the two client properties, the corresponding form property
changes accordingly. When you modify the value of ClientHeight, the value of
Height immediately changes.

note In Windows, it is also possible to create output and receive input from the nonclient area of the
form—that is, its border. Painting on the border and getting input when you click on it are com-
plex issues. If you are interested, look in the Help file at the description of such Windows
messages as wm_NCPaint, wm_NCCalcSize, and wm_NCHitTest and the series of nonclient
messages related to the mouse input, such as wm_NCLButtonDown. The difficulty of this
approach is in combining your code with the default Windows behavior. However, Delphi lets you
process these low-level Windows messages without any problem, something that most visual pro-
gramming environments do not allow at all.

Form Constraints

When you choose a re-sizable border for a form, users can generally resize the form
as they like and also maximize it to full screen. Windows informs you that the form’s
size has changed with the wm_Size message, which generates the OnResize event.
OnResize takes place after the size of the form has already been changed. Modifying
the size again in this event (if the user has reduced or enlarged the form too much)
would be silly. A preventive approach is better suited to this problem.

Delphi provides a specific property for forms and also for all controls: the
Constraints property. Simply setting the sub-properties of the Constraints prop-
erty to the proper maximum and minimum values creates a form that cannot be
resized beyond those limits. Here is an example:

object Form1: TForm1
 Width = 242
 Height = 162
 Constraints.MaxHeight = 300
 Constraints.MaxWidth = 300
 Constraints.MinHeight = 150
 Constraints.MinWidth = 150
end

Notice that as you set up the Constraints property, it has an immediate effect even
at design time, changing the size of the form if it is outside the permitted area.

Delphi also uses the maximum constraints for maximized windows, producing an
awkward effect. For this reason, you should generally disable the Maximize button

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 281

of a window that has a maximum size. There are cases in which maximized windows
with a limited size make sense—this is the behavior of Delphi’s main window.

note The Constraints property plays an even more important role for controls and for their docking
operations, as we’ll see in Chapter 7.

In case you need to change constraints at run time, you can also consider using two
specific events, OnCanResize and OnContrainedResize. The first of the two can also
be used to disable resizing a form or control in given circumstances.

Creating Forms

Up to now we have ignored the issue of form creation. We know that when the form
is created, we receive the OnCreate event and can change or test some of the initial
form’s properties or fields. The statement responsible for creating the form is in this
project’s source file (or DPR file, available through the Project menu command):

begin
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end.

To skip the automatic form creation, you can either modify this code or use the
Forms page of the Project Options dialog box (see Figure 6.8). In this dialog box,
you can decide whether the form should be automatically created. If you disable the
automatic creation, the project’s initialization code becomes the following:

begin
 Applications.Initialize;
 Application.Run;
end.

If you now run this program, nothing happens. It terminates immediately because
no main window is created. So what is the effect of the call to the application’s
CreateForm method? It creates a new instance of the form class passed as the first
parameter and assigns it to the variable passed as the second parameter.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

282 - Chapter 6: Forms, Windows, and Applications

Figure 6.8: The
Forms page of the
Delphi Project Options
dialog box. Images
captured in Delphi 5
and Delphi 12.

Something else happens behind the scenes. When CreateForm is called, if there is
currently no main form, the current form is assigned to the application’s MainForm
property. For this reason, the form indicated as Main form in the dialog box shown
in Figure 6.8 corresponds to the first call to the application’s CreateForm method
(that is, when several forms are created at start-up).

The same holds for closing the application. Closing the main form terminates the
application, regardless of the other forms. If you want to perform this operation
from the program’s code, simply call the Close method of the main form, as we’ve
done several times in past examples.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 283

note In Delphi 5, you can (finally) control the automatic creation of secondary forms by using the Auto
Create Forms checkbox on the Preferences page of the Environment Options dialog box184.

Delphi Form Creation Order

Regardless of the manual or automatic creation of forms, when a form is created,
there are many events you can intercept. Form-creation events are fired in the fol-
lowing order:

1. OnCreate indicates that the form is being created.

2. OnShow indicates that the form is being displayed. Besides main forms, this
event happens after you set the Visible property of the form to True or call
the Show or ShowModal methods. This event is fired again if the form is hidden
and then displayed again.

3. OnActivate indicates that the form becomes the active form within the
application. This event is fired every time you move from another form of the
application to the current one, as we saw in the section “Activating
Applications and Forms.”

4. Other events, including OnResize and OnPaint, indicate operations always
done at start-up but then repeated many times.

As you can see in the list above, every event has a specific role apart from form ini-
tialization, except for the OnCreate event, which is guaranteed to be called only once
as the form is created.

However, there is an alternative approach to adding initialization code to a form:
overriding the constructor. This is usually done as follows:

constructor TForm1.Create(AOwner: TComponent);
begin
 inherited Create (AOwner);
 // extra initialization code
end;

Before the call to the Create method of the base class, the properties of the form are
still not loaded, and the internal components are not available. For this reason the
standard approach is to call the base class constructor first and then do the custom
operations.

Now the question is whether these custom operations are executed before or after
the OnCreate event is fired. The answer depends on the value of the OldCreateOrder

184 This is in the Tools | Options dialog box under User Interface | Form Designer.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

284 - Chapter 6: Forms, Windows, and Applications

property of the form, introduced in Delphi 4 for backward compatibility with past
versions of Delphi185. (This property is part of the Legacy category, which in Delphi 5
is hidden by default.) By default, for a new project, all of the code in the constructor
is executed before the OnCreate event handler. In fact, this event handler is not acti-
vated by the base class constructor but by its AfterConstruction method, a sort of
constructor introduced for compatibility with C++Builder.

note To study the creation order and the potential problems, you can examine the CreatOrd program.
This program has an OnCreate event handler, which creates a list box control dynamically. The
constructor of the form can access to this list box or not depending on the value of the
OldCreateOder property.

Tracking Forms with the Screen Object

We have already explored some of the properties and events of the Application
object. Other interesting global information about an application is available
through the Screen object, whose base class is TScreen. This object holds informa-
tion about the system display (the screen size and the screen fonts) and also about
the current set of forms in a running application. For example, you can display the
screen size and the list of fonts by writing:

Label1.Caption := IntToStr (Screen.Width) + ‘x’ +
 IntToStr (Screen.Height);
ListBox1.Items := Screen.Fonts;

TScreen also reports the number and resolution of monitors in a multimonitor sys-
tem. What I want to focus on now, however, is the list of forms held by the Forms
property of the Screen object, the topmost form indicated by the ActiveForm prop-
erty, and the related OnActiveFormChange event. Note that the forms the Screen
object references are the forms of the application and not those of the system.

These features are demonstrated by the Screen example, which maintains a list of
the current forms in a list box. This list must be updated each time a new form is
created, an existing form is destroyed, or the active form of the program changes. To
see how this works, you can create a number of secondary forms by clicking on the
button labeled New:

procedure TMainForm.NewButtonClick(Sender: TObject);

185 This OldCreateOrder property was recently removed, after having been deprecated for a very
long time. As indicated here, it was added for Delphi 4 migration, and after another 20 ver-
sions of the product, the team felt it was time to remove it.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 285

var
 NewForm: TSecondForm;
begin
 // create a new form, set its caption, and run it
 NewForm := TSecondForm.Create (Self);
 Inc (nForms);
 NewForm.Caption := ‘Second ‘ + IntToStr (nForms);
 NewForm.Show;
end;

One of the key portions of the program is the OnCreate event handler of the form,
which fills the list a first time and then connects a handler to the
OnActiveFormChange event:

procedure TMainForm.FormCreate(Sender: TObject);
begin
 FillFormsList (Self);
 // set the secondary forms counter to 0
 nForms := 0;
 // set an event handler on the screen object
 Screen.OnActiveFormChange := FillFormsList;
end;

The code used to fill the Forms list box is inside a second procedure,
FillFormsList, which is also installed as an event handler for the
OnActiveFormChange event of the Screen object:

procedure TMainForm.FillFormsList (Sender: TObject);
var
 I: Integer;
begin
 FormsLabel.Caption := ‘Forms: ‘ +
 IntToStr (Screen.FormCount);
 FormsListBox.Clear;
 // write class name and form title to the list box
 for I := 0 to Screen.FormCount - 1 do
 FormsListBox.Items.Add (Screen.Forms[I].ClassName +
 ‘ - ‘ + Screen.Forms[I].Caption);
 ActiveLabel.Caption := ‘Active Form : ‘ +
 Screen.ActiveForm.Caption;
end;

note It is very important that you remove the OnActiveFormChange event handler before exiting the
application; that is, before the main form is destroyed. Otherwise, the code will be executed when
no list box exists, and you’ll get a system error. The solution is to handle the OnClose event of the
main form and assign nil to Screen.OnActiveFormChange.

The FillFormsList method fills the list box and sets a value for the two labels above
it to show the number of forms and the name of the active one. When you click on

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

286 - Chapter 6: Forms, Windows, and Applications

the New button, the program creates an instance of the secondary form, gives it a
new title, and displays it. The Forms list box is updated automatically because of the
handler we have installed for the OnActiveFormChange event. Figure 6.9 shows the
output of this program when some secondary windows have been created.

note The program always updates the text of the ActiveLabel above the list box to show the cur-
rently active form, which is always the same as the first one in the list box.

The secondary forms each have a Close button you can select to remove them. The
program handles the OnClose event, setting the Action parameter to caFree, so that
the form is actually destroyed when it is closed. This code closes the form, but it
doesn’t update the list of the windows properly. The system moves the focus to
another window first, firing the event that updates the list, and destroys the old
form only after this operation.

Figure 6.9: The
output of the Screen
example with a number
of secondary forms.
Image from the
original book.

The first idea I had to update the windows list properly is to introduce a delay, post-
ing a user-defined Windows message. Because the posted message is queued and
not handled immediately, if we send it at the last possible moment of life of the sec-
ondary form, the main form will receive it when the other form is destroyed.

The trick is to post the message in the OnDestroy event handler of the secondary
form. To accomplish this, we need to refer to the MainForm object, by adding a uses
statement in the implementation portion of this unit. I’ve posted a wm_User mes-
sage, which is handled by a specific message method of the main form, as shown
here:

public

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 287

 procedure ChildClosed (var Message: TMessage);
 message wm_User;

Here is the code for this method:

procedure TMainForm.ChildClosed (var Message: TMessage);
begin
 FillFormsList (self);
end;

The problem here is that if you close the main window before closing the secondary
forms, the main form exists, but its code cannot be executed anymore. To avoid
another system error (an Access Violation Fault), you need to post the message only
if the main form is not closing. But how do you know that? One way is to add a flag
to the TMainForm class and change its value when the main form is closing, so that
you can test the flag from the code of the secondary window.

This is a good solution—so good that the VCL already provides something similar.
There is a barely documented ComponentState property. It is a Pascal set that
includes (among other flags) a csDestroying flag, which is set when the form is
closing. Therefore, we can write the following code:

procedure TSecondForm.FormDestroy(Sender: TObject);
begin
 if not (csDestroying in MainForm.ComponentState) then
 PostMessage (MainForm.Handle, wm_User, 0, 0);
end;

With this code, the list box always lists all of the forms in the application. Note that
you need to disable the automatic creation of the secondary form by using the
Forms page of the Project Options dialog box.

After giving it some thought, however, I found an alternative and much more Del-
phi-oriented solution. Every time a component is destroyed, it tells its owner about
the event by calling the Notification method defined in the TComponent class.
Because the secondary forms are owned by the main one, as specified in the code of
the NewButtonClick method, we can override this method and simplify the code. In
the form class, simply write

protected
 procedure Notification(AComponent: TComponent;
 Operation: TOperation); override;

Here is the code of the method:

procedure TMainForm.Notification(AComponent: TComponent;
 Operation: TOperation);
begin

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

288 - Chapter 6: Forms, Windows, and Applications

 inherited Notification(AComponent, Operation);
 if Showing and (AComponent is TForm) then
 FillFormsList;
end;

You’ll find the complete code of this version in the Screen2 directory.

note In case the secondary forms were not owned by the main one, we could have used the
FreeNotification method to get the secondary form to notify the main form when they are
destroyed. FreeNotification receives as parameter the component to notify when the current
component is destroyed. The effect is a call to the Notification method coming from a compo-
nent other than the owned ones. FreeNotification is generally used by component writers to
safely connect components on different forms or data modules.

The last feature I’ve added to both versions of the program is a simple one. When
you click on an item in the list box, the corresponding form is activated, using the
BringToFront method:

procedure TMainForm.FormsListBoxClick(Sender: TObject);
begin
 Screen.Forms [FormsListBox.ItemIndex].BringToFront;
end;

Nice—well, almost nice. If you click on the list box of an inactive form, the main
form is activated first, and the list box is rearranged, so you might end up selecting a
different form than you were expecting. If you experiment with the program, you’ll
soon realize what I mean. This minor glitch in the program is an example of the
risks you face when you dynamically update some information and let the user work
on it at the same time.

Closing a Form

When you close the form using the Close method or by the usual means (Alt+F4,
the system menu, or the Close button), the OnCloseQuery event is called. In this
event, you can ask the user to confirm the action, particularly if there is unsaved
data in the form. Here is a simple scheme of the code you can write:

procedure TForm1.FormCloseQuery(Sender: TObject;
 var CanClose: Boolean);
begin
 if MessageDlg (‘Are you sure you want to exit?’,
 mtConfirmation, [mbYes, mbNo], 0) = idNo then
 CanClose := False;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 289

If OnCloseQuery indicates that the form should still be closed, the OnClose event is
called. The third step is to call the OnDestroy event, which is the opposite of the
OnCreate event and is generally used to deallocate objects related to the form and
free the corresponding memory.

note To be more precise, the BeforeDestruction method generates an OnDestroy event before
the Destroy destructor is called. That is, unless you have set the OldCreateOrder property to
True, in which case Delphi uses a different closing sequence.

So what is the use of the intermediate OnClose event? In this method, you have
another chance to avoid closing the application, or you can specify alternative “close
actions.” The method, in fact, has an Action parameter passed by reference. You can
assign the following values to this parameter:

· caNone: The form is not allowed to close. This corresponds to setting the
CanClose parameter of the OnCloseQuery method to False.

· caHide: The form is not closed, just hidden. This makes sense if there are other
forms in the application; otherwise, the program terminates. This is the default
for secondary forms, and it’s the reason I had to handle the OnClose event in the
previous example to actually close the secondary forms.

· caFree: The form is closed, freeing its memory, and the application eventually
terminates if this was the main form. This is the default action for the main form
and the action you should use when you create multiple forms dynamically (if
you want to remove the Windows and destroy the corresponding Delphi object as
the form closes).

· caMinimize: The form is not closed but only minimized. This is the default action
for MDI child forms, as we’ll see in Chapter 8.

note When a user shuts down Windows, the OnCloseQuery event is activated, and a program can use
it to stop the shut-down process. In this case, the OnClose event is not called even if
OnCloseQuery sets the CanClose parameter to True.

Form Input

Having discussed some special capabilities of forms, I’ll now move to a very impor-
tant topic: user input in a form. If you decide to make limited use of components,

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

290 - Chapter 6: Forms, Windows, and Applications

you might write complex programs as well, receiving input from the mouse and the
keyboard. In this chapter, I’ll only introduce this topic. More about graphics can be
found in Chapter 22, “Graphics in Delphi.”

Supervising Keyboard Input

Generally, forms don’t handle keyboard input directly. If a user has to type some-
thing, your form should include an edit component or one of the other input
components. If you want to handle keyboard shortcuts, you can use those connected
with menus (possibly using a hidden pop-up menu).

At other times, however, you might want to handle keyboard input in particular
ways for a specific purpose. What you can do in these cases is turn on the
KeyPreview property of the form. Then, even if you have some input controls, the
form’s OnKeyPress event will always be activated for any keyboard-input operation.
The keyboard input will then reach the destination component, unless you stop it in
the form by setting the character value to zero (not the character 0, but the value 0
of the character set, indicated as #0).

The example I’ve built to demonstrate this, KPreview, has a form with no special
properties (not even KeyPreview), a radio group with four options, and some edit
boxes, as you can see in Figure 6.10.

By default the program does nothing special, except when the different radio but-
tons are used to enable the key preview:

procedure TForm1.RadioPreviewClick(Sender: TObject);
begin
 KeyPreview := RadioPreview.ItemIndex <> 0;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 291

Figure 6.10: The
KPreview program
allows you to type into
the caption of the form
(among other things).
Image from the
original book.

Now we’ll start receiving the OnKeyPress events, and we can do one of the three
actions requested by the three special buttons of the radio group. The action
depends on the value of the ItemIndex property of the radio group component. This
is the reason the event handler is based on a case statement:

procedure TForm1.FormKeyPress(Sender: TObject; var Key: Char);
begin
 case RadioPreview.ItemIndex of
 ...

In the first case, if the value of the Key parameter is #13, which corresponds to the
Enter key, we disable the operation (setting Key to zero) and then mimic the activa-
tion of the Tab key. There are many ways to accomplish this, but the one I’ve chosen
is quite particular. I send the CM_DialogKey message to the form, passing the code
for the Tab key (VK_TAB):

 1: // Enter = Tab
 if Key = #13 then
 begin
 Key := #0;
 Perform (CM_DialogKey, VK_TAB, 0);
 end;

note The CM_DialogKey message is an internal undocumented Delphi message, something that is
really beyond the scope of this book but is discussed in other texts, including my own Delphi
Developer’s Handbook (Sybex, 1998).186

186 Not an easy book to find, thee days, but I have to say it has a lot of advanced content still valid
and interesting today, along with areas of the libraries that have been significantly modified.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

292 - Chapter 6: Forms, Windows, and Applications

To type in the caption of the form, the program simply adds the character to the cur-
rent Caption, as you can see in Figure 6.10. There are two special cases. When the
Backspace key is pressed, the last character of the string is removed (by copying to
the Caption all the characters of the current Caption but the last one). When the
Enter key is pressed, the program stops the operation, by resetting the ItemIndex
property of the radio group control. Here is the code:

 2: // type in caption
 begin
 if Key = #8 then // backspace: remove last char
 Caption := Copy (Caption, 1,
 Length (Caption) - 1)
 else if Key = #13 then // enter: stop operation
 RadioPreview.ItemIndex := 0
 else // anything else: add character
 Caption := Caption + Key;
 Key := #0;
 end;

Finally, if the last radio item is selected, the code checks whether the character is a
vowel (by testing for its inclusion in a constant vowel set). In this case, the character
is skipped altogether:

 3: // skip vowels
 if Key in [‘a’, ‘e’, ‘i’, ‘o’, ‘u’,
 ‘A’, ‘E’, ‘I’, ‘O’, ‘U’] then
 Key := #0;

Getting Mouse Input

When a user presses one of the mouse buttons over a form (or over a component, by
the way), Windows sends the application some messages. Delphi defines some
events you can use to write code that responds to these messages. The two basic
events are as follows:

· OnMouseDown is received when one of the mouse buttons is pressed.

· OnMouseUp is received when one of the buttons is released.

Another fundamental system message is related to mouse movement. The event is
OnMouseMove. Although it should be easy to understand the meaning of the three
messages—down, up, and move—the question that might arise is, how do they relate
to the OnClick event we have often used up to now?

We have used the OnClick event for components, but it is also available for the
form. Its general meaning is that the left mouse button has been pressed and

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 293

released on the same window or component. However, between these two actions,
the cursor might have been moved outside the area of the window or component,
while the left mouse button was held down. If you press the mouse button at a cer-
tain position and then move it away and release it, no click is involved. In this case,
the window receives only a down message, some move messages, and an up mes-
sage. Another difference is that the click event relates only to the left mouse button.

The Mouse Buttons

Most of the mouse types connected to a Windows PC have two mouse buttons, and
some even have three. Usually we refer to these buttons as the left mouse button,
which is the most used; the right mouse button; and the middle mouse button:

· The left mouse button is the mouse button. It is used to select elements on
screen, to give menu commands, to click buttons, to select and move elements
(dragging), to select and activate (usually with a double-click), and so on.

· The right mouse button is used for local pop-up menus. Many applications used
this approach in the past, but Windows 95 has made local menus the standard
effect of right-clicking.

· The middle button is seldom used because most users either don’t have it or
don’t have a proper software driver. Some CAD programs use the middle button.
If you want to support this button, it should be optional (or else you should be
ready to provide your customers with a free three-button mouse and the corre-
sponding driver).

Keep in mind that users can customize their mouse buttons, switching the left and
right buttons and turning a single click on the middle button into a double-click of
the left button. When you refer to events related to a mouse button in your code,
what matters is not the physical button but rather its meaning.

note Beyond the three traditional mouse buttons, there are now some mouse devices with a “button
wheel” instead of the middle button. Users typically use the wheel for scrolling (causing an
OnMouseWheel event), but they can also press it (generating the OnMouseWheelDown and
OnMouseWheelUp events). The up and down messages are similar to the mouse button messages,
whereas the OnMouseWheel event is devoted to handling the scrolling operations. Mouse wheel
events are automatically converted into scrolling events.

Using Windows without a Mouse

A user should always be able to use any Windows application without the mouse.
This is not an option; it is a Windows programming rule. Of course, an application

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

294 - Chapter 6: Forms, Windows, and Applications

might be easier to use with a mouse, but that should never be mandatory. In fact,
there are users who for various reasons might not have a mouse connected, such as
travelers with a small laptop and no space, workers in industrial environments, and
bank clerks with a number of other peripherals around.

There is another reason, already mentioned in this chapter in respect to the menu,
to support the keyboard: Using the mouse is nice, but it tends to be slower. If you
are a skilled touch typist, you won’t use the mouse to drag a word of text; you’ll use
shortcut keys to copy and paste it, without moving your hands from the keyboard.

For all these reasons, you should always set up a proper tab order for a form’s com-
ponents, remember to add keys for buttons and menu items for keyboard selection,
use shortcut keys on menu commands, and so on. An exception to this rule might be
a graphics program. However, be aware that you can use even a program such as
Microsoft Paint without the mouse—although I don’t recommend it.

The Parameters of the Mouse Events

Since I’m going to build a graphics program, I will focus only on the use of the
mouse. The first event we need to consider for the first minimal version of the
MouseOne program is OnMouseDown. The related method has a number of parame-
ters, as shown in the following declaration:

procedure TShapesForm.FormMouseDown (
 Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);

In addition to the usual Sender parameter, there are four more parameters:

· Button indicates which of the three mouse buttons has been pressed. Possible
values are mbRight, mbLeft, and mbCenter. These are exclusive values because the
purpose of this parameter is to determine which button generated the message.

· Shift indicates which mouse-related keys were pressed when the event
occurred. These mouse-related keys are Alt, Ctrl, and Shift, plus the mouse but-
tons themselves. This parameter is of a set type since several keys (and mouse
buttons) might be pressed at the same time. This means you should test for a
condition using the in expression, not for equality.

· X and Y indicate the coordinates of the position of the mouse, in client area coor-
dinates of the current window (a form or a control). The origin of the x-and y-
axes of these coordinates is the upper-left corner of the client area of the window
receiving the event (again, a form or a control).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 295

Using this information, it is very simple to draw a small circle in the position of a
left mouse button-down event:

procedure TForm1.FormMouseDown(
 Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Button = mbLeft then
 Canvas.Ellipse (X-10, Y-10, X+10, Y+10);
end;

note To draw on the form, we use a very special property: Canvas. A TCanvas object has two distinc-
tive features: it holds a collection of drawing tools (such as a pen, a brush, and a font) and it has a
number of drawing methods, which use the current tools. This kind of direct drawing code in this
example is not correct, because the on-screen image is not persistent: moving another window
over the current one will clear its output. The next example demonstrates the Windows “store-
and-draw” approach.

Dragging and Drawing with the Mouse

To demonstrate a few of the mouse techniques discussed so far, I’ve built a simple
example based on a form without any component and called MouseOne. The first
feature of this program is that it displays in the Caption of the form the current
position of the mouse:

procedure TMouseForm.FormMouseMove(Sender: TObject;
 Shift: TShiftState; X, Y: Integer);
begin
 // display the position of the mouse in the caption
 Caption := Format (‘Mouse in x=%d, y=%d’, [X, Y]);
end;

You can use this simple feature of the program to better understand how the mouse
works. Make this test: run the program (this simple version or the complete one)
and resize the windows on the desktop so that the form of the MouseOne program is
behind another window and inactive but with the title visible. Now move the mouse
over the form, and you’ll see that the coordinates change. This means that the
OnMouseMove event is sent to the application even if its window is not active, and it
proves what I have already mentioned: mouse messages are always directed to the
window under the mouse. The only exception is the mouse capture operation I’ll
discuss in this same example.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

296 - Chapter 6: Forms, Windows, and Applications

Besides showing the position in the title of the window, the MouseOne example can
track mouse movements by painting small pixels on the form if the user keeps the
Shift key pressed. (Again this direct painting code produces nonpersistent output.)

procedure TMouseForm.FormMouseMove(Sender: TObject;
 Shift: TShiftState; X, Y: Integer);
begin
 // display the position of the mouse in the caption
 Caption := Format (‘Mouse in x=%d, y=%d’, [X, Y]);
 if ssShift in Shift then
 // mark points in yellow
 Canvas.Pixels [X, Y] := clYellow;
end;

The real feature of this example, however, is the direct mouse dragging support.
Contrary to what you might think, Windows has no system support for dragging,
which is implemented in the VCL by means of lower-level mouse events and opera-
tions. (An example of dragging from one control to another was discussed in the last
chapter.) In the VCL, forms cannot originate dragging operations, so in this case we
are obliged to use the low-level approach. The aim of this example is to draw a rec-
tangle from the initial position of the dragging operation to the final one, giving the
users some visual clue of the operation they are doing.

The idea behind dragging is quite simple. The program receives a sequence of but-
ton-down, mouse-move, and button-up messages. When the button is pressed,
dragging begins, although the real actions take place only when the user moves the
mouse (without releasing the mouse button) and when dragging terminates (when
the button-up message arrives).

The problem with this basic approach is that it is not reliable. A window usually
receives mouse events only when the mouse is over its client area; so if the user
presses the mouse button, moves the mouse onto another window, and then
releases the button, the second window will receive the button-up message.

There are two solutions to this problem. One (seldom used) is mouse clipping.
Using a Windows API function (namely ClipCursor), you can force the mouse not
to leave a certain area of the screen. When you move it outside the specified area, it
stumbles against an invisible barrier. The second and more common solution is to
capture the mouse. When a window captures the mouse, all the subsequent mouse
input is sent to that window. This is the approach we will use for the MouseOne
example.

The code of the example is built around three methods: FormMouseDown,
FormMouseMove, and FormMouseUp. Pressing the left mouse button over the form
starts the process, setting the fDragging Boolean field of the form (which indicates
that dragging is in action in the other two methods). The method also uses a TRect

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 297

variable used to keep track of the initial and current position of the dragging. Here
is the code:

procedure TMouseForm.FormMouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 if Button = mbLeft then
 begin
 fDragging := True;
 SetCapture (Handle);
 fRect.Left := X;
 fRect.Top := Y;
 fRect.BottomRight := fRect.TopLeft;
 Canvas.DrawFocusRect (fRect);
 end;
end;

An important action of this method is the call to the SetCapture API function. Now
even if a user moves the mouse outside of the client area, the form still receives all
mouse-related messages. You can see that for yourself by moving the mouse toward
the upper-left corner of the screen; the program shows negative coordinates in the
caption.

When dragging is active and the user moves the mouse, the program draws a dotted
rectangle corresponding to the actual position. Actually, the program calls the
DrawFocusRect method twice. The first time this method is called, it deletes the cur-
rent image, thanks to the fact that two consecutive calls to DrawFocusRect simply
reset the original situation. After updating the position of the rectangle, the program
calls the method a second time:

procedure TMouseForm.FormMouseMove(Sender: TObject;
 Shift: TShiftState; X, Y: Integer);
begin
 // display the position of the mouse in the caption
 Caption := Format (‘Mouse in x=%d, y=%d’, [X, Y]);
 if fDragging then
 begin
 // remove and redraw the dragging rectangle
 Canvas.DrawFocusRect (fRect);
 fRect.Right := X;
 fRect.Bottom := Y;
 Canvas.DrawFocusRect (fRect);
 end
 else
 if ssShift in Shift then
 // mark points in yellow
 Canvas.Pixels [X, Y] := clYellow;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

298 - Chapter 6: Forms, Windows, and Applications

When the mouse button is released, the program terminates the dragging operation
by calling the ReleaseCapture API function and by setting the value of the
fDragging field to False:

procedure TMouseForm.FormMouseUp(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 if fDragging then
 begin
 ReleaseCapture;
 fDragging := False;
 Invalidate;
 end;
end;

The final call, Invalidate, triggers a painting operation and executes the following
OnPaint event handler:

procedure TMouseForm.FormPaint(Sender: TObject);
begin
 Canvas.Rectangle (fRect.Left, fRect.Top,
 fRect.Right, fRect.Bottom);
end;

This makes the output of the form persistent, even if you hide it behind another
form. Figure 6.11 shows a previous version of the rectangle and a dragging operation
in action.

Figure 6.11: The
MouseOne example
uses a dotted line to
indicate, during a
dragging operation, the
final area of a
rectangle. Image from
the original book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 299

Painting in Windows

Why do we need to handle the OnPaint event to produce a proper output, and why
can we not paint directly over the form canvas? It depends on Windows’ default
behavior. As you draw on a window, Windows does not store the resulting image.
When the window is covered, its contents are usually lost187.

The reason for this behavior is simple: to save memory. Windows assumes it’s
“cheaper” in the long run to redraw the screen using code than to dedicate system
memory to preserving the display state of a window. It’s a classic memory versus
CPU cycles trade-off. A color bitmap for a 300 x 400 image at 256 colors requires
about 120KB. By increasing the color count or the number of pixels, you can easily
have full-screen bitmaps of about 1MB and reach 4MB of memory for a 1280 x 1024
resolution at 16 million colors. If storing the bitmap was the default choice, running
half a dozen simple applications would require at least 8MB of memory, if not
16MB, just for remembering their current output188.

In the general case you want to have a consistent output for your applications, there
are two techniques you can use. The general solution is to store enough data about
the output to be able to reproduce it when the systems sends a painting requested.
An alternative approach is to save the output of the form in a bitmap while you pro-
duce it, by placing an Image component over the form and drawing on the canvas of
this image component.

The first technique, painting, is the common approach to handling output in Win-
dows, aside from particular graphics-oriented programs that store the form’s whole
image in a bitmap. The approach used to implement painting has a very descriptive
name: store and paint. In fact, when the user presses a mouse button or performs
any other operation, we need to store the position and other elements; then, in the
painting method, we use this information to actually paint the corresponding image.

The idea of this approach is to let the application repaint its whole surface under
any of the possible conditions. If we provide a method to redraw the contents of the
form, and if this method is automatically called when a portion of the form has been
hidden and needs repainting, we will be able to re-create the output properly.

187 Core Windows painting concepts haven’t changed at all over the years.

188 Needless to say some of the memory usage observations makes little sense in today’s world, al-
though we get inquiries about issues with multi-gigabytes bitmaps, which make me wonder if
developers have an idea of the fact memory is finite anyway, even if so much larger.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

300 - Chapter 6: Forms, Windows, and Applications

Since this approach takes two steps, we must be able to execute these two opera-
tions in a row, asking the system to repaint the window—without waiting for the
system to ask for this. You can use several methods to invoke repainting:
Invalidate, Update, Repaint, and Refresh. The first two correspond to the Win-
dows API functions, while the latter two have been introduced by Delphi.

· The Invalidate method informs Windows that the entire surface of the form
should be repainted. The most important thing is that Invalidate does not
enforce a painting operation immediately. Windows simply stores the request
and will respond to it only after the current procedure has been completely exe-
cuted and as soon as there are no other events pending in the system. Windows
deliberately delays the painting operation because it is one of the most time-con-
suming operations. At times, with this delay, it is possible to paint the form only
after a number of changes have taken place, avoiding a number of consecutive
calls to the (slow) paint method.

· The Update method asks Windows to update the contents of the form, repainting
it immediately. However, remember that this operation will take place only if
there is an invalid area. This happens if the Invalidate method has just been
called or as the result of an operation by the user. If there is no invalid area, a call
to Update has no effect at all. For this reason, it is common to see a call to Update
just after a call to Invalidate. This is exactly what is done by the two Delphi
methods, Repaint and Refresh.

· The Repaint method calls Invalidate and Update in sequence. As a result, it
activates the OnPaint event immediately. There is a slightly different version of
this method called Refresh. For a form the effect is the same; for components it
might be slightly different.

When you need to ask the form for a repaint operation, you should generally call
Invalidate, following the standard Windows approach. This is particularly impor-
tant when you need to request this operation frequently, because if Windows takes
too much time to update the screen, the requests for repainting can be accumulated
into a simple repaint action. The wm_Paint message in Windows is a sort of low-pri-
ority message. To be more precise, if a request for repainting is pending but other
messages are waiting, the other messages are handled before the system actually
performs the paint action.

On the other hand, if you call Repaint several times, the screen must be repainted
each time before Windows can process other messages, and because paint opera-
tions are computationally intensive, this can actually make your application less
responsive. There are times, however, when you want the application to repaint a

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 301

surface as quickly as possible. In these less-frequent cases, calling Repaint is the
way to go.

note Another important consideration is that during a paint operation Windows redraws only the so-
called update region, to speed up the operation. For this reason if you invalidate only a portion of
a window, only that area will be repainted. To accomplish this you can use the InvalidateRect
and InvalidateRegion functions. Actually, this feature is a double-edged sword. It is a very
powerful technique, which can improve speed and reduce the flickering caused by frequent
repaint operations. On the other hand, it can also produce incorrect output. A typical problem is
when only some of the areas affected by the user operations are actually modified, while others
remain as they were even if the system executes the source code that is supposed to update them.
In fact, if a painting operation falls outside the update region, the system ignores it, as if it were
outside the visible area of a window.

What’s Next?

In this chapter we’ve explored some important form properties. Now we know how
to handle the size and position of a form, how to resize it, and how to get mouse
input and paint over it. We’ve also discussed in detail the role of two global objects,
Application and Screen, and we’ve built applications with multiple forms. In Chap-
ter 8, we’ll extend this to cover dialog boxes in more detail.

Other chapters in the book will describe topics related to forms. In particular, Chap-
ter 22, which was originally a bonus chapter available as a separate download;
Chapter 7, the use of toolbars, status bars, and scrolling forms; Chapter 8, building a
dialog box, forms with multiple pages, and MDI applications. As you can see from
this list, forms play a central role in Delphi programming, and we still have to
explore a number of topics related to them.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

302 - Chapter 7: Building a User Interface

Chapter 7:

Building A User

Interface

One of the distinctive features of many Windows applications is the presence of a
toolbar at the top of the window and a status bar at its bottom189. The toolbar usually
contains a number of small buttons the user can click to give commands or to toggle
options on and off. At times, a toolbar can also contain combo boxes, edit boxes, or
other controls. The toolbars of the current generation of big applications usually can
be moved to the left or right of the window, or even hidden and turned into a tool-
box, a small floating window with an array of buttons.

189 This is still a common UI, although many alternatives emerged and became popular over the
years. Modern apps tend to reduce the visible UI elements, which makes them nicer aestheti-
cally, but often not so easy to use.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 303

More complex applications tend to have multiple toolbars the user can configure. In
Delphi you can use either the native ControlBar component or the Win32 CoolBar
control190, originally introduced by Microsoft Internet Explorer, for this purpose.

Toolbars account only for the first part of this chapter, which also covers the dock-
ing support that was introduced in Delphi 4 and presents examples of splitting
forms, resizing controls dynamically, and scrolling the content of a form. These top-
ics are not particularly complex, but it is worth examining their key concepts briefly.

The Toolbar Control

In early versions of Delphi, toolbars had to be created using panels and speed but-
tons, as briefly described in “Building a Toolbar with a Panel” later in this chapter.
Starting with version 3, Delphi introduced a specific Toolbar component, which
encapsulates the corresponding Win32 common control. This component provides
a toolbar, with its own buttons, and it has some extended capabilities.

You’ve already seen examples of the Toolbar component in the Chapter 5 discussion
of actions. To use this component, you place it on a form and then use the compo-
nent editor (the shortcut menu activated by a right mouse button click) to create a
few buttons and separators. You can see an example of a Toolbar component under
construction in Figure 7.1.

The Toolbar is populated with objects of the TToolButton class. These are internal
objects, just as a TMenuItem is an internal object of a MainMenu component. These
objects have a fundamental property, Style, which determines their behavior191:

· The tbsButton style indicates a standard push button.

· The tbsCheck style indicates a button with the behavior of a check box, or that of
a radio button if the button is Grouped with the others in its block (determined by
the presence of separators).

190 The Coolbar controls, while still available, is rarely used these days. I’ve kept the coverage,
though.

191 There are now two further toolbar button styles, tbsTextButton and tbsWholeDropDown.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

304 - Chapter 7: Building a User Interface

Figure 7.1: To create
a toolbar, you can place
the corresponding
component on a form
and then use its
shortcut menu to add
buttons and
separators. Images
captured in Delphi 5
and Delphi 12.

· The tbsDropDown style indicates a drop-down button, a sort of combo box. The
drop-down portion can be easily implemented in Delphi by connecting a Popup-
Menu control to the DropdownMenu property of the control.

· The tbsSeparator and tbsDivider styles indicate separators with no or different
vertical lines (depending on the Flat property of the toolbar).

To create a graphic toolbar, you can add an ImageList component to the form192,
load some bitmaps into it, and then connect the ImageList with the Images property
of the toolbar. By default the images will be assigned to the buttons in the order they
appear, but you can change this quite easily by setting the ImageIndex property of
each toolbar button. You can prepare further ImageLists for special conditions of

192 Instead of using an image list, it’s now recommended to use an ImageCollection and a Virtual-
ImageList. The combination of these controls allows your application to select the correct im-
age depending on the HighDPI resolution the application is running on. In the ImageCollec-
tion you can provide multiple set of images for different resolutions, or the component can
create those automatically for you by resizing the available ones. By using the old approach ex-
plained here, you can end up with toolbars having very small images on HighDPI.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 305

the buttons and assign them to the DisabledImages and HotImages properties of the
toolbar. The first group is used for the disabled buttons, the second for the button
currently under the mouse. This is the effect introduced by Microsoft Internet
Explorer.

In a nontrivial application, you would generally add an ActionList component, par-
ticularly if you plan to have a menu with options that duplicate toolbar buttons (for
example, a File Save menu option and a Save button). In this case you’ll attach
very little behavior to the toolbar buttons, as their properties and events will be
managed by the action components. For example, you can obtain a toolbar button
that toggles between a “selected” and an “unselected” state, like a check box. You
obtain this effect by toggling the value of the Checked property of the action every
time this is executed. In this case there is no need to set up the toolbar button with
the tbsCheck style, as the code will determine the requested behavior.

The Toolbar and the ActionList of an Editor

In the MdEdit1 example, I’ve built a menu and a toolbar around a RichEdit control,
providing the first step of an RTF (Rich Text File) editor I’ll expand further in this
and future chapters.

The application is based on an ActionList component, which includes actions for file
handling and Clipboard support, and handles font and paragraph attributes. My
aim is not to build a full-featured editor, or to investigate each and every feature of
the RichEdit common control. I simply want to show how to build the user interface
of a program, for which purpose it is valuable to work with a useful example. Rather
than discuss all of the features of the program, I’ll only highlight the points related
to the current discussion. For a more detailed description of the code, you can open
the “MdEdit Basics” RTF document available with the source code of the project.

The toolbar of the MdEdit1 example has most of its buttons connected to actions,
which are available in a single ActionList component used to handle also all of the
menu items. Only the last button, which has the tbsDropDown style, is handled
directly and not through an action. Here is the structure of the toolbar:

object ToolBar1: TToolBar
 AutoSize = True
 Flat = True
 Images = Images
 object ToolButton1: TToolButton
 Action = acNew
 end
 object ToolButton2: TToolButton

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

306 - Chapter 7: Building a User Interface

 Action = acOpen
 end
 ...
 object ToolButton17: TToolButton
 DropdownMenu = SizeMenu
 ImageIndex = 13
 Style = tbsDropDown
 OnClick = ToolButton17Click
 end
end

The last button is connected to a PopupMenu component (called SizeMenu). This is
all you have to do to make it display the list of items when the down arrow is
selected, as you can see in Figure 7.2. Because the button can also be clicked, I’ve
provided an event handler, which increases the size of the selected text.

Figure 7.2: The
toolbar of the MdEdit1
example has a drop-
down button connected
to a pop-up menu.
Image from the
original book.

The three paragraph-alignment buttons have their Grouped property set to True,
forming a group (as they are enclosed between two separators). This is required
because the program checks the action corresponding to the current style, in the
OnUpdate event of the action list, but it fails to uncheck the other two actions. The
user interface behavior of the menu items is determined by their RadioItem style
and that of the toolbar buttons with the grouping and the AllowAllUp property.

Building a Toolbar with a Panel

Before the toolbar control was available in Delphi, the standard approach for
building a toolbar was to use a panel aligned to the top of the form and place a
number of SpeedButton components inside it. A speed button is a lightweight
graphical control (consuming no Windows resources); it cannot receive the

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 307

input focus, it has no tab order, and it is faster to create and paint than a bitmap
button.

Speed buttons can behave like push buttons, check boxes, or radio buttons, and
they can have different bitmaps depending on their status. To make a group of
speed buttons work like radio buttons, just place some speed buttons on the
panel, select all of them, and give the same value to each one’s GroupIndex
property. All the buttons having the same GroupIndex become mutually
exclusive selections. One of these buttons should always be selected, so
remember to set the Down property to True for one of them at design time or as
soon as the program starts.

By setting the AllowAllUp property, you can create a group of mutually
exclusive buttons, each of which can be up—that is, a group from which the
user can select one option or leave them all unselected. As a special case, you
can make a speed button work as a check box, simply by defining a group (the
GroupIndex property) that has only one button and that allows it to be
deselected (the AllowAllUp property).

Finally, you can set the Flat property of all the SpeedButton components to
True, obtaining a more modern user interface. If you are interested in this
approach, you can look at the PanelBar example, illustrated here:

The use of SpeedButton controls is becoming less common. Besides the fact
that the Toolbar control is very handy and definitely more standard, speed
buttons have two big problems. First, each of them requires a specific bitmap
and cannot use one from an image list (unless you write some complex code).

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

308 - Chapter 7: Building a User Interface

Second, speed buttons don’t work very well with actions, because some
properties such as the Down state do not map directly.

A Combo Box in a Toolbar

We can extend this example by adding a combo box to the toolbar. A number of
common applications use combo boxes in toolbars to show lists of styles, fonts, font
sizes, and so on. Because we’ve used a drop-down button for the font size, we can
add a combo box to allow rapid selection of the font family. This is simple to accom-
plish, as the Toolbar control is a full-featured control container; you can directly
take an edit box, a combo box, and other controls and place them inside the toolbar.
Figure 7.3 shows the MdEdit2 application, with its font-selection combo box.

Figure 7.3: The
MdEdit2 example at
run time. Image from
the original book.

The combo box in the toolbar is initialized in the FormCreate method, which
extracts the screen fonts available in the system:

ComboFont.Items := Screen.Fonts;
ComboFont.ItemIndex := ComboFont.Items.IndexOf (
 RichEdit.Font.Name)

The combo box initially displays the name of the default font used in the RichEdit
control, which is set at design time. This value is recomputed each time the current
selection changes, using the font of the selected text:

procedure TFormRichNote.RichEditSelectionChange(Sender: TObject);
begin
 ComboFont.ItemIndex :=
 ComboFont.Items.IndexOf (RichEdit.SelAttributes.Name)
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 309

When a new font is selected from the combo box, the reverse action takes place. The
text of the current combo box item is assigned as the name of the font for any text
selected in the RichEdit control:

procedure TFormRichNote.ComboFontClick(Sender: TObject);
begin
 RichEdit.SelAttributes.Name :=
 ComboFont.Text;
end;

Toolbar Hints

Another common element in toolbars is the fly-by hint, also called balloon help—
some text that briefly describes the button currently under the cursor. This text is
usually displayed in a yellow box after the mouse cursor has remained steady over a
button for a set amount of time. To add hints to an application’s toolbar, simply set
its ShowHints property to True.

I want to use the Caption of each action as its hint, so I could simply copy them all
at run time, instead of setting each at design time. The problem is that the captions
include the ampersand character used for the menu shortcuts. We can solve this by
removing those extra characters with the new StripHotKey function in the Menus
unit. Here is the code:

procedure TFormRichNote.FormCreate(Sender: TObject);
var
 I: Integer;
begin
 ...
 // move captions to hints, removing the &
 for I := 0 to ActionList.ActionCount - 1 do
 (ActionList.Actions[I] as TAction).Hint :=
 StripHotKey ((ActionList.Actions[I] as TAction).Caption);
end;

As you can see in Figure 7.4, the hints also include a string showing the shortcut
associated with each menu item, as a reminder to the user. This is a default behav-
ior you can disable by setting the HintShortCuts property of the Application
object. This global object controls the hints with other properties and some methods
and events. For example, you can change the HintColor, HintPause, HintHidePause,
and HintShortPause properties. The MdEdit2 example allows a user to customize
the hint background color by selecting a specific menu item (Options Hint Color),
with the following event handler:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

310 - Chapter 7: Building a User Interface

procedure TFormRichNote.acHintColorExecute (Sender: TObject);
begin
 ColorDialog.Color := Application.HintColor;
 if ColorDialog.Execute then
 Application.HintColor := ColorDialog.Color;
end;

Figure 7.4: The hints
displayed by the
MdEdit2 example.
Image from the
original book.

note As an alternative, you can change the hint color by handling the OnShowHint property of the
Application object. This handler can change the color of the hint just for specific controls. The
OnShowHint event is used in the following CustHint example.

Customizing the Hints

Just as we have added hints to an application’s toolbar, we can add hints to forms or
to the components of a form. For a large control, the hint will show up near the
mouse cursor. In some cases, it is important to know that a program can freely cus-
tomize how hints are displayed193.

The simplest thing you can do is change the value of the HintColor property of the
Application object (as in the previous example) and the three properties related to
the hint pause: HintPause, HintHidePause, and HintShortPause. The first defines
how long the cursor should remain on a component before hints are displayed, the

193 There is now also a BalloonHint component you can use to create hints with a more complex
UI structure and including more information. These new hints require Windows themes to be
active.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 311

second how long the hint will be displayed, and the third how long the system
should wait to display a hint if another hint has just been displayed.

To obtain more control over hints, you can customize them even further by assign-
ing a method to the application’s OnShowHint event. You need to either hook them
up manually or—better—add an ApplicationEvents component to the form and han-
dle its OnShowHint event.

The method you have to define has some interesting parameters, such as a string
with the text of the hint, a Boolean flag for its activation, and a structure with fur-
ther information:

TShowHintEvent = procedure (
 var HintStr: string;
 var CanShow: Boolean;
 var HintInfo: THintInfo) of object;

Each of the parameters is passed by reference, so you have a chance to change it.
The last parameter is a structure, containing a reference to the control, the position
of the hint, its color, and other information:

THintInfo = record
 HintControl: TControl;
 HintPos: TPoint;
 HintMaxWidth: Integer;
 HintColor: TColor;
 CursorRect: TRect;
 CursorPos: TPoint;
end;

You can modify the values of this structure; for example, you can change the posi-
tion of the hint window before it is displayed. This is what I’ve done in the CustHint
example, which shows the hint of the label at the center of its area. Here is what you
can write to show the hint for the big label in the center of its surface:

procedure TForm1.ShowHint (var HintStr: string;
 var CanShow: Boolean; var HintInfo: THintInfo);
begin
 with HintInfo do
 if HintControl = Label1 then
 HintPos := HintControl.ClientToScreen (Point (
 HintControl.Width div 2, HintControl.Height div 2));
end;

The code has to retrieve the center of the generic control (the
HintInfo.HintControl) and then convert its coordinates to screen coordinates,
applying the ClientToScreen method to the control itself.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

312 - Chapter 7: Building a User Interface

We can further update the CustHint example in a different way. The RadioGroup
control in the form has three radio buttons. However, these are not stand-alone
components, but simply radio button clones painted on the surface of the radio
group. What if we want to add a hint for each of them?

The CursorRect field of the THintInfo record can be used for this purpose. It indi-
cates the area of the component that the cursor can move over without disabling the
hint. When the cursor moves outside this area, Delphi hides the hint window. If we
specify a different text for the hint and a different area for each of the radio buttons,
we can in practice provide three different hints. Since computing the actual position
of each radio button isn’t easy, I’ve simply divided the surface of the radio group
into as many equal parts as there are radio buttons. The text of the radio button (not
the selected item, but the item under the cursor) is then added to the text of the
hint:

procedure TForm1.ShowHint (var HintStr: string;
 var CanShow: Boolean; var HintInfo: THintInfo);
var
 RadioItem, RadioHeight: Integer;
 RadioRect: TRect;
begin
 with HintInfo do
 if HintControl = Label1 ... // as before
 else
 if HintControl = RadioGroup1 then
 begin
 RadioHeight := (RadioGroup1.Height) div
 RadioGroup1.Items.Count;
 RadioItem := CursorPos.Y div RadioHeight;
 HintStr := ‘Choose the ‘ +
 RadioGroup1.Items [RadioItem] + ‘ button’;
 RadioRect := RadioGroup1.ClientRect;
 RadioRect.Top := RadioRect.Top +
 RadioHeight * RadioItem;
 RadioRect.Bottom := RadioRect.Top + RadioHeight;
 // assign the hints rect and pos
 CursorRect := RadioRect;
 end;
end;

The final part of the code builds the rectangle for the hint, starting with the rectan-
gle corresponding to the client area of the component and moving its Top and
Bottom values to the proper section of the RadioGroup1 component. The resulting
effect is that each radio button of the radio group appears to have a specific hint, as
shown in Figure 7.5.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 313

Figure 7.5: The
RadioGroup control of
the CustHint example
shows a different hint,
depending on the radio
button the mouse is
over. Image from the
original book.

Toolbar Containers

Most modern applications have multiple toolbars, generally hosted by a specific
container. Microsoft Internet Explorer, the various standard business applications,
and the Delphi IDE all use this general approach. However, they each implement it
differently. Delphi has two ready-to-use toolbar containers, the CoolBar and the
ControlBar components. They have differences in their user interface, but the big-
gest one is that the CoolBar is a Win32 common control, part of the operating
system, while the ControlBar is a VCL-based component.

Both components can host toolbar controls, as well as some extra elements, such as
combo boxes and other controls. Actually, a toolbar can also replace the menu of an
application, as we’ll see later on.

We’ll investigate the two components in the next two sections, but I want to empha-
size here (without getting too far ahead of myself) that I generally favor the use of
the ControlBar. It is based on the VCL (and not subject to upgrade along with each
minor release of Microsoft Internet Explorer), and its user interface is nicer and
more similar to that of common office applications.

A Really Cool Toolbar

The CoolBar component is basically a collection of TCoolBand objects. Unlike the
toolbar buttons, these objects do not appear as stand-alone objects in the form, but
are simply a collection of subitems. They appear in the Object Inspector only when

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

314 - Chapter 7: Building a User Interface

you select the editor of the CoolBar’s Bands property, as you can see in Figure 7.6.
You create one or more bands and then set their attributes.

Figure 7.6: The
property editor of the
CoolBar component’s
Bands property works
in conjunction with the
Object Inspector.
Image from the
original book.

You can customize the CoolBar component in many ways: You can set a bitmap for
its background, add some bands using the editor for the Bands property, and then
assign to each band an existing component or component container. You can use
any window-based control (not graphic controls), but only some of them will show
up properly. If you want to have a bitmap on the background of the CoolBar, for
example, you need to use partially transparent controls.

The typical component used in a CoolBar is the Toolbar (which can be made com-
pletely transparent), but combo boxes, edit boxes, and animation controls are also
quite common. This is often inspired by the user interface of the Internet Explorer,
the first Microsoft application featuring the CoolBar component.

You can place one band on each line or all of them on the same line. Each one would
use a part of the available surface, and it would be automatically enlarged when the
user clicks on its title. It is easier to use this new component than to explain it. Try it
yourself or follow the description below, in which we build a new version of our con-
tinuing toolbar example based on a CoolBar control. You can see the form displayed
by this application at run time in Figure 7.7.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 315

Figure 7.7: The form
of the CoolBar example
at run time. Image
from the original book.

The CoolBar example has a TCoolBar component with four bands, two for each of
the two lines. The first band includes a subset of the toolbar of the previous exam-
ple, this time adding an ImageList for the highlighted images. The second has an
edit box used to set the font of the text; the third has a ColorGrid component, used
to choose the font color and that of the background. The last band has a ComboBox
control with the available fonts.

The ControlBar

The user interface of the CoolBar component is really very nice, and Microsoft is
increasingly using it in its applications194. However, the Windows CoolBar control
has had many different and incompatible versions, as Microsoft has released differ-
ent versions of the common control library with different versions of the Internet
Explorer. Some of these versions “broke” existing programs built with Delphi.

note It is interesting to note that Microsoft applications generally don’t use the common control
libraries. Word and Excel use their own internal versions of the common controls, and VB uses an
OCX, not the common controls directly. Part of the reason that Borland had so much trouble with
the common controls is that it uses them more (and in more ways) than even Microsoft does.

194 This was true at the time. Microsoft later moved towards using the Ribbon control even out-
side of of Office, where it was originally introduced. The Ribbon control is a common replace-
ment of toolbars.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

316 - Chapter 7: Building a User Interface

For this reason, Borland introduced (in Delphi 4) a toolbar container called the
ControlBar. A control bar hosts several controls, as a CoolBar does, and offers a sim-
ilar user interface that lets a user drag items and reorganize the toolbar at run time.
A good example of the use of the ControlBar control is Delphi’s own toolbar, but
Microsoft applications use a very similar user interface.

The ControlBar is a control container, and you build it just by placing other controls
inside it, as you do with a panel. Every control placed in the bar gets its own drag-
ging area (a small panel with two vertical lines, on the left of the control), as you can
see in Figure 7.8. For this reason, you should generally avoid placing specific but-
tons inside the ControlBar, but rather add further containers with buttons inside
them. Rather than using a panel, you should generally use one ToolBar control for
every section of the toolbar.

Figure 7.8: The
ControlBar is a
container that allows a
user to drag all the
elements, using the
special drag bar on the
side. Notice that each
button gets a separate
drag bar, something
you’ll generally try to
avoid. Image from the
original book.

The MdEdit3 example is another version of the RichEdit demo we’ve developed
throughout this chapter. I’ve basically grouped the buttons into three toolbars
(instead of a single one) and left the combo box as a stand-alone control. All these
components are inside a ControlBar, so that a user can arrange them at will, as you
can see in Figure 7.9 and in the following DFM listing:

object ControlBar1: TControlBar
 Align = alTop
 AutoSize = True
 ShowHint = True
 object ToolBarFile: TToolBar
 AutoSize = True
 EdgeBorders = []

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 317

 EdgeInner = esNone
 EdgeOuter = esNone
 Flat = True
 Images = Images
 Wrapable = False
 object ToolButton1: TToolButton
 Action = acNew
 end
 // more buttons
 end
 object ToolBarEdit: TToolBar
 // similar properties
 object ToolButton6: TToolButton
 Action = acCut
 end
 // more buttons
 end
 object ToolBarFont: TToolBar
 // ...
 end
 object ComboFont: TComboBox
 Hint = ‘Font Family’
 Style = csDropDownList
 Font.Height = -11
 Font.Name = ‘Arial’
 ItemHeight = 14
 ParentFont = False
 Sorted = True
 OnClick = ComboFontClick
 end
end

Notice in the listing that to obtain the standard effect, you have to disable the edges
of the toolbar controls and set their style to flat. Sizing all the controls alike, so that
you obtain one or two rows of elements of the same height, is not as easy as it might
seem at first. Some controls have automatic sizing or various constraints. In particu-
lar, to make the combo box the same height as the toolbars, you have to tweak the
type and size of its font. Resizing the control itself has no effect.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

318 - Chapter 7: Building a User Interface

Figure 7.9: The
MdEdit3 example at
run time, while a user
is rearranging the
toolbars in the control
bar. Image from the
original book.

The ControlBar also has a shortcut menu that allows you to show or hide each of the
controls currently inside it. Instead of writing code specific to this example, I’ve
implemented a more generic (and reusable) solution. The shortcut menu, called
BarMenu, is empty at design time and is populated when the program starts:

procedure TFormRichNote.FormCreate(Sender: TObject);
var
 I: Integer;
 mItem: TMenuItem;
begin
 ...
 // populate the control bar menu
 for I := 0 to ControlBar.ControlCount - 1 do
 begin
 mItem := TMenuItem.Create (Self);
 mItem.Caption := ControlBar.Controls [I].Name;
 mItem.Tag := Integer (ControlBar.Controls [I]);
 mItem.OnClick := BarMenuClick;
 BarMenu.Items.Add (mItem);
 end;

The BarMenuClick procedure is a single event handler that is used by all of the items
of the menu and uses the Tag property of the Sender menu item to refer to the ele-
ment of the ControlBar associated with the item in the FormCreate method:

procedure TFormRichNote.BarMenuClick(Sender: TObject);
var
 aCtrl: TControl;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 319

begin
 aCtrl := TControl ((Sender as TComponent).Tag);
 aCtrl.Visible := not aCtrl.Visible;
end;

Finally, the OnPopup event of the menu is used to refresh the check mark of the
menu items:

procedure TFormRichNote.BarMenuPopup(Sender: TObject);
var
 I: Integer;
begin
 // update the menu checkmarks
 for I := 0 to BarMenu.Items.Count - 1 do
 BarMenu.Items [I].Checked :=
 TControl (BarMenu.Items [I].Tag).Visible;
end;

A Menu in a Control Bar

If you look at the user interface of the Delphi development environment, you can
see that a ControlBar also hosts the application’s menu, which can be dragged in the
same way as the toolbars and the Component Palette195. How can we add a menu to
the ControlBar of our application?

The menu of the form cannot be placed inside the ControlBar, but we can add
another new toolbar control to host it. This control should have the ShowCaptions
property and the Flat property set to True. Then you should add as many tool but-
tons as there are pull-down menus, set their AutoSize and Grouped properties to
True, and connect each tool button with the proper pull-down menu using the
MenuItem property.

note Borland has made available a free TMenuBar component on its Web site (in the Delphi Down-
loads area). This component connects directly with a MainMenu component, doing all the
required settings automatically.196

Once more, instead of doing all of these operations at design time, we can automate
the creation of as many buttons as requested by the menu, adding more code to the
FormCreate method:

195 This is still the case today.

196 This extensions has been later integrated in the VCL library. You can now add a menu to the
control bar.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

320 - Chapter 7: Building a User Interface

 // create the buttons of the menu toolbar
 ToolSize := 0;
 for I := MainMenu.Items.Count - 1 downto 0 do
 begin
 tb := TToolButton.Create (ToolBarMenu);
 tb.Parent := ToolBarMenu;
 tb.AutoSize := True;
 tb.Grouped := True;
 tb.Caption := MainMenu.Items[I].Caption;
 tb.MenuItem := MainMenu.Items[I];
 Inc (ToolSize, tb.Width);
 end;
 // size the menu toolbar
 ToolBarMenu.Width := ToolSize;
 // hide the standard menu, using the form’s Menu property
 Menu := nil;

Notice that you have to disconnect the menu from the form, by removing the value
of the form’s Menu property, which is automatically set as you place the menu com-
ponent in the form. The result is a menu inside the ControlBar, as you can see in
Figure 7.10.

Figure 7.10: The
MdEdit4 example
shows how to place a
menu inside a toolbar
based on the
ControlBar component.
Image from the
original book.

Creating a Status Bar

Building a status bar is even simpler than building a toolbar. Delphi includes a spe-
cific StatusBar component, based on the corresponding Windows common control.
This component can be used almost as a panel when its SimplePanel property is set

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 321

to True. In this case you can use the SimpleText property to output some text. The
real advantage of this component, however, is that it allows you to define a number
of subpanels just by activating the editor of its Panels property. (You can also dis-
play this property editor by double-clicking on the status bar control.) Each
subpanel has its own graphical attributes, which you can customize using the editor.
Another feature of the status bar component is the “size grip” area added to the
lower-right corner of the bar, which is useful for resizing the form itself. This is a
typical element of the Windows user interface, and you can control it with the
SizeGrip property.

There are a number of uses for a status bar. The most common is to display infor-
mation about the menu item currently selected by the user. Besides this, a status bar
often displays other information about the status of a program: the position of the
cursor in a graphical application, the current line of text in a word processor, the
status of the lock keys, the time and date, and so on.

Menu Hints in the Status Bar

A new version of the editor, MdEdit5, has a status bar capable of displaying the
description of the current menu item, the status of the Caps Lock key, and the cur-
rent editing position. The StatusBar component of this example has four panels.
Although we’re going to display text on only three of them, we need to define the
fourth in order to delimit the area of the third panel. The last panel, in fact, is always
large enough to cover the remaining surface of the status bar.

To show information on a panel, you simply use its Text property, generally using
an expression like this:

StatusBar1.Panels[1].Text := ‘message’;

The panels are not independent components, so you cannot access them by name. A
good solution to improve the readability of the program is to define a constant for
each panel you want to use, and then use these constants when referring to the pan-
els. The MdEdit5 example defines the following constants:

const
 sbpMessage = 0;
 sbpCaps = 1;
 sbpPosition = 2;

Now we have to populate the panels of the status bar with the proper text. First, we
want to display a hint message for the menu items and toolbar buttons. To obtain
this effect, you need to take two steps. First, input a string as a Hint property of each

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

322 - Chapter 7: Building a User Interface

action of the ActionList component. This hint will be used both as a fly-by hint for
toolbar buttons and as a status bar message when the cursor is over the button or
the menu item is selected. Actually, we can use the Hint property to specify different
strings for the two cases, by writing a string divided into two portions by a separa-
tor, the | character. For example, you might enter the following as the value of the
Hint property:

‘Help|Activate the help of the application’

The first portion of the string, Help, is used by fly-by hints, the second portion by
the status bar. You can see an example of this effect in Figure 7.11.

note When the hint for a control is made up of two strings, you can use the GetShortHint and
GetLongHint methods to extract the first (short) and second (long) substrings from the string
you pass as a parameter, which is usually the value of the Hint property.

Figure 7.11: The
status bar of the
MdEdit5 example
displays (among other
information) a
description of the
current button or menu
item. The two portions
of the Hint property
are displayed in the
status bar and as a fly-
by hint. Image from
the original book.

To obtain the hint in the status bar, we have to write some code to handle the appli-
cation’s OnHint event. To avoid adding a new method to the form manually and then
assign it to the OnHint event of the Application object, we can add to the form the
ApplicationEvents component, and handle its event at design time.

The ShowHint procedure copies the current value of the application’s Hint property,
which temporarily contains a copy of the selected item’s hint, to the status bar:

procedure TFormRichNote.ShowHint(Sender: TObject);
begin

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 323

 StatusBar1.Panels[sbpMessage].Text := Application.Hint;
end;

This is all you need to do to display a hint indicating the effect of a menu in the sta-
tus bar.

To display the status of the Caps Lock key, or of any other key, you have to call the
GetKeyState API function, which returns a state number. If the low-order bit of this
number is set (that is, if the number is odd), then the key is pressed. When do we
check this state? We can do it every time the user presses a key on the form, when
the application is idle, or we can add a timer and make the check every 5 seconds.
This second approach has an advantage, because the user might press the Caps Lock
key while working with a different application, and this should be indicated on the
status bar of our program, too. However, using a timer makes the response to press-
ing the key quite slow, while speeding up the timer might slow down the program.
So I’ve decided to write a simple procedure, called CheckCapslock, and then call it
both in the OnUpdate event handler of the ActionList component (called when the
application has some idle time) and in the OnTimer event handler of a timer compo-
nent I’ve added to the form:

procedure TFormRichNote.CheckCapslock;
begin
 if Odd (GetKeyState (VK_CAPITAL)) then
 StatusBar1.Panels[sbpCaps].Text := ‘CAPS’
 else
 StatusBar1.Panels[sbpCaps].Text := ‘‘;
end;

Finally, the program uses the third panel to display the current cursor position
(measured in lines and characters per line) every time the selection changes.
Because the CaretPos values are zero-based (that is, the upper-left corner is line 0,
character 0), I’ve decided to add one to each value, to make them more reasonable
for a casual user:

procedure TFormRichNote.RichEditSelectionChange(Sender: TObject);
begin
 ...
 // update the position in the status bar
 StatusBar.Panels[sbpPosition].Text := Format (‘%d/%d’,
 [RichEdit.CaretPos.Y + 1, RichEdit.CaretPos.X + 1]);
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

324 - Chapter 7: Building a User Interface

Scrolling a Form

When you build a simple application, a single form might hold all of the compo-
nents you need. As the application grows, however, you may need to squeeze in the
components, increase the size of the form, or add new forms.

If you reduce the space occupied by the components, you might add some capability
to resize them at run time, possibly splitting the form into different areas. If you
choose to increase the size of the form, you might use scroll bars to let the user
move around in a form that is bigger than the screen.

note If you choose to add a new form, you can create secondary forms and dialog boxes, create forms
with multiple pages, or use the MDI approach (as described in the next chapter).

Adding a scroll bar to a form is simple. In fact, you don’t need to do anything. If you
place a number of components in a big form and then reduce its size, a scroll bar
will be added to the form automatically, as long as you haven’t changed the value of
the AutoScroll property from its default of True.

Along with AutoScroll, forms have two properties, HorzScrollBar and
VertScrollBar, which can be used to set several properties of the two
TFormScrollBar objects associated with the form. The Visible property indicates
whether the scroll bar is present, the Position property determines the initial status
of the scroll thumb, and the Increment property determines the effect of clicking
one of the arrows at the ends of the scroll bar. The most important property, how-
ever, is Range.

The Range property of a scroll bar determines the virtual size of the form in one
direction, not the actual range of values of the scroll bar. At first, this might be
somewhat confusing. Here is an example to clarify how the Range property works.
Suppose you need a form that will host a number of components and will therefore
need to be 1000 pixels wide. We can use this value to set the “virtual range” of the
form, changing the range of the horizontal scroll bar. See Figure 7.12 for an illustra-
tion of the virtual size of a form implied by the range of a scroll bar. If the width of
the client area of the form is smaller than 1000 pixels, a scroll bar will appear. Now
you can start using it at design time to add new components in the “hidden” portion
of the form.

The Position property of the scroll bar ranges from 0 to 1000 minus the current
size of the client area. For example, if the client area of the form is 300 pixels wide,
you can scroll 700 pixels to see the far end of the form (the thousandth pixel).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 325

Figure 7.12: A
representation of the
virtual size of a form
implied by the range
of a scroll bar. Image
based on a picture of
the original printed
book.

The Scroll Testing Example

I’ve built an example, Scroll1, which has a virtual form of 1000 pixels. To accom-
plish this, I simply set the range of the horizontal scroll bar to 1000:

object Form1: TForm1
 Width = 458
 Height = 368
 HorzScrollBar.Range = 1000
 VertScrollBar.Range = 305
 AutoScroll = False
 Caption = ‘Scrolling Form’
 OnResize = FormResize
 ...

The form of this example has been filled with a number of meaningless list boxes,
and I could have obtained the same scroll bar range by placing the rightmost list box
so that its position (Left) plus its size (Width) would equal 1000.

The interesting part of the example is the presence of a toolbox window displaying
the status of the form and of its horizontal scroll bar. This second form has four
labels; two with fixed text and two with the actual output. Besides this, the sec-
ondary form (called Status) has a bsToolWindow border style and is a topmost
window. You should also set its Visible property to True, to have its window auto-
matically displayed at startup:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

326 - Chapter 7: Building a User Interface

object Status: TStatus
 BorderIcons = [biSystemMenu]
 BorderStyle = bsToolWindow
 Caption = ‘Status’
 FormStyle = fsStayOnTop
 Visible = True
 object Label1: TLabel...
 ...

There isn’t much code in this program. Its aim is to update the values in the toolbox
each time the form is resized or scrolled (as you can see in Figure 7.13). The first
part is extremely simple. You can handle the OnResize event of the form and simply
copy a couple of values to the two labels. The labels are part of another form, so you
need to prefix them with the name of the form instance, Status:

procedure TForm1.FormResize(Sender: TObject);
begin
 Status.Label3.Caption := IntToStr(ClientWidth);
 Status.Label4.Caption := IntToStr(HorzScrollBar.Position);
end;

Figure 7.13: The
output of the Scroll1
example. Image from
the original book.

If we wanted to change the output each time the user scrolls the contents of the
form, we could not use a Delphi event handler, because there isn’t an OnScroll
event for forms (although there is one for stand-alone ScrollBar components).
Omitting this event makes sense, because Delphi forms handle scroll bars automati-
cally in a powerful way. In Windows, by contrast, scroll bars are extremely low-level
elements, requiring a lot of coding. Handling the scroll event makes sense only in

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 327

special cases, such as when you want to keep track precisely of the scrolling opera-
tions made by a user.

note Once again, what I really like in Delphi is that handling a Windows message that is not supported
by the environment requires only one more line of code. I’ve never seen something so nice in any
other visual environment.

Here is the code we need to write. First, add a method declaration to the class and
associate it with the Windows horizontal scroll message (wm_HScroll):

 public
 procedure FormScroll (var ScrollData: TWMScroll);
 message wm_HScroll;

Then write the code of this procedure, which is almost the same as the code of the
FormResize method we’ve seen before:

procedure TForm1.FormScroll (var ScrollData: TWMScroll);
begin
 inherited;
 Status.Label3.Caption := IntToStr(ClientWidth);
 Status.Label4.Caption := IntToStr(HorzScrollBar.Position);
end;

It’s important to add the call to inherited, which activates the method related to
the same message in the base class form. The inherited keyword in Windows mes-
sage handlers calls the method of the base class we are overriding, which is the one
associated with the corresponding Windows message (even if the procedure name is
different). Without this call, the form won’t have its default scrolling behavior; that
is, it won’t scroll at all.

Automatic Scrolling

The scroll bar’s Range property can seem strange until you start to use it consis-
tently. When you think about it a little, you’ll start to understand the advantages of
the “virtual range” approach. First of all, the scroll bar is automatically removed
from the form when the client area of the form is big enough to accommodate the
virtual size; and when you reduce the size of the form, the scroll bar is added again.

This feature becomes particularly interesting when the AutoScroll property of the
form is set to True. In this case, the extreme positions of the rightmost and lower
controls are automatically copied into the Range properties of the form’s two scroll
bars. Automatic scrolling works well in Delphi. In the last example, the virtual size

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

328 - Chapter 7: Building a User Interface

of the form would be set to the right border of the last list box. This was defined with
the following attributes:

object ListBox6: TListBox
 Left = 832
 Width = 145
end

Therefore, the horizontal virtual size of the form would be 977 (which is the sum of
the two above values). This number is automatically copied into the Range field of
the HorzScrollBar property of the form, unless you change it manually to have a
bigger form (as I’ve done for the Scroll1 example, setting it to 1000 to leave some
space between the last list box and the border of the form). You can see this value in
the Object Inspector, or make the following test: Run the program, size the form as
you like, and move the scroll thumb to the rightmost position. When you add the
size of the form and the position of the thumb, you’ll always get 1000, the virtual
coordinate of the rightmost pixel of the form, whatever the size.

Scrolling and Form Coordinates

We have just seen that forms can automatically scroll their components. But what
happens if you paint directly on the surface of the form? Some problems arise, but
their solution is at hand. Suppose that we want to draw some lines on the virtual
surface of a form, as shown in Figure 7.14.

Since you probably do not own a monitor capable of displaying 2000 pixels on each
axis, you can create a smaller form, add two scroll bars, and set their Range prop-
erty, as I’ve done in the Scroll2 example. Here is the textual description of the form:

object Form1: TForm1
 HorzScrollBar.Range = 2000
 VertScrollBar.Range = 2000
 ClientHeight = 336
 ClientWidth = 472
 OnPaint = FormPaint
end

If we simply draw the lines using the virtual coordinates of the form, the image
won’t display properly. In fact, in the OnPaint response method, we need to com-
pute the virtual coordinates ourselves. Fortunately, this is easy, since we know that
the virtual X1 and Y1 coordinates of the upper-left corner of the client area corre-
spond to the current positions of the two scroll bars:

procedure TForm1.FormPaint(Sender: TObject);

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 329

var
 X1, Y1: Integer;
begin
 X1 := HorzScrollBar.Position;
 Y1 := VertScrollBar.Position;

 // draw a yellow line
 Canvas.Pen.Width := 30;
 Canvas.Pen.Color := clYellow;
 Canvas.MoveTo (30-X1, 30-Y1);
 Canvas.LineTo (1970-X1, 1970-Y1);
// and so on ...

As a better alternative, instead of computing the proper coordinate for each output
operation, we can call the SetWindowOrgEx API to move the origin of the coordinates
of the Canvas itself. This way, our drawing code will directly refer to virtual coordi-
nates but will be displayed properly:

procedure TForm2.FormPaint(Sender: TObject);
begin
 SetWindowOrgEx (Canvas.Handle,
 HorzScrollbar.Position,
 VertScrollbar.Position, nil);

 // draw a yellow line
 Canvas.Pen.Width := 30;
 Canvas.Pen.Color := clYellow;
 Canvas.MoveTo (30, 30);
 Canvas.LineTo (1970, 1970);

 // and so on ...
 ...

This is the version of the program you’ll find in the source code you’ve downloaded.
Try using the program and commenting out the SetWindowOrgEx call to see what
happens if you don’t use virtual coordinates: You’ll find that the output of the pro-
gram is not correct—it won’t scroll, and the same image will always remain in the
same position, regardless of scrolling operations.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

330 - Chapter 7: Building a User Interface

Figure 7.14: The
lines to draw on the
virtual surface of the
form. Image based on
a picture of the
original printed book.

Form-Splitting Techniques

There are several ways to implement form-splitting techniques in Delphi, but the
simplest approach is to use the Splitter component, found in the Additional page of
the Component Palette. To make it more effective, the splitter can be used in combi-
nation with the Constraints property of the controls it relates to. As we’ll see in the
Split1 example, this allows us to define maximum and minimum positions of the
splitter and of the form.

To build this example, simply place a ListBox component in a form; then add a
Splitter component, a second ListBox, another Splitter, and finally a third ListBox
component. The form also has a simple toolbar based on a panel.

By simply placing these two splitter components, you give your form the complete
functionality of moving and sizing the controls it hosts at run time. The Width,
Beveled, and Color properties of the splitter components determine their appear-
ance, and in the Split1 example you can use the toolbar controls to change them.
Another relevant property is MinSize, which determines the minimum size of the
components of the form. During the splitting operation (see Figure 7.15), a line
marks the final position of the splitter, but you cannot drag this line over a certain
limit. The behavior of the Split1 program is not to let controls become too small. An

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 331

alternative technique is to set the new AutoSnap property of the splitter to True. This
property will make the splitter hide the control when its size goes below the MinSize
limit.

Figure 7.15: The
splitter component of
the Split1 example
determines the
minimum size for each
control on the form,
even those not adjacent
to the splitter itself.
Image from the
original book.

I suggest you try using the Split1 program, so that you’ll fully understand how the
splitter affects its adjacent controls and the other controls of the form.

Even if I’ve set the MinSize property, a user of this program can reduce the size of
its entire form to a minimum, hiding some of the list boxes. If you test the Split2
version of the example, instead, you’ll get better behavior. In Split2 I’ve set some
Constraints for the ListBox controls, as for example:

object ListBox1: TListBox
 Constraints.MaxHeight = 400
 Constraints.MinHeight = 200
 Constraints.MinWidth = 150

The size constraints are applied only as you actually resize the controls, so to make
this program work in a satisfactory way, you have to set the ResizeStyle property of
the two splitters to rsUpdate. This value indicates that the position of the controls is
updated for every movement of the splitter, not only at the end of the operation. If
you select the rsLine or the new rsPattern values, instead, the splitter simply
draws a line in the required position, checking the MinSize property but not the
constraints of the controls.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

332 - Chapter 7: Building a User Interface

note The Splitter component in Delphi 5 has a new property, AutoSnap. When you set this to True,
the splitter will completely hide the neighboring control when the size of that control is below the
minimum set for it in the Splitter component.

Horizontal Splitting

The Splitter component can also be used for horizontal splitting, instead of the
default vertical splitting. However, this approach is a little more complicated. Basi-
cally you can place a component on a form, align it to the top, and then place the
splitter on the form. By default, it will be left-aligned. Choose the alTop value for the
Align property, and then resize the component manually, by changing the Height
property in the Object Inspector (or by resizing the component).

You can see a form with a horizontal splitter in the SplitH example. This program
has two memo components you can open a file into, and it has a splitter dividing
them, defined as:

object Splitter1: TSplitter
 Cursor = crVSplit
 Align = alTop
 OnMoved = Splitter1Moved
end

When you double-click on a memo, the program loads a text file into it (notice the
structure of the with statement):

procedure TForm1.MemoDblClick(Sender: TObject);
begin
 with Sender as TMemo, OpenDialog1 do
 if Execute then
 Lines.LoadFromFile (FileName);
end;

The program features a status bar, which keeps track of the current height of the
two memo components. It handles the OnMoved event of the splitter (the only event
of this component) to update the text of the status bar. The same code is executed
whenever the form is resized:

procedure TForm1.Splitter1Moved(Sender: TObject);
begin
 StatusBar1.Panels[0].Text := Format (
 ‘Upper Memo: %d - Lower Memo: %d’,
 [MemoUp.Height, MemoDown.Height]);
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 333

You can see the effect of this code by looking at Figure 7.16, or by running the SplitH
example.

Figure 7.16: The
status bar of the SplitH
example indicates the
position of the
horizontal splitter
component.

Splitting with a Header

An alternative to using splitters is to use the standard HeaderControl compo-nent.
If you place this control on a form, it will be automatically aligned with the top of
the form. Then you can add the three list boxes to the rest of the client area of the
form. The first list box can be aligned on the left, but this time you cannot align the
second and third list box as well. The problem is that the sections of the header can
be dragged outside the visible surface of the form. If the list boxes use automatic
alignment, they cannot move outside the visible surface of the form, as the program
requires.

The solution is to define the sections of the header, using the specific editor of the
Sections property. This property editor allows you to access the various subobjects
of the collection, changing various settings. You can set the caption and alignment
of the text; the current, minimum, and maximum size of the header; and so on. Set-
ting the limit values is a powerful tool, and it replaces the MinSize property of the
splitter or the constraints of the list boxes we’ve used in past examples. You can see
the output of this program, named HdrSplit, in Figure 7.17.

We need to handle two events: OnSectionResize and OnSectionClick. The first
handler simply resizes the list box connected with the modified section (determined
by associating numbers with the ImageIndex property of each section and using it to
determine the name of the list box control):

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

334 - Chapter 7: Building a User Interface

procedure TForm1.HeaderControl1SectionResize(
 HeaderControl: THeaderControl; Section: THeaderSection);
var
 List: TListBox;
begin
 List := FindComponent (‘ListBox’ + IntToStr (
 Section.ImageIndex)) as TListBox;
 List.Width := Section.Width;
end;

Figure 7.17: The
output of the HdrSplit
example. Image from
the original book.

Along with this event, we need to handle the resizing of the form, using it to syn-
chronize the list boxes with the sections, which are all resized by default:

procedure TForm1.FormResize(Sender: TObject);
var
 I: Integer;
 List: TListBox;
begin
 for I := 0 to 2 do
 begin
 List := FindComponent (‘ListBox’ + IntToStr (
 HeaderControl1.Sections[I].ImageIndex)) as TListBox;
 List.Left := HeaderControl1.Sections[I].Left;
 List.Width := HeaderControl1.Sections[I].Width;
 end;
end;

After setting the height of the list boxes, this method simply calls the previous one,
passing parameters that we won’t use in this example. The second method of the

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 335

HeaderControl, called in response to a click on one of the sections, is used to sort
the contents of the corresponding list box:

procedure TForm1.HeaderControl1SectionClick(
 HeaderControl: THeaderControl; Section: THeaderSection);
var
 List: TListBox;
begin
 List := FindComponent (‘ListBox’ + IntToStr (
 Section.ImageIndex)) as TListBox;
 List.Sorted := not List.Sorted;
end;

Of course, this code doesn’t provide the common behavior of sorting the elements
when you click on the header and then sorting them in the reverse order if you click
again. To implement this, you should write your own sorting algorithm. Finally, the
HdrSplit example uses a new feature for the header control. It sets the DragReorder
property to enable dragging operations to reorder the header sections. When this
operation is performed, the control fires the OnSectionDrag event, where you can
exchange the positions of the list boxes. This event fires before the sections are actu-
ally moved, so I have to use the coordinates of the other section:

procedure TForm1.HeaderControl1SectionDrag(Sender: TObject;
FromSection,
 ToSection: THeaderSection; var AllowDrag: Boolean);
var
 List: TListBox;
begin
 List := FindComponent (‘ListBox’ + IntToStr (
 FromSection.ImageIndex)) as TListBox;
 List.Left := ToSection.Left;
 List.Width := ToSection.Width;

 List := FindComponent (‘ListBox’ + IntToStr (
 ToSection.ImageIndex)) as TListBox;
 List.Left := FromSection.Left;
 List.Width :=fromSection.Width;
end;

Control Anchors

In this chapter I’ve described how you can use alignment and splitters to create nice
and flexible user interfaces, which adapt to the current size of the form, giving users
the maximum freedom. Delphi also supports right and bottom anchors. Before this

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

336 - Chapter 7: Building a User Interface

feature was introduced in Delphi 4, every control placed on a form had coordinates
relative to the top and bottom sides, unless it was aligned to the bottom or right
sides. Aligning is good for some controls but not all of them, particularly buttons.

By using anchors, you can make the position of a control relative to any side of the
form. For example, to have a button anchored to the bottom-right corner of the
form, place the button in the required position and set its Anchors property to
[akRight, akBottom]. When the form size changes, the distance of the button from
the anchored sides is kept fixed. In other words, if you set these two anchors and
remove the two defaults, the button will remain in the bottom-right corner.

On the other hand, if you place a large component such as a Memo or a ListBox in
the middle of a form, you can set its Anchors property to include all four sides. This
way the control will behave as an aligned control, growing and shrinking with the
size of the form, but there will be some margin between it and the form sides.

note Anchors, like constraints, work both at design time and at run time; so you should set them up as
early as possible, to benefit from this feature while you’re designing the form as well as at run
time.

As an example of both approaches, you can try out the Anchors application, which
has two buttons on the bottom-right corner and a list box in the middle. As shown
in Figure 7.18, the controls automatically move and stretch as the form size changes.
To make this form work properly, you must also set its Constraints property; oth-
erwise, as the form becomes too small the controls can overlap or disappear.

Figure 7.18: The
controls of the Anchors
example move and
stretch automatically
as the user changes the
size of the form. No
code is needed to move
the controls, only a
proper use of the
Anchors property.
Image from the
original book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 337

note If you remove all of the anchors, or two opposite ones (for example, left and right), the resize
operations will cause the control to float. The control keeps its current size, and the system adds
or removes the same number of pixels on each side of it. This can be defined as a centered anchor,
because if the component is initially in the middle of the form it will keep that position. In any
case, if you want a centered control, you should generally use both opposite anchors, so that if the
user makes the form larger the control size will grow as well. In the case just presented, in fact,
making the form larger leaves a small control in its center.

Docking Toolbars and Controls

Another feature added in Delphi 4 was the support for dockable toolbars and con-
trols197. In other words, you can create a toolbar and move it to any of the sides of a
form, or even move it freely on the screen, undocking it. However, setting up a pro-
gram properly to obtain this effect is not as easy as it sounds.

First of all, Delphi’s docking support is connected with container controls, not with
forms. A panel, a ControlBar, and other containers (technically, any control derived
from TWinControl) can be set up as dock targets by enabling their DockSite prop-
erty. You can also set the AutoSize property of these containers, so that they’ll show
up only if they actually hold a control.

To be able to drag a control (an object of any TControl-derived class) into the dock
site, simply set its DragKind property to dkDock and its DragMode property to
dmAutomatic. This way, the control can be dragged away from its current position
into a new docking container. To undock a component and move it to a special form,
you can set its FloatingDockSiteClass property to TCustomDockForm (to use a pre-
defined stand-alone form with a small caption).

All the docking and undocking operations can be tracked by using special events of
the component being dragged (OnStartDock and OnEndDock) and the component
that will receive the docked control (OnDragOver and OnDragDrop). These docking
events are very similar to the dragging events available in earlier versions of Delphi.

There are also commands you can use to accomplish docking operations in code and
to explore the status of a docking container. Every control can be moved to a differ-
ent location using the Dock, ManualDock, and ManualFloat methods. A container has
a DockClientCount property, indicating the number of docked controls, and a
DockClients property, with the array of these controls.

197 Docking remains a core feature of the VCL library and the Delphi IDE uses it heavily.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

338 - Chapter 7: Building a User Interface

Moreover, if the dock container has the UseDockManager property set to True, you’ll
be able to use the DockManager property, which implements the IDockManager inter-
face. This interface has many features you can use to customize the behavior of a
dock container, even including support for streaming its status.

As you can see from this brief description, docking support in Delphi is based on a
large number of properties, events, methods and objects (such as dock zones and
dock trees)—more features than we have room to explore in detail. The next exam-
ple introduces the main features you’ll generally need.

Docking Toolbars in ControlBars

The MdEdit6 example is the final version of the RichEdit editor presented in this
chapter. This new version has a second ControlBar at the bottom of the form, which
accepts dragging one of the toolbars in the ControlBar at the top. Since both toolbar
containers have the AutoSize property set to True, they are automatically removed
when the host contains no controls. To let users drag the toolbars with the same
anchor used for moving them inside the container, remember to set the AutoDrag
property of the ControlBars, as well.

You can see an example of the program at run time in Figure 7.19. The components
inside the control bar at the top have their DragKind property set to dkDock. How-
ever, the menu toolbar cannot be moved outside of its container, because we want to
keep it close to the typical position of a menu bar. The combo box can be dragged,
but we don’t want to let a user dock it in the lower control bar. We implement the
second constraint in the control bar’s OnDockOver event handler, by accepting the
docking operation only for toolbars:

procedure TFormRichNote.ControlBarLowerDockOver(Sender: TObject;
 Source: TDragDockObject; X, Y: Integer; State: TDragState;
 var Accept: Boolean);
begin
 Accept := Source.Control is TToolbar;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 339

Figure 7.19: The
MdEdit6 example
allows you to dock the
toolbars (and the
menu) at the top or
bottom of the form or
to leave them floating.
Image from the
original book.

Next, we want to have a border for the lower control bar, but only when it hosts
some components, so that we don’t see the empty border (as the control bar resizes
itself to a very thin line when it is empty). To accomplish this, we can add the border
whenever a control is dropped onto the bar (OnDockDrop) and remove it when the
last control is being undocked (OnUnDock). To determine the number of controls, we
can use the DockClientCount property, which is updated after the undocking is
completed, so its value is still 1 when the last control is being undocked:

procedure TFormRichNote.ControlBarLowerDockDrop(Sender: TObject;
 Source: TDragDockObject; X, Y: Integer);
begin
 ControlBarLower.BevelKind := bkTile;
end;

procedure TFormRichNote.ControlBarLowerUnDock(Sender: TObject;
 Client: TControl; NewTarget: TWinControl; var Allow: Boolean);
begin
 if ControlBarLower.DockClientCount = 1 then
 ControlBarLower.BevelKind := bkNone;
end;

This excerpt from the form’s DFM file shows the properties related to docking sup-
port:

object FormRichNote: TFormRichNote
 object RichEdit: TRichEdit...
 object ControlBar: TControlBar
 AutoSize = True
 object ToolBarFile: TToolBar
 DragKind = dkDock
 DragMode = dmAutomatic
 end
 object ToolBarEdit: TToolBar
 DragKind = dkDock

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

340 - Chapter 7: Building a User Interface

 DragMode = dmAutomatic
 end
 object ToolBarFont: TToolBar
 DragKind = dkDock
 DragMode = dmAutomatic
 end
 object ComboFont: TComboBox
 DragKind = dkDock
 DragMode = dmAutomatic
 end
 object ToolBarMenu: TToolBar...
 end
 object StatusBar: TStatusBar...
 object ControlBarLower: TControlBar
 BevelKind = bkNone
 OnDockDrop = ControlBarLowerDockDrop
 OnDockOver = ControlBarLowerDockOver
 OnUnDock = ControlBarLowerUnDock
 end ...
end

note When you move one of the toolbars to the automatically created floating form, you might be
tempted to set it back by closing the floating form. This doesn’t work, as the floating form is
removed along with the toolbar it contains. However, you can use the shortcut menu of the top-
most ControlBar to show this hidden toolbar.

Controlling Docking Operations

Delphi provides many events and methods that give you a lot of control over dock-
ing operations, including a dock manager. To explore some of these features, try out
the DockTest example, a test bed for docking operations. The program assigns the
FloatingDockSiteClass property of a Memo component to TForm2, so that you can
design specific features and add them to the floating frame that will host the control
when it is floating, instead of using an instance of the default TCustomDockForm
class.

Another feature of the program is that it handles the OnDockOver and OnDockDrop
events of a dock host panel to display messages to the user, such as the number of
controls currently docked:

procedure TForm1.Panel1DockDrop(Sender: TObject;
 Source: TDragDockObject; X, Y: Integer);
begin
 Caption := ‘Docked: ‘ + IntToStr (Panel1.DockClientCount);
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 341

In the same way, the program also handles the main form’s docking events. Another
control, a list box, has a shortcut menu you can invoke to perform docking and
undocking operations in code, without the usual mouse dragging:

procedure TForm1.DocktoPanel1Click(Sender: TObject);
begin
 // dock to the panel
 ListBox1.ManualDock (Panel1, Panel1, alBottom);
end;

procedure TForm1.DocktoForm1Click(Sender: TObject);
begin
 // dock to the current form
 ListBox1.Dock (Self, Rect (200, 100, 100, 100));
end;

procedure TForm1.Floating1Click(Sender: TObject);
begin
 // toggle the floating status
 if ListBox1.Floating then
 ListBox1.ManualDock (Panel1, Panel1, alBottom)
 else
 ListBox1.ManualFloat (Rect (100, 100, 200, 300));
 Floating1.Checked := ListBox1.Floating;
end;

The final feature of the example is probably the most interesting one: Every time the
program closes, it saves the current docking status of the panel, using the dock
manager support. When the program is reopened, it reapplies the docking informa-
tion, restoring the previous configuration of the windows. The program does this
only with the panel, so the other floating windows will be displayed in their original
positions. Here is the code for saving and loading:

procedure TForm1.FormDestroy(Sender: TObject);
var
 FileStr: TFileStream;
begin
 if Panel1.DockClientCount > 0 then
 begin
 FileStr := TFileStream.Create (DockFileName,
 fmCreate or fmOpenWrite);
 try
 Panel1.DockManager.SaveToStream (FileStr);
 finally
 FileStr.Free;
 end;
 end
 else
 // remove the file
 DeleteFile (DockFileName);
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

342 - Chapter 7: Building a User Interface

procedure TForm1.FormCreate(Sender: TObject);
var
 FileStr: TFileStream;
begin
 // reload the settings
 DockFileName := ExtractFilePath (Application.Exename) +
 ‘dock.dck’;
 if FileExists (DockFileName) then
 begin
 FileStr := TFileStream.Create (DockFileName, fmOpenRead);
 try
 Panel1.DockManager.LoadFromStream (FileStr);
 finally
 FileStr.Free;
 end;
 end;
 Panel1.DockManager.ResetBounds (True);
end;

There are many more features you can test, but the DockTest program already tries
to do too many things, some of which conflict. For example, automatic alignments
don’t work terribly well with the docking manager’s code for restoring. I suggest you
take this program and explore its behavior, extending it to support the type of user
interface you prefer.

note Remember that although docking panels make an application look nice, some users get confused
by the fact that their toolbars might disappear or be in a different position than they are used to.
Don’t overuse the docking features, or some of your inexperienced users may get lost.

What’s Next?

In this chapter, we have examined a series of topics related to toolbars and forms:
the definition of a toolbar and a status bar; and ways to scroll, split, and drag forms.
Although these may seem very diverse topics, they all relate to the development of a
modern user interface for a form.

You can consider this chapter the first step toward building professional applica-
tions. We will take other steps in the following chapters; but you already know
enough to make your programs similar to some best-selling Windows applications,
which may be very important for your clients. Now that the elements of the main
form of our programs are properly set up, we can consider adding secondary forms
and dialog boxes. This is the topic of the next chapter, although we have already

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 343

seen how simple it is to add a second form to a program to build a toolbox. In the
next chapter we’ll also explore multiple-page forms, another important addition to
the toolkit of any developer who wants to create a modern user interface.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

344 - Chapter 8: Using Multiple Forms

Chapter 8: Using

Multiple Forms

Up to this point, most of the programs in this book have consisted of single forms.
Usually, applications have a main window, some floating toolboxes or palettes, and
a number of dialog boxes that can be invoked through menu commands or com-
mand buttons. More complex applications might have an MDI structure—a frame
window with a number of child windows inside its client area. The development of
MDI applications will be discussed briefly at the end of this chapter, after we focus
on building dialog boxes and applications with multiple forms.

Dialog Boxes versus Forms

Before presenting examples of applications with multiple forms or user-defined dia-
log boxes, let me begin with a general description of these two alternatives. When
you write a program, there is really no big difference between a dialog box and a

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 345

second form, aside from the border, the border icons, and other user-interface ele-
ments you can customize.

What users associate with a dialog box is the concept of a modal window—a window
that takes the focus and must be closed before the user can move back to the main
window. This is true for message boxes and usually for dialog boxes, as well. How-
ever, you can also have nonmodal—or modeless—dialog boxes. So if you think that
dialog boxes are just modal forms, you are on the right track, but your description is
not precise. In Delphi (as in Windows), you can have modeless dialog boxes and
modal forms. We have to consider two different elements:

· The form’s border and its user interface determine whether it looks like a dialog
box.

· The use of two different methods (Show or ShowModal) to display the second form
determines its behavior (modeless or modal).

Adding a Second Form to a Program

To add a second form to an application, you simply click on the New Form button
on the Delphi toolbar or use the File New Form menu command. As an alterna-
tive you can select File New, move to the Forms or Dialogs page, and choose one
of the available form templates or form wizards.

If you have two forms in a project, you can use the Select Form or the Select Unit
button of the Delphi toolbar to navigate through them at design time. You can also
choose which form is the main one and which forms should be automatically cre-
ated at start-up using the Forms page of the Project Options dialog box. This
information is reflected in the source code of the project file.

note Secondary forms are automatically created in the project source-code file depending on a new
Delphi 5 setting, which is the Auto Create Forms check box of the Preferences page of the Envi-
ronment Options dialog box. Although automatic creation is the simplest and most reliable
approach for novice developers and quick-and-dirty projects, I suggest that you disable this check
box for any serious development. When your application contains hundreds of forms, you really
shouldn’t have them all created at application start-up. Create instances of secondary forms when
and where you need them, and free them when you’re done.

Once you have prepared the secondary form, you can simply set its Visible prop-
erty to True, and both forms will show up as the program starts. In general, the
secondary forms of an application are left “invisible” and are then displayed by call-
ing the Show method (or setting the Visible property at run time). If you use the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

346 - Chapter 8: Using Multiple Forms

Show function, the second form will be displayed as modeless, so you can move back
to the first one while the second is still visible. To close the second form, you might
use its system menu or click a button or menu item that calls the Close method. As
we saw in Chapter 6, the default close action (see the OnClose event) for a secondary
form is simply to hide it, so the secondary form is not destroyed when it is closed. It
is kept in memory (again, not always the best approach) and is available if you want
to show it again198.

Creating Secondary Forms at Run Time

Unless you create the forms when the program starts, you’ll need to check whether a
form exists and create it if necessary. The simplest case is when you want to create
multiple copies of the same form at run time. In the MultiWin example, I’ve done
this by writing the following code:

procedure TForm1.btnMultipleClick(Sender: TObject);
begin
 with TForm3.Create (Application) do
 Show;
end;

Every time you click the button, a new copy of the form is created. Notice that I
don’t use the Form3 global variable, because it doesn’t make much sense to assign
this variable a new value every time you create a new form object. The important
thing, however, is not to refer to the global Form3 object in the code of the form itself
or in other portions of the application. The Form3 variable, in fact, will invariably be
a pointer to nil, so you should actually remove it from the unit to avoid any confu-
sion.

note In the code of a form, you should never explicitly refer to the form by using the global variable
that Delphi sets up for it. For example, suppose that in the code of TForm3 you refer to
Form3.Caption. If you create a second object of the same type (the class TForm3), the expres-
sion Form3.Caption will invariably refer to the caption of the form object referenced by the
Form3 variable, which might not be the current object executing the code. To avoid this problem,
refer to the Caption property in the form’s method to indicate the caption of the current form
object, and use the Self keyword when you need a specific reference to the object of the current
form. To avoid any problem when creating multiple copies of a form, I suggest removing the
global form object from the interface portion of the unit declaring the form. This global variable is
required only for the automatic form creation.

198 All of this still applies 100% today.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 347

When you create multiple copies of a form dynamically, remember to destroy each
form object as is it closed, by handling the corresponding event:

procedure TForm3.FormClose(Sender: TObject;
 var Action: TCloseAction);
begin
 Action := caFree;
end;

Failing to do so will result in a lot of memory consumption, because all the forms
you create (both the windows and the Delphi objects) will be kept in memory and
simply hidden from view.

Now let us focus on the dynamic creation of a form, in a program that accounts for
only one copy of the form at a time. Creating a modal form is quite simple, because
the dialog box can be destroyed when it is closed, with code like this:

procedure TForm1.btnModalClick(Sender: TObject);
var
 Modal: TForm4;
begin
 Modal := TForm4.Create (Application);
 try
 Modal.ShowModal;
 finally
 Modal.Free;
 end;
end;

Because the ShowModal call can raise an exception, you should write it in a finally
block to make sure the object will be deallocated. Usually this block also includes
code that initializes the dialog box before displaying it and code that extracts the
values set by the user before destroying the form. The final values are read-only if
the result of the ShowModal function is mrOK, as we’ll see in the next example.

The situation is a little more complex when you want to display only one copy of a
modeless form. In fact, you have to create the form, if it is not already available, and
then show it:

procedure TForm1.btnSingleClick(Sender: TObject);
begin
 if not Assigned (Form2) then
 Form2 := TForm2.Create (Application);
 Form2.Show;
end;

With this code the form is created the first time it is required and then is kept in
memory, visible on the screen or hidden from view. To avoid using up memory and

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

348 - Chapter 8: Using Multiple Forms

system resources unnecessarily, you’ll want to destroy the secondary form when it is
closed. You can do that by writing a handler for the OnClose event:

procedure TForm2.FormClose(Sender: TObject;
 var Action: TCloseAction);
begin
 Action := caFree;
 // important: set pointer to nil!
 Form2 := nil;
end;

Notice that after we destroy the form, the global Form2 variable is set to nil. With-
out this code, closing the form would destroy its object, but the Form2 variable
would still refer to the original memory location. At this point, if you try to show the
form once more with the btnSingleClick method shown earlier, the if not
Assigned test will succeed, as it simply checks whether the Form2 variable is nil.
The code fails to create a new object, and the Show method, invoked on a nonexis-
tent object, will result in a system memory error.

As an experiment, you can generate this error by removing the last line of the listing
above. As we have seen, the solution is to set the Form2 object to nil when the object
is destroyed, so that properly written code will “see” that a new form has to be cre-
ated before using it. Again, experimenting with the MultiWin example can prove
useful to test various conditions. I haven’t illustrated any screens from this example
because the forms it displays are quite bare (totally empty except for the main form,
which has three buttons).

note Setting the form variable to nil makes sense—and works—if there is to be only one instance of
the form present at any given instant. If you want to create multiple copies of a form, you’ll have
to use other techniques to keep track of them. Also keep in mind that in this case we cannot use
the new Delphi 5 FreeAndNil procedure, because we cannot call Free on Form2. The reason is
that we cannot destroy the form before its event handlers have finished executing.

Merging Form Menus

Another feature of modeless forms is worth mentioning. Although every form
of an application can have its own menu bar, you can also use Delphi’s menu
merging technique to move the items of the secondary form’s menu to the
main form’s menu bar. This technique is very useful in MDI applications but
less interesting for modeless forms, as this behavior can confuse the user.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 349

In this technique, the application’s main window has a menu bar, as usual. The
other forms have a menu bar with the AutoMerge property enabled, so their
menu bar won’t be displayed in the form but will instead be merged with the
one from the main window. These are the rules for menu merging: Each pull-
down menu has a GroupIndex property. When menu bars are merged, the pull-
down menus are arranged as follows:
- If two elements of the different menu bars have the same GroupIndex,
those of the original menu are removed.
- Elements are ordered by ascending GroupIndex values.

Creating a Dialog Box

I stated earlier in this chapter that a dialog box is not very different from other
forms. There is a very simple trick to build a dialog box instead of a form. Just select
the bsDialog value for the form’s BorderStyle property. With this simple change,
the interface of the form becomes like that of a dialog box, with no system icon, no
Minimize or Maximize boxes, and a system menu you can activate by right-clicking
over the caption. Of course, such a form has the typical thick dialog box border,
which is nonresizable.

Once you have built a dialog box form, you can display it as a modal or modeless
window using the two usual show methods (Show and ShowModal). Modal dialog
boxes, however, are more common than modeless ones. This is exactly the reverse
of forms; modal forms should generally be avoided since a user won’t expect them.
The following table lists the complete schema of the various combinations of styles:

Window Type Modal Modeless

Form Never used Usual, in SDI applications

Dialog box Most common kind of secondary form Used, but not very
common

To avoid using too many secondary forms, you can build multipage forms, as dis-
cussed later in this chapter. Another alternative is to use MDI forms, also covered
later in this chapter.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

350 - Chapter 8: Using Multiple Forms

The Dialog Box of the RefList Example

In Chapter 5 we explored the RefList program, which used a ListView control to dis-
play references to books, magazines, Web sites, and more. In the RefList2 version
I’ll simply add to the basic version of that program a dialog box, used in two differ-
ent circumstances: adding new items to the list and editing existing items. You can
see the form of the dialog box in Figure 8.1 and its textual description in the follow-
ing listing (detailed because it has many interesting features, so I suggest you read
this code with care):

object FormItem: TFormItem
 Caption = ‘Item’
 Color = clBtnFace
 Position = poScreenCenter
 object Label1: TLabel
 Caption = ‘&Reference:’
 FocusControl = EditReference
 end
 object EditReference: TEdit...
 object Label2: TLabel
 Caption = ‘&Type:’
 FocusControl = ComboType
 end
 object ComboType: TComboBox
 Style = csDropDownList
 Items.Strings = (
 ‘Book’
 ‘CD’
 ‘Magazine’
 ‘Mail Address’
 ‘Web Site’)
 end
 object Label3: TLabel
 Caption = ‘&Author:’
 FocusControl = EditAuthor
 end
 object EditAuthor: TEdit...
 object Label4: TLabel
 Caption = ‘&Country:’
 FocusControl = EditCountry
 end
 object EditCountry: TEdit...
 object BitBtn1: TBitBtn
 Kind = bkOK
 end
 object BitBtn2: TBitBtn
 Kind = bkCancel
 end
end

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 351

Figure 8.1: The form
of the dialog box of the
RefList2 example at
design time. Images
captured in Delphi 5
and Delphi 12.

note The items of the combo box in this dialog describe the available images of the image list, so that a
user can select the type of the item and the system will show the corresponding glyph. An even
better option would have been to show those glyphs in the combo box, along with their descrip-
tions.

As I mentioned, this dialog box is used in two different cases. The first takes place as
the user selects File Add Items from the menu:

procedure TForm1.AddItems1Click(Sender: TObject);
var
 NewItem: TListItem;
begin
 FormItem.Caption := ‘New Item’;
 FormItem.Clear;
 if FormItem.ShowModal = mrOK then
 begin
 NewItem := ListView1.Items.Add;
 NewItem.Caption := FormItem.EditReference.Text;
 NewItem.ImageIndex := FormItem.ComboType.ItemIndex;
 NewItem.SubItems.Add (FormItem.EditAuthor.Text);
 NewItem.SubItems.Add (FormItem.EditCountry.Text);
 end;
end;

Besides setting the proper caption of the form, this procedure needs to initialize the
dialog box, as we are entering a brand-new value. If the user clicks OK, however, the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

352 - Chapter 8: Using Multiple Forms

program adds a new item to the list view and sets all its values. To empty the edit
boxes of the dialog, the program calls the custom Clear method, which resets the
text of each edit box control:

procedure TFormItem.Clear;
var
 I: Integer;
begin
 // clear each edit box
 for I := 0 to ControlCount - 1 do
 if Controls [I] is TEdit then
 TEdit (Controls[I]).Text := ‘‘;
end;

Editing an existing item requires a slightly different approach. First, the current val-
ues are moved to the dialog box before it is displayed. Second, if the user clicks OK,
the program modifies the current list item instead of creating a new one. Here is the
code:

procedure TForm1.ListView1DblClick(Sender: TObject);
begin
 if ListView1.Selected <> nil then
 begin
 // dialog initialization
 FormItem.Caption := ‘Edit Item’;
 FormItem.EditReference.Text := ListView1.Selected.Caption;
 FormItem.ComboType.ItemIndex := ListView1.Selected.ImageIndex;
 FormItem.EditAuthor.Text := ListView1.Selected.SubItems [0];
 FormItem.EditCountry.Text := ListView1.Selected.SubItems [1];

 // show it
 if FormItem.ShowModal = mrOK then
 begin
 // read the new values
 ListView1.Selected.Caption := FormItem.EditReference.Text;
 ListView1.Selected.ImageIndex := FormItem.ComboType.ItemIndex;
 ListView1.Selected.SubItems [0] := FormItem.EditAuthor.Text;
 ListView1.Selected.SubItems [1] := FormItem.EditCountry.Text;
 end;
 end;
end;

You can see the effect of this code in Figure 8.2. Notice that the code used to read
the value of a new item or modified one is similar. In general, you should try to
avoid this type of duplicated code and possibly place the shared code statements in
a method added to the dialog box. In this case, the method could receive as parame-
ter a TListItem object and copy the proper values into it.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 353

Figure 8.2: The
dialog box of the
RefList2 example used
in edit mode

note What happens internally when the user clicks on the OK or Cancel buttons of the dialog box? A
modal dialog box is closed by setting its ModalResult property, and it returns the value of this
property. You can indicate the return value by setting the ModalResult property of the button.
When the user clicks on the button, its ModalResult value is copied to the form, which closes
the form and returns the value as the result of the ShowModal function.

A Modeless Dialog Box

The second example of dialog boxes shows a more complex modal dialog box that
uses the standard approach as well as a modeless dialog box. The main form of the
DlgApply example has five labels with names, as you can see in Figure 8.3 and by
viewing the source code you’ve downloaded.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

354 - Chapter 8: Using Multiple Forms

Figure 8.3: The three
forms (a main form
and two dialog boxes)
of the DlgApply
example at run time.
Images from the
original book.

If the user clicks on a name, its color turns to red; if the user double-clicks on it, the
program displays a modal dialog box with a list of names to choose from. If the user
clicks on the Style button, a modeless dialog box appears, allowing the user to
change the font style of the main form’s labels. The five labels of the main form are
connected to two methods, one for the OnClick event and the second for the
OnDoubleClick event. The first method turns the last label a user has clicked on to
red, resetting to black all the others (which have the Tag property set to 1, as a sort
of group index). Notice that the same method is associated with all of the labels:

procedure TForm1.LabelClick(Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to ComponentCount - 1 do
 if (Components[I] is TLabel) and
 (Components[I].Tag = 1) then
 TLabel (Components[I]).Font.Color := clBlack;
 // set the color of the clicked label to red
 (Sender as TLabel).Font.Color := clRed;
end;

The second method common to all of the labels is the handler of the OnDoubleClick
event. The LabelDoubleClick method selects the Caption of the current label (indi-
cated by the Sender parameter) in the list box of the dialog and then shows the
modal dialog box. If the user closes the dialog box by clicking on OK and an item of
the list is selected, the selection is copied back to the label’s caption:

procedure TForm1.LabelDoubleClick(Sender: TObject);

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 355

begin
 with ListDial.Listbox1 do
 begin
 // select the current name in the list box
 ItemIndex := Items.IndexOf (Sender as TLabel).Caption);
 // show the modal dialog box, checking the return value
 if (ListDial.ShowModal = mrOk) and (ItemIndex >= 0) then
 // copy the selected item to the label
 (Sender as TLabel).Caption := Items [ItemIndex];
end;

note Notice that all the code used to customize the modal dialog box is in the LabelDoubleClick
method of the main form. The form of this dialog box has no added code.

The modeless dialog box, by contrast, has a lot of coding behind it. The main form
simply displays the dialog box when the Style button is clicked (notice that the but-
ton caption ends with three dots to indicate that it leads to a dialog box), by callings
its Show method. You can see the dialog box running in Figure 8.3 above.

Two buttons, Apply and Close, replace the OK and Cancel buttons in a modeless dia-
log box. (The fastest way to obtain these buttons is to select the bkOK or bkCancel
value for the Kind property and then edit the Caption.) At times, you may see a Can-
cel button that works as a Close button, but the OK button in a modeless dialog box
usually has no meaning. Instead, there might be one or more buttons that perform
specific actions on the main window, such as Apply, Change Style, Replace, Delete,
and so on.

If the user clicks on one of the check boxes of this modeless dialog box, the style of
the sample label’s text at the bottom changes accordingly. You accomplish this by
adding or removing the specific flag that indicates the style, as in the following
OnClick event handler:

procedure TStyleDial.ItalicCheckBoxClick(Sender: TObject);
begin
 if ItalicCheckBox.Checked then
 LabelSample.Font.Style :=
 LabelSample.Font.Style + [fsItalic]
 else
 LabelSample.Font.Style :=
 LabelSample.Font.Style - [fsItalic];
end;

When the user selects the Apply button, the program copies the style of the sample
label to each of the form’s labels, rather than considering the values of the check
boxes:

procedure TStyleDial.ApplyBitBtnClick(Sender: TObject);

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

356 - Chapter 8: Using Multiple Forms

begin
 Form1.Label1.Font.Style := LabelSample.Font.Style;
 Form1.Label2.Font.Style := LabelSample.Font.Style;
 ...

As an alternative, instead of referring to each label directly, you can look for it by
calling the FindComponent method of the form, passing the label name as a parame-
ter, and then casting the result to the TLabel type. The advantage of this approach is
that we can create the names of the various labels with a for loop:

procedure TStyleDial.ApplyBitBtnClick(Sender: TObject);
var
 I: Integer;
begin
 for I := 1 to 5 do
 (Form1.FindComponent (‘Label’ + IntToStr (I)) as TLabel).
 Font.Style := LabelSample.Font.Style;
end;

note The ApplyBitBtnClick method could also be written by scanning the Controls array in a
loop, as I’ve already done in other examples. I decided to use the FindComponent method,
instead, to show you a new technique.

This second version of the code is certainly slower, because it has more operations
to do, but you won’t notice the difference, because it is very fast anyway. Of course,
this second approach is also more flexible; if you add a new label, you only need to
fix the higher limit of the for loop, provided all the labels have consecutive num-
bers. Notice that when the user clicks on the Apply button, the dialog box does not
close. Only the Close button has this effect. Consider also that this dialog box needs
no initialization code because the form is not destroyed, and its components main-
tain their status each time the dialog box is displayed.

Windows Common Dialogs

Besides building your own dialog boxes, Delphi allows you to use some default dia-
log boxes of different kinds. Some are predefined by Windows, others are simple
dialog boxes (such as message boxes) displayed by a Delphi routine. The Delphi
Component Palette contains a page of dialog box components. Each of these dialog

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 357

boxes—known as Windows common dialogs—is defined in the system library
ComDlg32.DLL199.

I have already used some of these dialog boxes in several examples in the previous
chapters, so you are probably familiar with them. Basically, you need to put the cor-
responding component on a form, set some of its properties, run the dialog box
(with the Execute method, returning a Boolean value), and retrieve the properties
that have been set while running it. To help you experiment with these dialog boxes,
I’ve built the CommDlg test program. I won’t discuss the program in detail nor show
its simple but lengthy source code in the book. As always, you can find this code
among the downloaded files.

What I want to do is simply highlight some key and nonobvious features of the com-
mon dialog boxes, and let you study the source code of the example for the details:

· The Open Dialog Component200 can be customized by setting different file exten-
sions filters, using the Filter property, which has a handy editor and can be
assigned directly with a string like Text File (*.txt)|*.txt. Another handy
feature is to let the dialog check whether the extension of the selected file
matches the default extension, by checking the ofExtensionDifferent flag of the
Options property after executing the dialog. Finally, this dialog allows multiple
selections by setting its ofAllowMultiSelect option. In this case you can get the
list of the selected files by looking at the Files string list property.

· The SaveDialog component is used in similar ways and has similar properties,
although you cannot select multiple files, of course.

· The OpenPictureDialog and SavePictureDialog components provide similar fea-
tures but have a customized form, which shows a preview of an image. Of course,
it makes sense to use them only for opening or saving graphical files.

· The FontDialog component can be used to show and select from all types of
fonts, fonts useable on both the screen and a selected printer (wysiwyg), or only
TrueType fonts. You can show the portion related to the special effects or hide it,

199 Oddly, this is still the name of the library even in the 64-bit version of Windows. All of the
ideas and most of the code in this ebook should equally apply to the Win64 target that Delphi
offers today. For non-Windows targets, instead, you cannot use the VCL library, but have to
switch to the similar FireMonkey library.

200 There are new versions of these dialog boxes available in Windows. They can be enable in Del-
phi by using Windows themes (the default for new applications), however some of the ex-
tended features are available only when using the newer FileOpenDialog and FileSaveDialog
components. There is also a new TaskDialog now available in the VCL, mapped to another rel-
atively new Windows API.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

358 - Chapter 8: Using Multiple Forms

and obtain other different versions by setting its Options property. You can also
activate an Apply button simply by providing an event handler for its OnApply
event and using the fdApplyButton option. A Font dialog box with an Apply but-
ton (see Figure 8.4) behaves almost like a modeless dialog box (but isn’t one).

· The ColorDialog component is used with different options, to show the dialog
fully open at first or to prevent it from opening fully. These settings are the
cdFullOpen or cdPreventFullOpen values of the Options property.

Figure 8.4: The Font
selection dialog box
with an Apply button.
Image from the
original book.

· The Find and Replace dialog boxes are truly modeless dialogs, but you have to
implement the find and replace functionality yourself, as I’ve partially done in
the CommDlg example. The custom code is connected to the buttons of the two
dialog boxes by providing the OnFind and OnReplace events.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 359

A Parade of Message Boxes

The Delphi message boxes and input boxes are another set of predefined dialog
boxes. There are basically six Delphi procedures and functions you can use to dis-
play simple dialog boxes201:

· The MessageDlg function shows a customizable message box, with one or more
buttons and usually a bitmap. We have used this function quite often in previous
examples.

· The MessageDlgPos function is similar to the MessageDlg function. The differ-
ence is that the message box is displayed in a given position, not in the center of
the screen.

· The ShowMessage procedure displays a simpler message box, with the application
name as the caption, and just an OK button. The ShowMessageFmt procedure is a
variation of ShowMessage, which has the same parameters as the Format function.
It corresponds to calling Format inside a call to ShowMessage.

· The ShowMessagePos procedure does the same, but you also indicate the position
of the message box.

· The MessageBox method of the Application object allows you to specify both the
message and the caption; you can also provide various buttons and features. This
is a simple and direct encapsulation of the MessageBox function of the Windows
API, which passes as a main window parameter the handle of the Application
object. This handle is required to make the message box behave like a modal
window.

· The InputBox function asks the user to input a string. You provide the caption,
the query, and a default string.

The InputQuery function asks the user to input a string, too. The only difference
between this and the InputBox function is in the syntax. The InputQuery function
has a Boolean return value that indicates whether the user has clicked on OK or
Cancel.

To demonstrate some of the message boxes available in Delphi, I’ve written another
sample program, with a similar approach to the preceding CommDlg example. In
the MBParade example, you have a high number of choices (radio buttons, check
boxes, edit boxes, and spin edit controls) to set before you press one of the buttons

201 As already mentioned in a previous note, there is now also a TaskDialog component in the
VCL, mapped to a specific, relatively new, Windows API.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

360 - Chapter 8: Using Multiple Forms

that displays a message box. You can get a better idea of the program by looking at
its form in Figure 8.5.

Expandable Dialog Boxes

Some dialog boxes display a number of components for the user to work with. At
times, you can divide them into logical pages, which Delphi supports through the
PageControl component (discussed later in this chapter). At other times, you can
temporarily hide some dialog box controls to help first-time users of your applica-
tion. Another alternative is to increase the size of the dialog box to host new controls
when the user presses a More button202.

Figure 8.5: The main
form of the MBParade
example, with a sample
message box. Image
from the original book.

I’ll use this approach to create the simple dialog box in the More example. First of
all, we need to create the dialog box and add some simple controls, a More button
(see Figure 8.6), and two check boxes labeled italic and bold, which are in a panel
placed outside the design-time surface of the form. In practice, once you have added
the panel with some controls in it, you need to resize the dialog box so that the new
panel is outside the visible surface of the form and set the AutoScroll property of
the form to False. The panel is not visible, because I’ve removed its borders, and

202 I have to admin this UI style of expanding the size of a dialog box is way less frequent today.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 361

makes the program more flexible, as you can add more controls to the hidden por-
tion of the dialog without changing the source code: simply place them on the panel.

Figure 8.6: The
dialog box of the More
example at design
time. Some of the
components are
invisible because they
are beyond the border.
Image from the
original book.

The panel should be hidden; otherwise, the user might press the Tab key and move
onto its controls even if they are not visible. As an alternative, you might disable its
TabStop property. These properties (Visible or TabStop) are then set to True when
the form is enlarged.

Now, in addition to the standard code required to move values from the main form
to the dialog, we need to write some code to resize the form when a user clicks on
the More button. To prepare the resizing effect, we need a couple of fields in the
form (named OldHeight and NewHeight) to store the two different heights of the
client area of the form. We can set up their values when the form is first created:

procedure TConfigureDialog.FormCreate(Sender: TObject);
begin
 OldHeight := ClientHeight;
 NewHeight := PanelMore.Top + PanelMore.Height;
end;

I determined the new height by adding to the height of the panel its position. The
real dialog box resizing takes place when the More button is pressed. Here is a first
version:

procedure TConfigureDialog.btnMoreClick(Sender: TObject);
begin
 PanelMore.Visible := True;
 btnMore.Enabled := False;
 ClientHeight := NewHeight;
end;

The result it produces is shown in Figure 8.7. If you want a more spectacular effect,
you might increase the height a pixel at a time instead of setting the final value at
once. If you write a for loop, increasing the client height and repainting the form
each time, the new controls will appear with a nice effect, only a little slower. The
last line of the btnMoreClick method above becomes

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

362 - Chapter 8: Using Multiple Forms

for I := ClientHeight to NewHeight do
begin
 ClientHeight := I;
 Update;
end;

Each time the dialog box is activated (OnFormActivate event), we reset its height,
hide the panel (to avoid letting the user Tab to its controls), and enable the More
button:

procedure TConfigureDialog.FormActivate(Sender: TObject);
begin
 ClientHeight := OldHeight;
 btnMore.Enabled := True;
 PanelMore.Visible := False;
end;

This code is required so that each time the dialog box is displayed it starts in the
default small configuration.

Figure 8.7: The
dialog box of the More
example after it has
been resized. Image
from the original book.

About Boxes and Splash Screens

Windows applications usually have an About box, where you can display informa-
tion, such as the version of the product, a copyright notice, and so on. The simplest

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 363

way to build an About box is to use the MessageDlg function. With this method, you
can show only a limited amount of text and no special graphics.

Therefore, the usual method for creating an About box is to use a simple dialog box,
such as the one generated with one of the Delphi default templates. I say simple
because when you have designed the form with a logo and so on, you seldom need
much code. At most, some code might be required to display system information,
such as the version of Windows or the amount of free memory, or some user infor-
mation, such as the registered user name.

note In Chapter 19, we’ll see how to create extract the version information from an executable file,
which contains this type of Windows resources. This technique can be useful to build an About
box that includes the version information.

Building a Custom Hidden Screen

While we build our own About box, we can add a hidden credit screen, which Delphi
and many other applications have. You might want to add a hidden credit screen for
a number of reasons. If you work in a big company, this might be your way to prove
that you worked on that project, which might help you in finding a new job (if the
project was successful). At times, a hidden About box can be fun to see, and they
sometimes also provide a good occasion for making jokes about your competitors. A
more serious reason is that a hidden credit screen can be used to demonstrate who
wrote the program, as a sort of legal copyright.

I’ve written a simple example, showing how you might implement a hidden screen.
The dialog box has a Panel component containing two Label components. The panel
might contain any number of components to display graphics and text. Some of the
strings might even be computed at run time. The only added feature required to
show the hidden credits is a PaintBox component covering part of the form.

When the user makes a specific complex action (in this case, right-clicking on the
upper label while holding down the Shift key), the panel is hidden and something
appears on the screen. A simple solution is to have some text painted on the surface
of the form—that is, on its canvas:

procedure TAboutBox.Label1MouseDown(Sender: TObject;
 Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if (Button = mbRight) and (ssShift in Shift) then
 begin
 Panel1.Visible := False;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

364 - Chapter 8: Using Multiple Forms

 PaintBox1.Canvas.Font.Name := ‘Arial’;
 PaintBox1.Canvas.Font.Size := 20;
 PaintBox1.Canvas.TextOut (40, 50, ‘Author: Marco Cantù’);
 PaintBox1.Canvas.TextOut (40, 100, ‘Version 1.0’);
 end;
end;

To build a more spectacular hidden screen, we might scroll some text in a for loop,
as I’ve done in the final version of the Credits example. Notice that the position of
the lines depend on the height of the text, retrieved by calling the TextHeight
method of the Canvas of the PaintBox component:

Panel1.Visible := False;
LineH := PaintBox1.Canvas.TextHeight (‘0’);
for I := 0 to 100 + LineH * 10 do
 with PaintBox1.Canvas do
 begin
 // empty lines are used to delete descendants
 TextOut (40, 100 - I, ‘CREDITS example from:’);
 TextOut (40, 100 + LineH - I, ‘“Mastering Delphi”‘);
 TextOut (40, 100 + LineH * 2 - I, ‘ ‘);
 ...
 // wait 5 milliseconds
 Delay (0, 5);
 end;
Panel1.Visible := True;

To avoid a scrolling rate that’s too fast, particularly on faster computers, inside the
for loop I’ve added a call to a Delay procedure, which requires as parameters the
seconds and milliseconds you want to wait for. This Delay procedure simply checks
the current time and then waits in a while loop until the required seconds and mil-
liseconds have elapsed:

procedure Delay (Seconds, MilliSec: Word);
var
 TimeOut: TDateTime;
begin
 TimeOut := Now + EncodeTime (0,
 Seconds div 60, Seconds mod 60, MilliSec);
 // wait until the TimeOut time
 while Now < TimeOut do
 Application.ProcessMessages;
end;

Inside the loop I call the ProcessMessages method of the Application global object
to let Windows generate and dispatch the needed paint messages. This Delay proce-
dure is a fairly generic one, so you can use it in other applications quite easily.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 365

note Consider another aspect of the preceding example. We have written some code to draw on the
surface of a dialog box. Although it is not very common, dialog boxes can have graphical output
and respond to mouse input just like any other form. In fact, a dialog box is a form.

Building a Splash Screen

Another typical technique used in applications is to display an initial screen before
the main form is shown. This makes the application seem more responsive, because
you show something to the user while the program is loading, but it also makes a
nice visual effect. Sometimes, this same window is displayed as the application’s
About box.

For an example in which a splash screen is particularly useful, I’ve built a program
displaying a list box filled with prime numbers. The prime numbers are computed
on program start-up, so that they are displayed as soon as the form becomes visible:

procedure TForm1.FormCreate(Sender: TObject);
var
 I: Integer;
begin
 for I := 1 to 20000 do
 if IsPrime (I) then
 ListBox1.Items.Add (IntToStr (I));
end;

This method calls an IsPrime function I’ve added to the program. This function,
which you can find in the source code, computes prime numbers in a terribly slow
way; but I needed a slow form creation to demonstrate my point. The numbers are
added to a list box that covers the full client area of the form and allows multiple
columns to be displayed, as you can see in Figure 8.8.

As you can see by running the Splash0 example, the problem with this program is
that the initial operation, which takes place in the FormCreate method, takes a lot of
time. When you start the program, it takes several seconds (on a standard Pentium
machine203) to display the main form. If your computer is very fast or very slow, you
can change the upper limit of the for loop of the FormCreate method to make the
program faster or slower.

203 I know this sounds old, but that’s the type of CPU in use at the time this book was originally
written.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

366 - Chapter 8: Using Multiple Forms

Figure 8.8: The main
form of the Splash
example, with the
About box activated
from the menu. Image
from the original book.

This program has a simple dialog box with an image component, a simple caption,
and a bitmap button, all placed inside a panel taking up the whole surface of the
About box. This form is displayed when you select the Help About menu item. But
what we really want is to display this About box while the program starts. You can
see this effect by running the Splash1 and Splash2 examples, which show a splash
screen using two different techniques.

First of all, I’ve added a method to the TAboutBox class. This method, called
MakeSplash, changes some properties of the form to make it suitable for a splash
form. Basically it removes the border and caption, hides the OK button, makes the
border of the panel thick (to replace the border of the form), and then shows the
form, repainting it immediately (see Figure 8.9 for the effect):

procedure TAboutBox.MakeSplash;
begin
 BorderStyle := bsNone;
 BitBtn1.Visible := False;
 Panel1.BorderWidth := 3;
 Show;
 Update;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 367

Figure 8.9: The form
of the splash screen of
the Splash1 example is
slightly different than
the original About box
(shown in Figure 8.8).
Image from the
original book.

This method is called after creating the form in the project file of the Splash1 exam-
ple. This code is executed before creating the other forms (in this case only the main
form), and the splash screen is then removed before running the application. These
operations take place within a try-finally block. Here is the source code of the
main block of the project file for the Splash2 example:

var
 SplashAbout: TAboutBox;

begin
 Application.Initialize;

 // create and show the splash form
 SplashAbout := TAboutBox.Create (Application);
 try
 SplashAbout.MakeSplash;
 // standard code...
 Application.CreateForm(TForm1, Form1);
 // get rid of the splash form
 SplashAbout.Close;
 finally
 SplashAbout.Free;
 end;

 Application.Run;
end.

This approach makes sense only if your application’s main form takes a while to cre-
ate, to execute its start-up code (as in this case), or to open database tables. Notice
that the splash screen is the first form created, but because the program doesn’t use
the CreateForm method of the Application object, this doesn’t become the main
form of the application. In this case, in fact, closing the splash screen would termi-
nate the program!

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

368 - Chapter 8: Using Multiple Forms

An alternative approach is to keep the splash form on the screen a little longer and
use a timer to get rid of it after a while. I’ve implemented this second technique in
the Splash2 example. This example also uses a different approach for creating the
splash form: instead of creating it in the project source code, it creates the form at
the very beginning of the FormCreate method of the main form.

procedure TForm1.FormCreate(Sender: TObject);
var
 I: Integer;
 SplashAbout: TAboutBox;
begin
 // create and show the splash form
 SplashAbout := TAboutBox.Create (Application);
 SplashAbout.MakeSplash;
 // standard code...
 for I := 1 to 20000 do
 if IsPrime (I) then
 ListBox1.Items.Add (IntToStr (I));
 // get rid of the splash form, after a while
 SplashAbout.Timer1.Enabled := True;
end;

note This code works properly regardless of the form’s creation order, as indicated by the
OldCreateOrder property (discussed in Chapter 6).

The timer is enabled just before terminating the method. After its interval has
elapsed (in the example, 3 seconds) the OnTimer event is activated, and the splash
form handles it by closing and destroying itself:

procedure TAboutBox.Timer1Timer(Sender: TObject);
begin
 Close;
 Release;
end;

note The Release method of a form is similar to the Free method of objects, only the destruction of
the form is delayed until all event handlers have completed execution. Using Free inside a form
might cause an access violation, as the internal code, which fired the event handler, might refer
again to the form object.

There is one more thing to fix. The Main form will be displayed later and in front of
the splash form, unless you make this a topmost form. For this reason I’ve added
one line to the MakeSplash method of the About box in the Splash2 example:

FormStyle := fsStayOnTop;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 369

Multiple-Page Forms

When you have a lot of information and controls to display in a dialog box or a form,
you can use multiple pages. The metaphor is that of a notebook: Using tabs, a user
can select one of the possible pages.

There are two controls you can use to built a multiple-page application in Delphi204:

· You can use the Windows 95 PageControl component, which has tabs on one of
the sides and multiple pages (similar to panels) covering the rest of its surface.
As there is one page per tab, you can simply place components on each page to
obtain the proper effect both at design time and at run time.

· You can use the TabControl, which has only the tab portion but offers no pages to
host the information. In this case you’ll want to use one or more components to
mimic the page change operation.

A third related component, the TabSheet, represents a single page of the PageCon-
trol. This is not a stand-alone component and is not available on the Component
palette. You create a TabSheet at design time by using the local menu of the Page-
Control or at run time by using methods of the same control.

note Delphi still includes the Notebook, TabSet, and TabbedNotebook components introduced in ear-
lier versions. Use these components only if you need to create a 16-bit version of an application.
For any other purpose, the PageControl and TabControl components, which encapsulate Win32
common controls, provide a more modern user interface. Actually, in 32-bit versions of Delphi,
the TabbedNotebook component was reimplemented using the Win32 PageControl internally, to
reduce the code size and update the look.

PageControls and TabSheets

As usual, instead of duplicating the Help system’s list of properties and methods of
the PageControl component, I’ve built an example that stretches its capabilities and
allows you to change its behavior at run time. The example, called Pages, has a
PageControl with three pages. The structure of the PageControl and of the other key
components is listed below:

204 This is still true today, although Delphi 12 added a new metaphor for hosting MDI or regular
forms within a tab-based UI. The new component is called FormTabsBar and it offers a lot of
power while simplifying the coding required in VCL to host forms in tabs.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

370 - Chapter 8: Using Multiple Forms

object Form1: TForm1
 BorderIcons = [biSystemMenu, biMinimize]
 BorderStyle = bsSingle
 Caption = ‘Pages Test’
 OnCreate = FormCreate
 object PageControl1: TPageControl
 ActivePage = TabSheet1
 Align = alClient
 HotTrack = True
 Images = ImageList1
 MultiLine = True
 object TabSheet1: TTabSheet
 Caption = ‘Pages’
 object Label3: TLabel
 object ListBox1: TListBox
 end
 object TabSheet2: TTabSheet
 Caption = ‘Tabs Size’
 ImageIndex = 1
 object Label1: TLabel
 // other controls
 end
 object TabSheet3: TTabSheet
 Caption = ‘Tabs Text’
 ImageIndex = 2
 object Memo1: TMemo
 Anchors = [akLeft, akTop, akRight, akBottom]
 OnChange = Memo1Change
 end
 object BitBtnChange: TBitBtn
 Anchors = [akTop, akRight]
 Caption = ‘&Change’
 end
 end
 end
 object BitBtnPrevious: TBitBtn
 Anchors = [akRight, akBottom]
 Caption = ‘&Previous’
 OnClick = BitBtnPreviousClick
 end
 object BitBtnNext: TBitBtn
 Anchors = [akRight, akBottom]
 Caption = ‘&Next’
 OnClick = BitBtnNextClick
 end
 object ImageList1: TImageList
 Bitmap = {...}
 end
end

Notice that the tabs are connected to the bitmaps provided by an ImageList control
and that some controls use the Anchors property to remain at a fixed distance from

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 371

the right or bottom borders of the form. Even if the form doesn’t support resizing
(this would have been far too complex to set up with so many controls), the posi-
tions can change when the tabs are displayed on multiple lines (simply increase the
length of the captions) or on the left side of the form.

Each TabSheet object has its own Caption, which is displayed as the sheet’s tab. At
design time you can use the local menu to create new pages and to move between
pages. You can see the local menu of the PageControl component in Figure 8.10,
together with the first page. This page holds a list box and a small caption, and it
shares two buttons with the other pages.

If you place a component on a page, it is available only in that page. How can you
have the same component (in this case, two bitmap buttons) in each of the pages,
without duplicating it? Simply place the component on the form, outside of the
PageControl (or before aligning it to the client area) and then move it in front of the
pages, calling the Bring to Front command of the form’s local menu. The two but-
tons I’ve placed in each page can be used to move back and forth between the pages
and are an alternative to using the tabs. Here is the code associated with one of
them:

procedure TForm1.BitBtnNextClick(Sender: TObject);
begin
 PageControl1.SelectNextPage (True);
end;

Figure 8.10: The first
sheet of the
PageControl of the
Pages example, with its
local menu. Image
from the original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

372 - Chapter 8: Using Multiple Forms

The other button calls the same procedure, passing False as its parameter to select
the previous page. Notice that there is no need to check whether we are on the first
or last page, because the SelectNextPage method considers the last page to be the
one before the first and will move you directly between those two pages.

Now we can focus on the first page again. It has a list box, which at run time will
hold the names of the tabs. If a user clicks on an item of this list box, the current
page changes. This is the third method available to change pages (after the tabs and
the Next and Previous buttons). The list box is filled in the FormCreate method,
which is associated with the OnCreate event of the form and copies the caption of
each page (the Page property stores a list of TabSheet objects):

for I := 0 to PageControl1.PageCount - 1 do
 ListBox1.Items.Add (PageControl1.Pages.Caption);

When you click on a list item, you can select the corresponding page:

procedure TForm1.ListBox1Click(Sender: TObject);
begin
 PageControl1.ActivePage :=
 PageControl1.Pages [ListBox1.ItemIndex];
end;

The second page hosts two edit boxes (connected with two UpDown components),
two check boxes, and two radio buttons, as you can see in Figure 8.11. The user can
input a number (or choose it by clicking on the up and down buttons with the
mouse or pressing or while the corresponding edit box has the focus), check the
boxes and the radio buttons, and then press the Apply button to make the changes:

procedure TForm1.BitBtnApplyClick(Sender: TObject);
begin
 // set tab width, height, and lines
 PageControl1.TabWidth := StrToInt (EditWidth.Text);
 PageControl1.TabHeight := StrToInt (EditHeight.Text);
 PageControl1.MultiLine := CheckBoxMultiLine.Checked;
 // show or hide the last tab
 TabSheet3.TabVisible := CheckBoxVisible.Checked;
 // set the tab position
 if RadioButton1.Checked then
 PageControl1.TabPosition := tpTop
 else
 PageControl1.TabPosition := tpLeft;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 373

Figure 8.11: The
second page of the
example can be used to
size and position the
tabs. Here you can see
the tabs on the left of
the page control. Image
from the original book.

With this code, we can change the width and height of each tab (remember that 0
means the size is computed automatically from the space taken by each string),
choose to have either multiple lines of tabs or two small arrows to scroll the tab
area, and move them to the left side. The control also allows tabs to be placed on the
bottom or on the right; but our program doesn’t allow that, because it would make
the placement of the other controls quite complex.

You can also hide the last tab on the PageControl, which corresponds to the
TabSheet3 component. If you hide one of the tabs by setting its TabVisible property
to False, you cannot reach that tab by clicking on the Next and Previous buttons,
which are based on the SelectNextPage method. Instead, you should use the
FindNextPage function, as shown below in this new version of the Next button’s
OnClick event handler:

procedure TForm1.BitBtnNextClick(Sender: TObject);
begin
 PageControl1.ActivePage :=
 PageControl1.FindNextPage (
 PageControl1.ActivePage, True, False);
end;

The last page has a memo component, again with the names of the pages (added in
the FormCreate method). You can edit the names of the pages and press the Change
button to change the text of the tabs, but only if the number of strings matches the
number of tabs:

procedure TForm1.BitBtnChangeClick(Sender: TObject);
var
 I: Integer;
begin

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

374 - Chapter 8: Using Multiple Forms

 if Memo1.Lines.Count <> PageControl1.PageCount then
 MessageDlg (‘One line per tab, please’, mtError, [mbOK], 0)
 else
 for I := 0 to PageControl1.PageCount -1 do
 PageControl1.Pages [I].Caption := Memo1.Lines [I];
 BitBtnChange.Enabled := False;
end;

Finally the last button, Add Page, allows you to add a new tab sheet to the page con-
trol, although the program doesn’t add any components to it. The (empty) tab sheet
object is created using the page control as its owner, but it won’t work unless you
also set the PageControl property. Before doing this, however, you should make the
new tab sheet visible. Here is the code:

procedure TForm1.BitBtnAddClick(Sender: TObject);
var
 strCaption: string;
 NewTabSheet: TTabSheet;
begin
 strCaption := ‘New Tab’;
 if InputQuery (‘New Tab’, ‘Tab Caption’, strCaption) then
 begin
 // add a new empty page to the control
 NewTabSheet := TTabSheet.Create (PageControl1);
 NewTabSheet.Visible := True;
 NewTabSheet.Caption := strCaption;
 NewTabSheet.PageControl := PageControl1;
 PageControl1.ActivePage := NewTabSheet;
 // add it to both lists
 Memo1.Lines.Add (strCaption);
 ListBox1.Items.Add (strCaption);
 end;
end;

note Whenever you write a form based on a PageControl, remember that the first page displayed at run
time is the page you were in before the code was compiled. This means that if you are working on
the third page and then compile and run the program, it will start with that page. A common way
to solve this problem is to add a line of code in the FormCreate method to set the PageControl or
notebook to the first page. This way, the current page at design time doesn’t determine the initial
page at run time.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 375

Frames and Pages

When you have a dialog box with many pages full of controls, the code underlying
the form becomes very complex because all the controls and methods are declared
in a single form. Also, creating all these components (and initializing them) might
result in a delay in the display of the dialog box.

The availability of frames in Delphi 5 (see Chapters 1 and 4) can solve both of these
issues. First, you can easily divide the code of a single complex form into one frame
per page. The form will simply host all of the frames in a PageControl. This certainly
helps you to have simpler and more focused units and makes it simpler to reuse a
specific page in a different dialog box or application. Reusing a single page of a
PageControl without using a frame or an embedded form, in fact, is far from simple.

As an example of this approach I’ve built the FramePag example, which has some
frames placed inside the three pages of a PageControl, as you can see in Figure 8.12.
All of the frames are aligned to the client area, using the entire surface of the tab
sheet (the page) hosting them205.

Actually two of the pages have the same frame, but the two instances of the frame
have some differences at design time. The frame, called Frame3 in the example, has
a list box that is populated with a text file at start up, has buttons to modify the
items in the list and saves them to a file. The filename is placed inside a label, so
that you can easily select a file for the frame at design time by changing the Caption
of the label.

205 The new component I mentioned earlier, FormTabsBar, offers a similar architecture based on
the use of regular forms, rather than frames. The result is similar in the two cases, although I
personally tend to prefer using forms for tabbed applications when possible, because forms
have a few extra methods and events that can be quite handy..

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

376 - Chapter 8: Using Multiple Forms

Figure 8.12: Each
page of the FramePag
example contains a
frame, thus separating
the code of this
complex form into
more manageable
chunks. Images from
the original book.

note Being able to use multiple instances of a frame is one of the reasons this technique was intro-
duced, and customizing the frame at design time is even more important. Because adding
properties to a frame and making them available at design time requires some customized and
complex code, it is nice to use a component to host these custom values. You have the option of
hiding these components (such as the label in our example) if they don’t pertain to the user inter-
face.

In the example, we need to load the file when the frame instance is created. Because
frames have no OnCreate event, our best choice is probably to override the
CreateWnd method. Writing a custom constructor, in fact, doesn’t work as it is exe-
cuted too early—before the specific label text is available. Here is the frame class
code:

type
 TFrame3 = class(TFrame)
 ...
 public
 procedure CreateWnd; override;

Within the CreateWnd method, we simply load the list box content from a file.

Multiple Frames with No Pages

Another approach is to avoid creating all of the pages along with the form hosting
them. This can be accomplished by leaving the PageControl empty and creating the
frames only when a page is displayed. Actually, when you have frames on multiple
pages of a PageControl, the windows for the frames are created only when they are

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 377

first displayed, as you can find out by placing a breakpoint in the creation code of
the last example.

As an even more radical approach, you can get rid of the page controls and use a
TabControl. Used this way, the tab has no connected tab sheets (or pages) but can
display only one information at a time. For this reason, we’ll need to create the cur-
rent frame and destroy the previous one or simply hide it by setting its Visible
property to False or by calling the BringToFront of the new frame. Although this
sounds like a lot of work, in a large application this technique can be worth it for the
reduced resource and memory usage you can obtain by applying it.

To demonstrate this approach, I’ve built an example similar to the previous one, this
time based on a TabControl and dynamically created frames. The main form, visible
at run time in Figure 8.13, has only a TabControl with one page for each frame:

Figure 8.13: The first
page of the FrameTab
example at run time.
The frame inside the
tab is created at run
time. Image from the
original book.

object Form1: TForm1
 Caption = ‘Frame Pages’
 OnCreate = FormCreate
 object Button1: TButton...
 object Button2: TButton...
 object Tab: TTabControl
 Anchors = [akLeft, akTop, akRight, akBottom]
 Tabs.Strings = (
 ‘Frame2’
 ‘Frame3’)
 OnChange = TabChange
 end
end

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

378 - Chapter 8: Using Multiple Forms

I’ve given each tab a caption corresponding to the name of the frame, because I’m
going to use this information to create the new pages. When the form is created, and
whenever the user changes the active tab, the program gets the current caption of
the tab and passes it to the custom ShowFrame method. The code of this method,
listed below, checks whether the requested frame already exists (frame names in
this example follow the Delphi standard of having a number appended to the class
name), and then brings it to the front. If the frame doesn’t exist, it uses the frame
name to find the related frame class, creates an object of that class, and assigns a
few properties to it. The code makes extensive use of class references and dynamic
creation techniques (discussed in Chapter 3):

type
 TFrameClass = class of TFrame;

procedure TForm1.ShowFrame(FrameName: string);
var
 Frame: TFrame;
 FrameClass: TFrameClass;
begin
 Frame := FindComponent (FrameName + ‘1’) as TFrame;
 if not Assigned (Frame) then
 begin
 FrameClass := TFrameClass (FindClass (‘T’ + FrameName));
 Frame := FrameClass.Create (Self);
 Frame.Parent := Tab;
 Frame.Visible := True;
 Frame.Name := FrameName + ‘1’;
 end;
 Frame.BringToFront;
end;

To make this code work, you have to remember to add a call to RegisterClass in
the initialization section of each unit defining a frame.

An Image Viewer with Owner-Draw Tabs

The use of the TabControl and of a dynamic approach, as described in the last exam-
ple, can also be applied in more general (and simpler) cases. Every time you need
multiple pages that all have the same type of content, instead of replicating the con-
trols in each page, you can use a TabControl and change its contents when a new tab
is selected.

This is what I’ll do in the multiple-page bitmap viewer I’ll show in the next example,
called TabOnly. The image that appears in the TabControl of this form, aligned to

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 379

the whole client area, depends on the selection in the tab above it (as you can see in
Figure 8.14).

Figure 8.14: The
interface of the bitmap
viewer in the TabOnly
example. Notice the
owner-draw tabs.
Image from the
original book.

At the beginning, the TabControl has only a fake tab describing the situation (No
file selected). After selecting File Open, the user can choose a number of files in
the File Open dialog box, and the array of strings with the names of the files (the
Files property of the OpenDialog1 component) is used as the text for the tabs (the
Tabs property of TabControl1):

procedure TForm1.Open1Click(Sender: TObject);
begin
 if OpenDialog1.Execute then
 begin
 TabControl1.Tabs := OpenDialog1.Files;
 TabControl1.TabIndex := 0;
 TabControl1Change (TabControl1);
 end;
end;

After we display the new tabs, we have to update the image so that it matches the
first tab. To accomplish this, the program calls the method connected with the
OnChange event of the TabControl, which loads the file corresponding to the current
tab in the image component:

procedure TForm1.TabControl1Change(Sender: TObject);
begin
 Image1.Picture.LoadFromFile (
 TabControl1.Tabs [TabControl1.TabIndex]);
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

380 - Chapter 8: Using Multiple Forms

The only special feature of the example is that the TabControl has the OwnerDraw
property set to True. This means that the control won’t paint the tabs (which will be
empty at design time) but will have the application do this, by calling the OnDrawTab
event. In its code, the program displays the text vertically centered, using the
DrawText API function. The text displayed is not the entire file path but only the file-
name. Then, if the text is not None, the program reads the bitmap the tab refers to
and paints a small version of it in the tab itself. To accomplish this, the program
uses the TabBmp object, which is of type TBitmap and is created and destroyed along
with the form. The program also uses the BmpSide constant to position the bitmap
and the text properly:

procedure TForm1.TabControl1DrawTab(Control: TCustomTabControl;
 TabIndex: Integer; const Rect: TRect; Active: Boolean);
var
 TabText: string;
 OutRect: TRect;
begin
 TabText := TabControl1.Tabs [TabIndex];
 OutRect := Rect;
 InflateRect (OutRect, -3, -3);
 OutRect.Left := OutRect.Left + BmpSide + 3;
 DrawText (Control.Canvas.Handle,
 PChar (ExtractFileName (TabText)),
 Length (ExtractFileName (TabText)),
 OutRect, dt_Left or dt_SingleLine or dt_VCenter);
 if TabText <> ‘None’ then
 begin
 TabBmp.LoadFromFile (TabText);
 OutRect.Left := OutRect.Left - BmpSide - 3;
 OutRect.Right := OutRect.Left + BmpSide;
 Control.Canvas.StretchDraw (OutRect, TabBmp);
 end;
end;

This example works, unless you select a file that doesn’t contain a bitmap. The pro-
gram will warn the user with a standard exception, ignore the file, and continue its
execution.

The User Interface of a Wizard

Just as you can use a TabControl without pages, you can also take the opposite
approach and use a PageControl without tabs. What I want to focus on now is the
development of the user interface of a wizard. In a wizard, you are directing the user
through a sequence of steps, one screen at a time, and at each step you typically
want to offer the choice of proceeding to the next step or going back to correct input

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 381

entered in a previous step. So instead of tabs that can be selected in any order, wiz-
ards typically offer Next and Back buttons to navigate. This won’t be a complex
example; its purpose is just to give you a few guidelines. The example is called Wiz-
ardUI.

The starting point is to create a series of pages in a PageControl and set the
TabVisible property of each TabSheet to False (while keeping the Visible property
set to True). Contrary to what happened with past versions, in Delphi 5 you can now
hide the tabs also at design time. In this case you’ll need to use the shortcut menu of
the page control or the combo box of the Object Inspector to move to a another
page, instead of the tabs. But why don’t you want to see the tabs at design time? So
you can place controls on the pages and then place extra controls in front of the
pages (as I’ve done in the example), without seeing their relative positions change at
run time. You might also want to remove the useless captions of the tabs, which take
up some space in memory and in the resources of the application.

In the first page, I’ve placed on one side an image and a bevel control and on the
other side some text, a check box, and two buttons. Actually, the Next button is
inside the page, while the Back button is over it (and is shared by all the pages). You
can see this first page at design time in Figure 8.15. The following pages look simi-
lar, with a label, check boxes, and buttons on the right side and nothing on the left.

Figure 8.15: The first
page of the WizardUI
example at design
time. Image from the
original book.

When you click the Next button on the first page, the program looks at the status of
the check box and decides which page is the following one. I could have written the
code like this:

procedure TForm1.btnNext1Click(Sender: TObject);
begin
 BtnBack.Enabled := True;
 if CheckInprise.Checked then

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

382 - Chapter 8: Using Multiple Forms

 PageControl1.ActivePage := TabSheet2
 else
 PageControl1.ActivePage := TabSheet3;
 // move image and bevel
 Bevel1.Parent := PageControl1.ActivePage;
 Image1.Parent := PageControl1.ActivePage;
end;

After enabling the common Back button, the program changes the active page and
finally moves the graphical portion to the new page. Because this code has to be
repeated for each button, I’ve placed it in a method after adding a couple of extra
features. This is the actual code:

procedure TForm1.btnNext1Click(Sender: TObject);
begin
 if CheckInprise.Checked then
 MoveTo (TabSheet2)
 else
 MoveTo (TabSheet3);
end;

procedure TForm1.MoveTo(TabSheet: TTabSheet);
begin
 // add the last page to the list
 BackPages.Add (PageControl1.ActivePage);
 BtnBack.Enabled := True;
 // change page
 PageControl1.ActivePage := TabSheet;
 // move image and bevel
 Bevel1.Parent := PageControl1.ActivePage;
 Image1.Parent := PageControl1.ActivePage;
end;

Besides the code I’ve already explained, the MoveTo method adds the last page (the
one before the page change) to a list of visited pages, which behaves like a stack. In
fact, the BackPages object of the TList class is created as the program starts and the
last page is always added to the end. As the user presses the Back button, which is
not dependent on the page, the program extracts the last page from the list, deletes
its entry, and moves to that page:

procedure TForm1.btnBackClick(Sender: TObject);
var
 LastPage: TTabSheet;
begin
 // get the last page and jump to it
 LastPage := TTabSheet (BackPages [BackPages.Count - 1]);
 PageControl1.ActivePage := LastPage;
 // delete the last page from the list
 BackPages.Delete (BackPages.Count - 1);
 // eventually disable the back button

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 383

 BtnBack.Enabled := not (BackPages.Count = 0);
 // move image and bevel
 Bevel1.Parent := PageControl1.ActivePage;
 Image1.Parent := PageControl1.ActivePage;
end;

With this code, the user can move back several pages until the list is empty, at which
point we disable the Back button. The complication we need to deal with is that
while moving from a particular page, we know which pages are its “next” and “previ-
ous,” but we don’t know which page we came from, because there can be multiple
paths to reach a page. Only by keeping track of the movements with a list can we
reliably go back.

The rest of the code of the program, which simply shows some Web site addresses,
is very simple. The good news is that you can reuse the navigational structure of this
example in your own programs and modify only the graphical portion and the con-
tent of the pages.

Docking to a PageControl

Another interesting feature of page controls is the specific support for docking. As
you dock a new control over a PageControl, a new page is automatically added to
host it, as you can easily see in the Delphi environment. To accomplish this, you
simply set the PageControl as a dock host and activate docking for the client con-
trols. This works best when you have secondary forms you want to host. Moreover,
if you want to be able to move the entire PageControl into a floating window and
then dock it back, you’ll need a docking panel in the main form.

This is exactly what I’ve done in the DockPage example, which has a main form with
the following settings:

object Form1: TForm1
 Caption = ‘Docking Pages’
 object Panel1: TPanel
 Align = alLeft
 AutoSize = True
 DockSite = True
 OnMouseDown = Panel1MouseDown
 object PageControl1: TPageControl
 ActivePage = TabSheet1
 Align = alClient
 DockSite = True
 DragKind = dkDock
 object TabSheet1: TTabSheet
 Caption = ‘List’

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

384 - Chapter 8: Using Multiple Forms

 object ListBox1: TListBox
 Align = alClient
 end
 end
 end
 end
 object Splitter1: TSplitter
 Cursor = crHSplit
 end
 object Memo1: TMemo
 Align = alClient
 end
end

Notice that the Panel has the UseDockManager property set to True and that the
PageControl invariably hosts a page with a list box, as removing all pages apparently
causes problems. Now the program has two other forms, with similar settings
(although they host different controls):

object Form2: TForm2
 Caption = ‘Small Editor’
 DragKind = dkDock
 DragMode = dmAutomatic
 object Memo1: TMemo
 Align = alClient
 end
end

You can drag these forms onto the page control to add new pages to it, with captions
corresponding with the form titles. You can also undock each of these controls and
even the entire PageControl. To do this, the program doesn’t enable automatic drag-
ging, which would make it impossible to switch pages anymore. Instead, the feature
is activated when the user clicks on the area of the PageControl that has no tabs—
that is, on the underlying panel:

procedure TForm1.Panel1MouseDown(Sender: TObject;
 Button: TmouseButton; Shift: TShiftState; X, Y: Integer);
begin
 PageControl1.BeginDrag (False, 10);
end;

You can test this behavior by running the DockPage example, although Figure 8.16
tries to depict it. Notice that when you remove the PageControl from the main form,

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 385

Figure 8.16: The
main form of the
DockPage example
after a form has been
docked to the page
control on the left.
Notice that another
form uses part of the
area of a hosting panel.
Image from the
original book.

you can directly dock the other forms to the panel and then split the area with other
controls. This is the situation captured by the figure.

Creating MDI Applications

Besides using dialog boxes, or secondary forms, and squeezing components into a
form, there is a third approach that used to be common in Windows applications:
MDI (Multiple Document Interface). An MDI application is made up of a number of
forms that appear inside a single main form206.

If you use Windows Notepad, you can open only one text document, because
Notepad isn’t an MDI application207. But with your favorite word processor, you can

206 The MDI has long been phased out of the modern UI toolkit and Microsoft has in practical
terms deprecated this model, as they’ve neglected fixing bugs in Windows when using MDI on
HighDPI screens. Given that MDI has remained fairly popular among Delphi developes, Del-
phi 12 added renewed support for it VCL styled applications and also HighDPI applications
(overcoming some of the platform issues). There was also the addition of the FormTabsBar
component to help modernize the UI of MDI applications with the addition of tabs.

207 Microsoft introduced a multi tab UI for Notepad, just recently.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

386 - Chapter 8: Using Multiple Forms

probably open a number of different documents, each in its own child window,
because they are MDI applications. All these document windows are usually held by
a frame, or application, window.

In Windows 3 and 3.1, Microsoft stressed the use of MDI. With the advent Windows
95, Microsoft had to acknowledge that many users were not comfortable with this
interface. Office 2000 is the first large applications suite that drops the MDI model
for the SDI (Single Document Interface) model used by Windows Resource
Explorer and the entire operating system. MDI isn’t dead and can be a useful model
at times, but multipage and dockable forms seems to be more popular now.

MDI in Windows: A Technical Overview

This section provides a short overview of MDI, in technical Windows terms. Just
forget Delphi for a moment, and I’ll try to give you an idea of what MDI really is (not
what an MDI application looks like). If you’ve never built an MDI application and
you want a quick start, you might consider skipping this section for now.

The MDI structure gives programmers a number of benefits automatically. For
example, Windows handles a list of the child windows in one of the pull-down
menus of an MDI application, and there are specific Delphi methods that activate
the corresponding MDI functionality, to tile or cascade the child windows. The fol-
lowing is the technical structure of an MDI application in Windows208:

· The main window of the application acts as a frame or a container. This window
requires a proper menu structure and some specific coding (at least when pro-
gramming with the API).

· A special window, known as the MDI client, covers the whole client area of the
frame window, providing some special capabilities. For example, the MDI client
handles the list of child windows. Although this might seem strange at first, the
MDI client is one of the Windows predefined controls, just like an edit box or a
list box. The MDI client window does not have the typical elements of the inter-
face of a window, such as a caption or border, but it is visible. In fact, you can
change the standard system color of the MDI work area (called the “Application
Background”) in the Appearance page of the Display Properties dialog box in
Windows.

208 This is still the case today. Most of the platform and Delphi MDI features have seen very lim-
ited changes over the years, until Delphi 12, as mentioned in an earlier footnote.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 387

· There are a number of child windows, of the same kind or of different kinds.
These child windows are not placed in the frame window directly, but each is
defined as a child of the MDI client window, which in turn is a child of the frame
window. (We might say that the child windows are the “grandchildren” of the
frame.)

When you program using the Windows API, some work is usually required to build
and maintain this structure, and other coding is needed to handle the menu prop-
erly. As you’ll see in the next section, these tasks become much easier with Delphi.

Frame and Child Windows in Delphi

Delphi makes the development of MDI applications easy, even without using the
MDI Application template available in Delphi (see the Applications page of the File
 New dialog box). You only need to build at least two forms, one with the
FormStyle property set to fsMDIForm and the other with the same property set to
fsMDIChild. That’s all, almost. Simply set these two properties in a simple program
and run it, and you’ll see the two forms nested in the typical MDI style.

Generally, however, the child form is not created at start-up, and you need to pro-
vide a way to create one or more child windows. This can be done by adding a menu
with a New menu item and writing the following code:

procedure TMainForm.New1Click(Sender: TObject);
var
 ChildForm: TChildForm;
begin
 ChildForm := TChildForm.Create (Application);
 ChildForm.Show;
end;

In the code fragment above, as well as in the program example I’ll discuss shortly,
I’ve named the two forms MainForm and ChildForm. Another important feature is to
add a “Window” pull-down menu and use it as the value of the WindowMenu property
of the form. This pull-down menu will automatically list all the available child win-
dows. Of course, you can choose any other name for the menu item, but “Window”
is the standard.

With these simple operations, you can build a simple MDI application. To make this
program work properly, we can add a number to the title of any child window when
it is created:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

388 - Chapter 8: Using Multiple Forms

procedure TMainForm.New1Click(Sender: TObject);
var
 ChildForm: TChildForm;
begin
 WindowMenu := Window1;
 Inc (Counter);
 ChildForm := TChildForm.Create (Self);
 ChildForm.Caption := ChildForm.Caption + ‘ ‘ +
 IntToStr (Counter);
 ChildForm.Show;
end;

You can also open a number of child windows, minimize or maximize each of them,
close them, and use the Window pull-down menu to navigate among them. If you
create more than nine child windows, a More Windows menu item is added to the
pull-down menu; when you select this menu item, you’ll see a dialog box (provided
by Windows, not part of your program) with a complete list of the child windows.

Now suppose that we want to close some of these child windows, to unclutter the
client area of our program. Click on the Close box of some of the child windows and
they are minimized! What is happening here? Remember that when you close a
window, you generally hide it from view. The closed forms in Delphi still exist,
although they are not visible. In the case of child windows, simply hiding them
won’t work, because the MDI Window menu and the list of windows will still list
existing child windows, even if they are hidden. For this reason, Delphi simply mini-
mizes the MDI child windows when you try to close them. To solve this problem, we
need to delete the child windows when they are closed, setting the Action reference
parameter of the OnClose event to caFree.

Building a Complete Window Menu

Our first task is to define a better menu structure for the example. Typically the
Window pull-down menu has at least three items, titled Cascade, Tile, and Arrange
Icons. To handle the menu commands, we can use some of the predefined methods
that are available in forms that have the fsMDIForm value for the FormStyle prop-
erty:

· The Cascade method cascades the open MDI child windows. The child forms are
arranged starting from the upper-left corner of the client area of the frame win-
dows and moving toward the lower-left corner. The windows overlap each other.
Iconized child windows are also arranged (see ArrangeIcons below).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 389

· The Tile method tiles the open MDI child windows. The child forms are
arranged so that they do not overlap. The client area of the frame windows is
divided into equal portions for the different windows, so that they can all be
shown on the screen, no matter how many windows there are. The Tile method
will also arrange iconized child windows. The default behavior is horizontal
tiling, although if you have several child windows, they will be arranged in sev-
eral columns. This default can be changed by using the TileMode property.

· The TileMode property determines how the Tile procedure should work. The
only two choices are tbHorizontal, for horizontal tiling, and tbVertical, for ver-
tical tiling. Some applications use two different menu commands for the two
tiling modes; other applications offer only one Tile menu command but check
whether the Shift key is pressed when the user selects it. This actually confuses
most users, so you’ll probably want to keep your application simple, with one
tiling option.

· The ArrangeIcons procedure arranges all the iconized child windows, starting
from the lower-left corner of the client area of the frame window, and moving to
the upper-right corner. Open forms are not moved.

These procedures and properties are useful for handling the Window menu of an
MDI application. For example, you can write the following code:

procedure TMainForm.Cascade1Click(Sender: TObject);
begin
 Cascade;
end;

As a better alternative, you can place an ActionList in the form and add to it a series
of predefined MDI actions. The related classes are TWindowArrange,
TWindowCascade, TWindowClose, TWindowTileHorizontal, TWindowTileVertical,
and TWindowMinimizeAll. The connected menu items will perform the correspond-
ing actions and will be disabled if no child window is available. The MdiDemo
example, which we’ll look at next, demonstrates the use of the MDI actions, among
other things.

There are also some other interesting methods and properties related strictly to
MDI in Delphi:

· ActiveMDIChild is a run-time and read-only property of the MDI frame form,
and it holds the active child window. The user can change this value by selecting
a new child window, or the program can change it using the Next and Previous
procedures.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

390 - Chapter 8: Using Multiple Forms

· The Next procedure activates the child window that follows the active one in the
internal order.

· The Previous procedure activates the child window preceding the active one in
the internal order.

· The ClientHandle property holds the Windows handle of the MDI client win-
dow, which covers the client area of the main form.

· The MDIChildCount property stores the current number of child windows.

· The MDIChildren property is an array of child windows. You can use this and the
MDIChildCount property to cycle among all of the child windows, for example
using a for loop. This can be useful for finding a particular child window or to
operate on each of them.

Note that the internal order of the child windows is the reverse order of activation.
This means that the last child window selected is the active window (the first in the
internal list), the second-to-last child window selected is the second, and the first
child window selected is the last. This order determines how the windows are
arranged on the screen. The first window in the list is the one above all others, while
the last window is below all others, and probably hidden away. You can imagine an
axis (the z-axis) coming out of the screen toward you. The active window has a
higher value for the z-coordinate and, thus, covers other windows. For this reason,
the Windows ordering schema is known as the z-order.

The MdiDemo Example

I’ve built a first example to demonstrate most of the features of a simple MDI appli-
cation. MdiDemo is actually a full-blown MDI text editor, because each child
window hosts a Memo component and can open and save text files. The child form
has a Modified property used to indicate whether the text of the memo has changed.
It is used by the file operations and when the form is closed. The file operations are
performed by a couple of extra methods, as you can see in the class declaration of
the form:

 type
 TChildForm = class(TForm)
 Memo1: TMemo;
 procedure FormClose(Sender: TObject; var Action: TCloseAction);
 procedure Memo1Change(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);
 private

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 391

 fModified: Boolean;
 procedure SetModified(const Value: Boolean);
 public
 procedure Load (FileName: string);
 procedure Save;
 property Modified: Boolean
 read FModified write SetModified;
 end;

note As discussed in Chapter 3, if you want to follow the rules of OOP and provide a good encapsula-
tion, always add properties to a form to export a field instead of making the field public. The Class
Completion feature of Delphi 4 makes it so fast to add a property to a form that there are no more
excuses not to do it.

The fModified flag is set to True in the handler of the memo’s OnChange event, and
it is set to False in the form’s OnCreate event handler. It is also set to False every
time a new file is loaded or saved, as you can see in the code of the two file methods:

procedure TChildForm.Load (FileName: string);
begin
 Memo1.Lines.LoadFromFile (FileName);
 Caption := FileName;
 fModified := False;
end;

procedure TChildForm.Save;
begin
 Memo1.Lines.SaveToFile (Caption);
 fModified := False;
end;

Notice that the child form uses the caption to store the filename, a shortcut I’ve
adopted instead of adding a second property to the form.

The fModified flag is checked when a child form is closed, as you can see in the fol-
lowing listing. Keep in mind that the OnCloseQuery method of the child forms is also
automatically activated when you close the main form:

procedure TChildForm.FormCloseQuery(Sender: TObject;
 var CanClose: Boolean);
begin
 CanClose := not fModified or (MessageDlg (‘Close without saving?’,
 mtConfirmation, [mbYes, mbNo], 0) = mrYes);
end;

As I’ve already mentioned, the main form of this example is based on an ActionList
component. The actions are available through some menu items and a toolbar, as

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

392 - Chapter 8: Using Multiple Forms

you can see in Figure 8.17. You can see the details of the ActionList in the source
code of the example.

Next, I want to focus on the code of the custom actions. Once more, this example
demonstrates that using actions makes it very simple to modify the user interface of
the program, without writing any extra code. In fact, there is no code directly tied to
the user interface.

Figure 8.17: The
MdiDemo program
uses a series of
predefined Delphi
actions connected to a
menu and a toolbar.
Image from the
original book.

One of the simplest actions is the ActionFont object, which has both an OnExecute
handler, which uses a FontDialog component, and an OnUpdate handler, which dis-
ables the action (and hence the associated menu item and toolbar button) when
there are no child forms:

procedure TMainForm.ActionFontExecute(Sender: TObject);
begin
 if FontDialog1.Execute then
 (ActiveMDIChild as TChildForm).Memo1.Font :=
 FontDialog1.Font;
end;

procedure TMainForm.ActionFontUpdate(Sender: TObject);
begin
 ActionFont.Enabled := MDIChildCount > 0;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 393

The action named New creates the child form and sets a default filename. The Open
action calls the ActionNewExcecute method prior to loading the file:

procedure TMainForm.ActionNewExecute(Sender: TObject);
var
 ChildForm: TChildForm;
begin
 Inc (Counter);
 ChildForm := TChildForm.Create (Self);
 ChildForm.Caption :=
 LowerCase (ExtractFilePath (Application.Exename)) +
 ‘text’ + IntToStr (Counter) + ‘.txt’;
 ChildForm.Show;
end;

procedure TMainForm.ActionOpenExecute(Sender: TObject);
begin
 if OpenDialog1.Execute then
 begin
 ActionNewExecute (Self);
 (ActiveMDIChild as TChildForm).Load (OpenDialog1.FileName);
 end;
end;

The actual file loading is performed by the Load method of the form. Likewise, the
Save method of the child form is used by the Save and Save As actions. Notice the
OnUpdate handler of the Save action, which enables the action only if the user has
changed the text of the memo:

procedure TMainForm.ActionSaveAsExecute(Sender: TObject);
begin
 // suggest the current file name
 SaveDialog1.FileName := ActiveMDIChild.Caption;
 if SaveDialog1.Execute then
 begin
 // modify the file name and save
 ActiveMDIChild.Caption := SaveDialog1.FileName;
 (ActiveMDIChild as TChildForm).Save;
 end;
end;

procedure TMainForm.ActionSaveUpdate(Sender: TObject);
begin
 ActionSave.Enabled := (MDIChildCount > 0) and
 (ActiveMDIChild as TChildForm).Modified;
end;

procedure TMainForm.ActionSaveExecute(Sender: TObject);
begin
 (ActiveMDIChild as TChildForm).Save;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

394 - Chapter 8: Using Multiple Forms

MDI Applications with Different
Child Windows

A common approach in complex MDI applications is to include child windows of
different kinds (that is, based on different child forms). We will build a new exam-
ple, called MdiMulti, to highlight some problems you may encounter with this
approach. For this example, we need to build two different types of child forms. The
first type will host a circle drawn in the position of the last mouse click, while the
second will contain a bouncing square. Another feature I’ll add to the main form is a
custom background obtained by painting a tiled image in it.

Child Forms and Menus

The first type of child form can display a circle in the position where the user clicked
one of the mouse buttons. Figure 8.18 shows an example of the output of the Mdi-
Multi program. The program includes a Circle menu, which allows the user to
change the color of the surface of the circle as well as the color and size of its border.
What is interesting here is that to program the child form, we do not need to con-
sider the existence of other forms or of the frame window. We simply write the code
of the form, and that’s all. The only special care required is for the menus of the two
forms.

If we prepare a main menu for the child form, it will replace the main menu of the
frame window when the child form is activated. An MDI child window, in fact, can-
not have a menu of its own. But the fact that a child window can’t have any menus
should not bother you, because this is the standard behavior of MDI applications.
You can use the menu bar of the frame window to display the menus of the child
window. Even better, you can merge the menu bar of the frame window and that of
the child form. For example, in this program, the menu of the child form can be
placed between the frame window’s File and Window pull-down menus. You can
accomplish this using the following GroupIndex values:

· File pull-down menu, main form: 1

· Window pull-down menu, main form: 3

Circle pull-down menu, child form: 2

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 395

Figure 8.18: The
output of the MdiMulti
example, with a child
window that displays
circles. Image from the
original book.

Using these settings for the menu group indexes, the menu bar of the frame window
will have either two or three pull-down menus. At start-up, the menu bar has two
menus. As soon as you create a child window, there are three menus, and when the
last child window is closed (destroyed), the Circle pull-down menu disappears. You
can see this in Figure 8.18, but you should also spend some time testing this behav-
ior by running the program.

The code of the child window simply draws a shape on its sources. (For a complete
discussion of this program, check out the Chapter 22, “Graphics in Delphi”). If you
look at the source code, it is interesting to notice how the menu commands of the
running program pertains to the two forms, and that in the source code, each form
handles its own commands, regardless of the existence of other elements.

The data of the child form, particularly the coordinates of the center of the circle,
must be declared using some fields of the form and not other variables declared
inside the unit. In fact, we need a specific memory location to store the center of the
circle for each child window.

The second type of child form shows a moving image. The square, a Shape compo-
nent, moves around the client area of the form at fixed time intervals, using a Timer
component, and bounces on the edges of the form, changing its direction. This turn-
ing process is determined by a fairly complex algorithm, which we don’t have space
to examine. The main point of the example, instead, is to show you how menu merg-
ing behaves when you have an MDI frame with child forms of different types. (You
can study the downloaded source code to see how it works.)

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

396 - Chapter 8: Using Multiple Forms

Changing the Main Form

Now we need to integrate the two child forms into an MDI application. The main
form must provide a menu command to create a child form of the selected kind and
to check the group indexes of the pull-down menus. The File pull-down menu here
has two separate New menu items, which are used to create a child window of either
kind. The code uses a single child window counter. As an alternative, you could use
two different counters for the two kinds of child windows. Again, the Window menu
uses the predefined MDI actions.

As soon as a form of this kind is displayed on the screen, its menu bar is automati-
cally merged with the main menu bar. When you select a child form of one of the
two kinds, the menu bar changes accordingly. Once all the child windows are closed,
the original menu bar of the main form is reset. By using the proper menu group
indexes, we let Delphi accomplish everything automatically, as you can see in Figure
8.19.

Figure 8.19: The
menu bar of the
MdiMulti Demo4
application changes
automatically to reflect
the currently selected
child window, as you
can see by comparing
the menu bar with that
of Figure 8.18. Image
from the original book.

I’ve added a few other menu items in the main form. One menu choice is used to
close every child window and another shows some statistics about them. The
method related to the Count command scans the MDIChildren array property to
count the number of child windows of each kind (using the RTTI operator is). Once

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 397

these values are computed, they are shown on the screen with the MessageDlg func-
tion:

procedure TMainForm.Count1Click(Sender: TObject);
var
 NBounce, NCircle, I: Integer;
begin
 NBounce := 0;
 NCircle := 0;
 for I := 0 to MDIChildCount - 1 do
 if MDIChildren is TBounceChildForm then
 Inc (NBounce)
 else
 Inc (NCircle);
 MessageDlg (
 Format (‘There are %d child forms.’#13 +
 ‘%d are Circle child windows and ‘ +
 ‘%d are Bouncing child windows’,
 [MDIChildCount, NCircle, NBounce]),
 mtINformation, [mbOk], 0);
end;

Subclassing the MdiClient Window

Finally, the program includes support for a background-tiled image. The bitmap is
taken from an Image component and should be painted on the form in the
wm_EraseBkgnd Windows message’s handler. The problem is that we cannot simply
connect the code to the main form, as its surface is covered by a separate window,
the MdiClient window described earlier in this chapter.

We have no corresponding Delphi form for this window, so how can we handle its
messages? We have to resort to a low-level Windows programming technique
known as subclassing. (In spite of the name, this has little to do with OOP inheri-
tance). The basic idea is that we can replace the window procedure, which receives
all the messages of the window, with a new one we provide. This can be done by
calling the SetWindowLong API function and providing the memory address of the
procedure, the function pointer.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

398 - Chapter 8: Using Multiple Forms

note A window procedure is a function receiving all the messages for a window. Every window must
have a window procedure and can have only one. Even Delphi forms have a window procedure;
although this is hidden in the system, it calls the WndProc virtual function, which you can use.
But the VCL has a predefined handling of the messages, which are then forwarded to the mes-
sage-handling methods of a form after some preprocessing. With all this support, you need to
handle window procedures explicitly only when working with non-Delphi windows, as in this
case. For a thorough description of this topic you can refer to Delphi Developer’s Handbook
(Sybex, 1998), among other books.209

Unless we have some reason to change the default behavior of this system window,
we can simply store the original procedure and call it to obtain a default processing.
The two function pointers referring to the two procedures (the old and the new one)
are stored in two local fields of the form:

private
 OldWinProc, NewWinProc: Pointer;
 procedure NewWinProcedure (var Msg: TMessage);

The form also has a method we’ll use as a new window procedure, with the actual
code used to paint on the background of the window. Because this is a method and
not a plain window procedure, the program has to call the MakeObjectInstance
method to add a prefix to the method and let the system use it as if it were a func-
tion. All this description is summarized by only two complex statements:

procedure TMainForm.FormCreate(Sender: TObject);
begin
 NewWinProc := MakeObjectInstance (NewWinProcedure);
 OldWinProc := Pointer (SetWindowLong (
 ClientHandle, gwl_WndProc, Cardinal (NewWinProc)));
 OutCanvas := TCanvas.Create;
end;

The window procedure we install calls the default one. Then, if the message is
wm_EraseBkgnd and the image is not empty, we draw it on the screen many times
using the Draw method of a temporary canvas. This canvas object is created when
the program starts (see the code above) and connected to the handle passed as
wParam parameter by the message. With this approach, we don’t have to create a
new TCanvas object for every background painting operation requested, thus saving
a little time in the frequent operation. Here is the code, which produces the output
already seen in Figure 8.19:

procedure TMainForm.NewWinProcedure (var Msg: TMessage);
var

209 That book is now hard to find. Restoring it would be another interesting project.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 399

 BmpWidth, BmpHeight: Integer;
 I, J: Integer;
begin
 // default processing first
 Msg.Result := CallWindowProc (OldWinProc,
 ClientHandle, Msg.Msg, Msg.wParam, Msg.lParam);

 // handle background repaint
 if Msg.Msg = wm_EraseBkgnd then
 begin
 BmpWidth := MainForm.Image1.Width;
 BmpHeight := MainForm.Image1.Height;
 if (BmpWidth <> 0) and (BmpHeight <> 0) then
 begin
 OutCanvas.Handle := Msg.wParam;
 for I := 0 to MainForm.ClientWidth div BmpWidth do
 for J := 0 to MainForm.ClientHeight div BmpHeight do
 OutCanvas.Draw (I * BmpWidth,
 J * BmpHeight, MainForm.Image1.Picture.Graphic);
 end;
 end;
end;

What’s Next?

We have explored different ways to build applications that have several forms or
forms with multiple pages. We have seen how you can create a secondary modeless
form or a modal dialog box. Besides the basic examples, we have delved into some
advanced topics, such as dynamically building a number of forms; creating extensi-
ble dialog boxes, using the common dialogs and the Delphi message boxes; building
special About boxes, with hidden credits or used as a splash screen; as well as the
MDI technique.

There are many things we could do to further explore how to build applications with
multiple forms and extend their user interface. I’ve given equal coverage to various
techniques, although I have my preferences: fewer secondary forms, more dialog
boxes, MDI only for specific programs, notebooks, and docking whenever possible.

Now we can move forward to a very hot Delphi programming topic: building data-
base applications. This will take the next four chapters, which cover most of the
fundamental topics of Delphi database programming. It is possible to write a spe-
cific book about this, so the description won’t be exhaustive, but you should be able
to get a comprehensive overview of this key element of Delphi development.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

400 - Chapter 8: Using Multiple Forms

After these three database chapters, we’ll be able to start looking into Delphi behind
the scenes and focus on topics such as the construction of Delphi components and
ActiveX controls.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 401

Chapter 9: Writing

Database

Applications

Delphi’s support for database applications is one of the key features of the program-
ming environment. Many programmers spend most of their time writing data-
access code, which needs to be the most robust portion of a database application.
This chapter provides an overview of Delphi’s extensive support for database pro-
gramming. You can create very complex database applications, starting from a
blank form or one generated by Delphi’s Database Form Wizard210.

210 The Database Form Wizard is no longer available, but also a lot of the specific techniques de-
scribed in this chapter are not applicable any more. For one, the BDE data access library no
longer ships with Delphi, replaced by newer alternatives like FireDAC. Also using paradox ta-
bles, while technically possible, has long been deprecated and it no longer recommended (or
even suggested). In other words, the content of this chapter and the demos have severe limita-
tions, but some of the key concepts of the core DB.pas unit are still valid today.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

402 - Chapter 9: Writing Database Applications

What you won’t find here is a discussion of the theory of database design. I’m
assuming that you already know the fundamentals of database design and have
already designed the structure of a database. I won’t delve into database-specific
problems; my goal is to help you understand how Delphi supports this kind of pro-
gramming.

We’ll begin with an explanation of how data access works in Delphi, and then we’ll
review the database components that are available in Delphi. I won’t discuss the
simplest examples and techniques step by step, such as the use of the Database
Form Wizard, but instead I will focus on the foundations. Some of the topics cov-
ered in this chapter include an in-depth example of the TField components,
creating new tables with Delphi code, and using graphics. The following chapters
will provide information on many other more advanced database programming top-
ics.

Accessing Data with and without the
BDE

On a computer, permanent data—including database data—is always stored in files.
The two most common approaches are to store a whole database in what appears to
the file system as a single file or to store each table, index, and any other elements of
the database in separate files, usually on the same directory. Delphi supports both
approaches, depending on the database format you are using:

· Paradox and dBASE tables211 define databases as directories and each table as a
separate file (or actually multiple files if you include indexes and other support
files).

· Access, InterBase, and most SQL servers use a single file containing the entire
database, with all the tables and indexes.212.

211 This is a very old approach, not recommended today. For simple local data storage, a good re-
placement is to use memory tables (FDMemTable) and store their content to file. The differ-
ent, though, is that persistent tables can be loaded by one application at a time, while Paradox
and dBase accounted for access by multiple apps at the same time, with techniques explained
later in this chapter.

212 This is still generally true today.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 403

note The Borland Database Engine (BDE)213 uses an alias to refer to a database file or directory. You
can define new aliases for databases by using the Database Explorer or the Database Engine Con-
figuration utility. It is also possible to define them by writing code in Delphi that calls the
AddStandardAlias and AddAlias methods of the Session global object, followed by a call to
SaveConfigFile to make the alias persistent. The alternative is the low-level DbiAddAlias
BDE function.

Delphi database applications do not have direct access to the data sources they ref-
erence and cannot manipulate database files directly. Instead, they use an available
database engine, such as the Borland Database Engine (BDE) or Microsoft’s ActiveX
Data Objects (ADO)214.

The BDE has direct access to a number of data sources, including dBASE, Paradox,
ASCII, FoxPro, and even Access tables. The BDE can also interface with Borland’s
SQL Links, a series of drivers allowing access to a number of local and remote SQL
servers (available only in Delphi Enterprise). Database servers include Oracle,
Sybase, Informix, InterBase, and DB2215. If you need access to a different database
or data format, the BDE can interface with ODBC drivers, although in this case you
might want to use ADO instead. Notice, anyway that the BDE provides advanced
features (such as sophisticated caching and heterogeneous joins) that ADO doesn’t
offer.

ADO is Microsoft’s high-level interface216. ADO is implemented on Microsoft’s data
access OLE DB technology, which provides access to relational and non-relational
databases as well as e-mail and file systems and custom business objects. Applica-
tions built with Delphi 5’s ADO components don’t require the BDE libraries. Of
course, users need to have the ADO/OLE DB run time, which is distributed by
Microsoft and is part of the Windows 2000 operating system217. ADO will also need
to be configured on the user’s machine, even if it is already installed. Chapter 12 will
more fully cover ADO and related technologies.

213 As mentioned, the BDE no longer ships with Delphi, although it has remained available as a
separate download for some time. Needless to day the associated Database Explorer and Data-
base Engine Configuration tools are also no longer part of the Delphi installation.

214 Or FireDAC, or IBX, or the now deprecated dbExpress (DBX), or other third party database
access libraries.

215 FireDAC offers many more alternatives in terms of direct database support and it also includes
an ODBC gateeway.

216 Support for ADO ~(via the dbGo library) is still available in today’s Delphi, even if it’s not con-
sidered a top option as the underlying Microsoft library, while still available, has been ne-
glected in favor of ADO.NET.

217 The library is still part of Windows 11 and also of recent Windows Server editions.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

404 - Chapter 9: Writing Database Applications

Delphi Enterprise includes native components that access Borland’s own InterBase
server218 (available on the Delphi installation CD; see Chapter 11 for more details)
and the ClientDataSet component (see Chapter 21), which can be used for local or
remote data access. These technologies provide alternatives to the traditional use of
the BDE to access a database from Delphi applications. Figure 9.1 shows the alter-
native data-access techniques available in Delphi 5219, indicating that all the data-
access components inherit from a common base class, TDataSet.

If you choose the traditional BDE approach (as most of the examples in this chapter
do), you will need to install the BDE along with your applications on your clients’
computers. This is not difficult, because Delphi includes the “lite” version of a
widely used installation program (InstallShield) that can be used to prepare installa-
tion disks for the BDE, along with your own application. The BDE files are required
—your Delphi database applications won’t work without them—but you can distrib-
ute them freely.

Figure 9.1: The
alternative data access
technologies available in
Delphi 5. Image based
on a picture of the
original printed book.

218 InterBase Developer edition is an optional installation of todays’s Delphi, while the embedded
version of the database (IBLite/IBToGo) is installed automatically and is available for desktop
and mobile applications. See the InterBase section of Embarcadero web site for more details.

219 This image depicts what was available at the time, very different of what you can do today with
FireDAC and other alternatives.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 405

Delphi Database Components

Delphi includes a number of components related to databases. The Data Access
page220 of the Component Palette contains components used to interact with data-
bases in BDE-oriented applications. Most of them are non-visual components, since
they encapsulate database connections, tables, queries, and similar elements. Fortu-
nately, Delphi also provides a number of predefined components you can use to
view and edit database data. In the Data Controls page, there are visual components
used to view and edit the data in a form. These controls are called data-aware con-
trols221.

To access a database in Delphi, you generally need a data source, identified by the
DataSource component222. The DataSource component, however, does not indicate
the data directly; it refers to a DataSet component. This can be a table, the result of
a query, the result of a stored procedure, the data fetched from a remote server
(using the ClientDataSet component), ADO, InterBase, or some other custom
dataset.

As soon as you have placed a dataset component on the form, you can use the
DataSet property of the DataSource component to refer to it. For this property, the
Object Inspector lists the available datasets of the current form or of other forms
and data modules connected with the current one (using the File Use Unit com-
mand).

Tables and Queries

The simplest way to specify data access in Delphi is to use the Table component223. A
Table object simply refers to a database table. When you use a Table component,
you need to indicate the name of the database you want to use in its DatabaseName

220 The Data Access page still exists, but it hosts general purpose components only, not the BDE
ones, which are not in the product any more.

221 The VCL library still offers data-aware controls, but it also include Visual Live Bindings, the
primary technique used in FireMonkey to associated UI controls and data.

222 The role of the DataSource component hasn’t changed. It still refers to a TDataSet descendant,
exactly like in the early days of Delphi. The difference is that newer TDataSet descendants are
not available, like FireDAC datasets.

223 With this component missing, a good starting point is now the FDMemTable component,
which can be mapped to local data files. The alternative is to use the FDTable component, but
it requires the connection to a RDBMS to fetch any data.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

406 - Chapter 9: Writing Database Applications

property. You can enter an alias or the path of the directory with the table files. The
Object Inspector lists the available names, which depend on the aliases installed in
the BDE.

You also need to indicate a proper value in the TableName property224. The Object
Inspector lists the available tables of the current database (or directory), so you
should generally select the DatabaseName property.

A second data set available in Delphi is the Query component225. A query is usually
more complex than a table, because it requires a SQL language command. However,
you can customize a query using SQL more easily than you can customize a table (as
long as you know at least the basic elements of SQL, of course). The Query compo-
nent has a DatabaseName property like the Table component, but it does not have a
TableName property. The table is indicated in the SQL statement, stored in the SQL
property.

note SQL is a standard language for writing database queries and generally interacting with a data-
base. If you are not fluent in SQL, you can find a description of its basic commands in Chapter 11.
Delphi Enterprise includes a tool to create SQL queries, called SQL Builder226, and is discussed in
Chapter 11, as well.

For example, you can write a simple SQL statement like this

select * from Country

where Country is the name of a table, and the star symbol (*) indicates that you
want to use all of the fields in the table. If you are fluent in SQL, you might use the
Query component more often, but the efficiency of a table or a query varies depend-
ing on the database you are using. In general, we can say that the Table component
tends to be faster on local tables, while the Query component tends to be faster on
SQL servers, although this is just a very general rule, and in many cases you might
have the opposite effect. I’ll cover some efficiency issues in Chapters 10 and 11.

224 By contrast, FDMemTable only needs to refer to a local file.

225 The matching FireDAC component is called FDQuery.

226 This tool is also long gone, but FireDAC designers offer some help in creating queries and spe-
cific tools replacing the old query builder..

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 407

note The Country table mentioned above refers to the file COUNTRY.DB, which is part of the Delphi’s
demo database, installed by default in the C:\Program Files\Common Files\Borland Shared\Data
directory227. This directory is referenced by the DBDEMOS alias, set up by Delphi during the
installation. Many of my examples in the following chapters will use tables from this Delphi data-
base. In others, I’ll show you how to build new tables, but I’ll generally use that demo database, as
well.

The third component for data sets is StoredProc, which refers to stored procedures
of a SQL server database. You can run these procedures and get the results in the
form of a database table. Stored procedures can only be used with SQL servers.

The Status of a Data Set228

When you operate on a data set in Delphi, you can work in different states, indi-
cated by a specific State property, which can assume several different values:229

· dsBrowse indicates that the data set is in normal browse mode, used to look at
the data and scan the records.

· dsEdit indicates that the data set is in edit mode. A data set enters this state
when the program calls the Edit method or the DataSource has the AutoEdit
property set to True, and the user starts editing a data-aware control, such as a
DBGrid or DBEdit. When the changed record is posted, the data set exits the
dsEdit state.

· dsInsert indicates that a new record is being added to the data set. Again, this
might happen when calling the Insert method, moving to the last line of a
DBGrid, or using the corresponding command of the DBNavigator component.

· dsInactive is the state of a closed data set.

227 A similar directory under the demos folder (installed by default under the Windows users pub-
lic directory, C:\Users\Public\Embarcadero\xx.0) includes same of the same old Paradox ta-
bles converted to the format required by FireDAC’s FDMemTable.

228 The concept of Dataset status is still applicable and very important today, regardless of the
data access components used. The core idea remains the same and it’s very important to un-
derstand for Delphi database access.

229 Additional values compared to this list are dsBlockRead (used for reading data without chanc-
ing the current record), dsInternalCalc (similar to dsCalcFields, but for a modified version of
the calculated fields logic), and dsOpening (used to indicate the dataset is being opened, but it’
isn’t ready yet)

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

408 - Chapter 9: Writing Database Applications

· dsSetKey indicates that we are preparing a search on the data set. This is the
state between a call to the SetKey method and a call to the GotoKey or
GotoNearest methods (see the Search example later in this chapter).

· dsCalcFields is the state of a data set while a field calculation is taking place;
that is, during a call to an OnCalcFields event handler. Again, I’ll show this in an
example.

· dsNewValue, dsOldValue, and dsCurValue are the states of a data set when an
update of the cache is in progress.

· dsFilter is the state of a data set while setting a filter; that is, during a call to an
OnFilterRecord event handler.

In simple examples, the transitions between these states are handled automatically,
but it is important to understand them because there are many events referring to
the state transitions.

note We will use a simple state-transition event, the OnStateChange event of the DataSource compo-
nent, in the GridDemo example, the first example of this chapter.

Other Database Related Components

Along with the Table, Query, StoredProc, and DataSource, there are some other
components in the Data Access page of the Component palette, the BDE page. I’ll
cover these components in the next two chapters, but here is a short summary:

· The Database component is used for transaction control, security, and connec-
tion control230. It is generally used only to connect to remote databases in
client/server applications or to avoid the overhead of connecting to the same
database in several forms. The Database component is also used to set a local
alias used only inside a program. Once this local alias is set to a given path, the
Table and Query components of the application can refer to the local database
alias. This is much better than replicating the hard-coded path in each DataSet
component of the program.

230 In FireDAC, this is replaced by a combination of the FDConnection and FDTransaction com-
ponents.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 409

· The Session component231 provides global control over database connections for
an application, including a list of existing databases and aliases and an event to
customize database login.

· The BatchMove232 component is used to perform batch operations, such as copy-
ing, appending, updating, or deleting values, on one or more databases.

· The UpdateSQL233 component allows you to write SQL statements to perform
various update operations on the data set, when using a read-only query (that is,
when working with a complex query). This component is used as the value of the
UpdateObject property of tables or queries.

Delphi Data-Aware Controls

We have seen how it is possible to connect a data source to a database, using either
a table or query, but we still do not know how to view the data. For this purpose,
Delphi provides many components that resemble the usual Windows controls but
are data-aware. For example, the DBEdit component is similar to the Edit compo-
nent, and the DBCheckBox component corresponds to the CheckBox component.
You can find all of these components in the Data Controls page234 of the Delphi
Component Palette:

· DBGrid is a grid capable of displaying a whole table at once. It allows scrolling
and navigation, and you can edit the grid’s contents. It is an extension of the
other Delphi grid controls.

· DBNavigator is a collection of buttons used to navigate and perform actions on
the database. The buttons perform basic actions, so you can easily replace them
with your own toolbar.

· DBText displays the contents of a field that cannot be modified. It is a data-
aware Label graphical control.

231 The concept of Session was specific to the BDE. It has no match in other data access libraries.

232 FireDAC offers an extremely sophisticated “batch move” subsystem, based on FDBatchMove
but also many other specific components for reading and writing different data formats, from
database tables to XML, from JSON to CVS, from text files to other formats.

233 The same concept exists in FireDAC and other libraries, although FDUpdateSQL is only used
in very complex scenarios, as the core components like FDQuery offer automatic updates in
many cases.

234 These data-aware controls still exists aand are still frequently used. The only exception is the
DBCltrGrid, which is no longer very commonly used even if it’s still available.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

410 - Chapter 9: Writing Database Applications

· DBEdit lets the user edit a field (change the current value) using an Edit control.

· DBMemo lets the user see and modify a large text field, eventually stored in a
memo or BLOB (Binary Large OBject) field. It resembles the Memo component.

· DBImage is an extension of an Image component that shows a picture stored in a
BLOB field.

· DBListBox and DBComboBox let the user select a single value from a specified
set. If this set is extracted from another database table or is the result of another
query, you should use the DBLookupListBox or DbLookupComboBox compo-
nents instead.

· DBCheckBox can be used to show and toggle an option, corresponding to a Bool-
ean field, and extends the CheckBox component.

· DBRadioGroup provides a series of choices, with a number of exclusive selection
radio buttons, such as the RadioGroup control.

· DBRichEdit is a component that lets the user edit a formatted text file; it is based
on a Windows 95 RichEdit control.

· DBCtrlGrid is a multi-record grid, which can host a number of other data-aware
controls. These controls are duplicated for each record of the data set.

· DBChart235 is a data-aware business graphic component or the data-aware ver-
sion of the Chart component.

All of these components are connected to a data source using the corresponding
property, DataSource. Some of them relate to the entire data set, such as the
DBGrid and DBNavigator components, while the others refer to a specific field of
the data source, as indicated by the DataField property. Once you select the
DataSource property, the DataField property will have a list of values available in
the drop-down combo box of the Object Inspector.

235 This is tied to the Steema TeeChart add-on available in Delphi.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 411

Customizing a Database Grid

Our first database example, called GridDemo, uses the COUNTRY.DB236 table from
the DBDEMOS database, which lists New World countries, along with each one’s
capital and population. Simply place a Table, a DataSource, and a DBGrid compo-
nent on a form and connect them. If you set the Active property of the table to True,
the data will appear in the form at design time. (This technique is usually called
live-data design237.) When a grid displays live data, you can even use its scroll bars
to navigate through the records.

At this point, you can already run the program and even edit the data of the data-
base table, making permanent changes. This is possible because the DBGrid
component’s Options property includes the flag dgEditing and the ReadOnly prop-
erty is set to False. This program also allows you to insert a new record in a given
position by pressing the Insert key, to append a new record at the end by going to
the last record and pressing , and to delete the current record by pressing
Ctrl+Del.

note Try using this program for a while, testing how it works when you toggle the various flags of the
Options property of the grid on and off. These flags determine the behavior of the grid, which
can vary a lot. You can also see the description of the various options in Delphi’s help file.

Besides the Options property, you can customize the DBGrid component with the
easy-to-use yet very powerful Columns property. This property is a collection, so you
can choose one of the items in the list and then set its property in the Object Inspec-
tor, as you can see in Figure 9.2.

You can easily choose the fields of the table you want to see in the grid as columns
and then set a number of column properties (color, font, width, alignment, and so
on) for each field and title properties, such as the caption, font, and colors. This
allows you to customize a grid easily, in a number of ways. Some of the more
advanced properties, such as ButtonStyle and DropDownRows, can be used to pro-
vide custom editors for the cells of a grid or a drop-down list.

236 This table remains available in multiple format, including FireDAC’s FDMemTable native for-
mat (with .fds extension).

237 Nowadays, the feature is generally indicated as “live-data at design time” and, after all of
these years, Delphi remains one of the few dev tools offering this very handy feature.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

412 - Chapter 9: Writing Database Applications

Figure 9.2: You can
edit the properties of
the Columns of a
DBGrid by selecting
one of the columns in
the collection editor
and using the Object
Inspector. Image from
the original book.

In the GridDemo example, I’ve changed the caption of the first column and the font
of the first and third. I’ve also chosen a dark gray background and a white font color
for the first column. I’ve also entered the names of a few continents in the PickList
string list of the Continent field. You can see the result in Figure 9.3.

Figure 9.3: The
DBGrid of the
GridDemo example has
a few customized
Columns, including a
PickList for the
continents. Image from
the original book.

note Notice that once you have defined the Columns property of the DBGrid, you can size the columns
at design time simply by dragging the lines separating them. The same capability is optionally
available at run time, and it can be set along with many others using the Options property of the
grid.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 413

To summarize the features of this simple example, here is an extract of the form
description file:

object Form1: TForm1
 ActiveControl = DBGrid1
 Caption = ‘Grid Demo’
 object DBGrid1: TDBGrid
 Align = alClient
 DataSource = DataSource1
 Columns = <
 item
 Alignment = taRightJustify
 Color = clBtnShadow
 FieldName = ‘Name’
 Font.Style = [fsBold]
 ReadOnly = True
 Title.Alignment = taRightJustify
 Title.Caption = ‘Country’
 Title.Font.Style = [fsBold]
 end
 item
 FieldName = ‘Capital’
 end
 item
 Expanded = False
 FieldName = ‘Continent’
 Font.Style = [fsItalic]
 PickList.Strings = (
 ‘Africa’
 ‘Asia’
 ‘Australia’
 ‘Europe’
 ‘North America’
 ‘South America’)
 end
 item
 FieldName = ‘Area’
 end
 item
 FieldName = ‘Population’
 end>
 end
 object Table1: TTable
 Active = True
 DatabaseName = ‘DBDEMOS’
 TableName = ‘COUNTRY.DB’
 end
 object DataSource1: TDataSource
 DataSet = Table1
 OnStateChange = DataSource1StateChange
 end
end

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

414 - Chapter 9: Writing Database Applications

The Table State

There are many more things you can do to customize grids, and we’ll explore some
of them in the next chapter, where we will also discuss how to add graphics to a
grid. For the moment, I want to add an extra feature (and some code) to the exam-
ple. If you look at the caption of the form in Figure 9.3, you’ll notice something new:
the title of the form indicates the status of the Table component. How do we get this
information? Simply by handling the OnStateChange event of the DataSource com-
ponent. In this event handler, the DemoGrid example merely outputs the current
status, determined by using a simple case statement:

procedure TForm1.DataSource1StateChange(Sender: TObject);
var
 Title: string;
begin
 case Table1.State of
 dsBrowse: Title := ‘Browse’;
 dsEdit: Title := ‘Edit’;
 dsInsert: Title := ‘Insert’;
 else
 Title := ‘Other state’;
 end;
 Caption := ‘Grid Demo - ‘ + Title;
end;

The code considers only the three states the Table component238 of this program can
have as the user interacts with the corresponding DBGrid.

Field-Oriented Data-Aware Controls

The GridDemo example works well, but we want to try using other controls, such as
edit boxes, and we want to see specific information rather than all the data in our
database. Before we really look at the core of the VCL database structure, by exam-
ining the TField components, I want to cover the usage of some of the data-aware
controls you can use to see and edit the value of a database field. The starting point
is the use of edit boxes.

238 Given the State property is part of the TDataSet base class, the same logic and code would
work for any TDataSet descendant, including the FDMemTable component.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 415

Using DBEdit Controls

The next example, called EditDemo, uses some DBEdit components and some
labels, along with the table and the data source. We also need to add a brand-new
component, the DBNavigator. Figure 9.4 shows the form of the EditDemo example
at design time (with live data).

Again, we need to connect the three data-aware controls to the data source by set-
ting their DataSource property, and we must also indicate a specific field for each of
the three edit boxes in their DataField property (Name, Capital, and Continent are
the fields for this example). If you have already connected the data source to the
table and the edit boxes to the data source, you can simply select a field in the list
displayed by the Object Inspector for the DataField property. When this connection
is made, if the Active property of the Table is set to True the values of the first
record’s fields appear automatically in the edit boxes (see Figure 9.4).

Figure 9.4: The three
DBEdit and the
DBNavigator
components of the
EditDemo example,
with live data. Image
from the original book.

Another step we can take is to disable some of the buttons of the DBNavigator con-
trol, by removing some of the elements of the VisibleButtons set.

note If you turn on its ShowHint property, the navigator will show a different fly-by hint for every but-
ton. You can provide a customized description of each of them, using the Hints string list. The
strings you insert are used for the buttons in order: the first string is used for the first button, the
second for the second, and so on. If some buttons are not visible, you can provide an empty string
as a placeholder.

In the EditDemo program, I’ve used only some of the buttons, disabling the delete
and refresh operations. I’ve also aligned the navigator to the top of the form and set
its Flat property to True to activate the flat button style. You can run it to test
whether it works properly, and look at the caption again: I’ve copied to this program

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

416 - Chapter 9: Writing Database Applications

the OnStateChange event handler of the GridDemo program’s DataSource compo-
nent.

Notice that when the program is running at the beginning or when you jump to the
first or last record of the table, two of the navigator’s buttons will be disabled auto-
matically. However, if you move step-by-step to the first or last record, the buttons
are disabled only when you try to move beyond those records. The navigator (or the
dataset, to be more precise) only realizes at this point that there are no more records
in that direction. Other buttons are automatically enabled and disabled when you
enter or exit the edit state.

Creating a Database Table

Before we can move to some other data-aware controls, we need to do an extra step.
In the first two examples of this chapter, I’ve used existing tables of the DBDEMOS
database, but for the following ones I need to create a table with specific types of
fields. For this reason, I’ll introduce here a topic we’ll return to later on: the creation
of new database tables.

Starting with version 4, Delphi allows you to set the definition of the fields of a table
—its internal structure—at design time, using the collection editor of the FieldDefs
property. You can see the settings I’ve used for the DbAware example in Figure 9.5.

Figure 9.5: The editor
of the field definitions
collection. Images from
the original book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 417

Having defined the fields, you can now right-click the table component and select
the Create Table command239. This creates the new table at design time. In this spe-
cific example, there is no need to do this, since the program creates the table when it
starts, unless the table already exists:

procedure TForm1.FormCreate(Sender: TObject);
begin
 if not Table1.Exists then
 Table1.CreateTable;
 Table1.Open;
end;

To make this code work, the Table component must save the definition of the fields
in the DFM file along with the other properties. This is done only if you set the
StoreDefs property of the table to True. In Table 9.1, you can see the table field defi-
nitions, and the following listing shows the initial portion of the corresponding
definitions in the DFM file.

Table 9.1: The Fields of the Workers Database Table

NAME DATATYPE SIZE

LastName ftString 20

FirstName ftString 20

Department ftSmallint

Branch ftString 20

Senior ftBoolean

HireDate ftDate

object Table1: TTable
 FieldDefs = <
 item
 Name = ‘LastName’
 DataType = ftString

239 A very similar mechanism is available for the FDMemTable component, which offers design
time commands for creating a table or a CreateDataset method. The same approach of us-
ing FieldDefs described in the following paragraphs applies to FDMemTable and other
datasets.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

418 - Chapter 9: Writing Database Applications

 Size = 20
 end
 item
 Name = ‘Department’
 DataType = ftSmallint
 end

This new database table, called Workers, is intended to store some data about the
employees of a company. (Note that calling it “Employee” might have caused a
name conflict or confusion with one of the predefined tables.)

note The effect of the StoreDefs property is more complex than it seems at first. If you right-click the
form, you’ll notice that its local menu offers an Update Table Definition option, along with the
expected Delete Table and Rename Table. That is, you can store the field definitions locally, but if
the structure of the physical table changes, you should then update this definition, as well. In pre-
vious versions of Delphi, the field definitions were invariably loaded from the database table at
run time; now you can preload them, speeding up the table opening. However, if the local and the
actual table definitions do not match, you can get in trouble.

As we’ve seen, the DbAware example creates the table at start-up, unless it was
already created. The program then opens up the table. To avoid having you type in
data to start using the program, I’ve added to the program a simple AddRandomData
method:

const
 FirstNames : array [1..10] of string =
 (‘John’, ‘Paul’, ‘Mark’, ‘Joseph’, ‘Bill’,
 ‘Peter’, ‘Tim’, ‘Ralph’, ‘Bob’, ‘Gary’);
 LastNames : array [1..10] of string =
 (‘Ford’, ‘Osborse’, ‘White’, ‘MacDonald’, ‘Lee’,
 ‘Young’, ‘Parker’, ‘Reed’, ‘Gates’, ‘Green’);
 NoDept = 3;
 NoBranch = 30;
 NewRecords = 10;

procedure TDbaForm.AddRandomData;
var
 I: Integer;
begin
 Randomize;
 for I := 1 to NewRecords do
 Table1.InsertRecord ([
 LastNames [Random (High (LastNames)) + 1],
 FirstNames [Random (High (FirstNames)) + 1],
 Random (NoDept) + 1,
 DbComboBox1.Items [Random (NoBranch)],
 Boolean (Random (2)),
 Date - Random (1000)]);
 ShowMessage (IntToStr (NewRecords) + ‘ added’);

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 419

end;

AddRandomData calls the InsertRecord method of the table, which adds new data in
a direct way—without setting the table in insert mode, setting the value of the fields,
and then posting the data. In other examples, we’ll see alternative approaches for
adding data to a database table. Notice also that for the “branches” field I’ve used
the list of values available in the associated data-aware combo box.

Listing Alternative Values

Now that I’ve created the table I can use it for creating a simple demo application of
some of the other data-aware controls available in Delphi. For example, we can con-
nect the Boolean field, Senior, with a DBCheckBox control. This allows a user to
change the status of the field by clicking the control and setting or removing the
check mark.

While this is quite trivial, using the components that list alternative values requires
a little extra effort. There are basically three components with this capability: the
DBListBox, the DBComboBox, and the DBRadioGroup. In general, all the three
components provide a selection, which saves the user some typing and reduces the
chance of input errors. If the three components seem similar, providing a list of
strings in the Items property, they do have some differences:

· The DBListBox component allows selection of predefined items (“closed selec-
tion”), but not text input, and can be used to list many elements. Generally it’s
best to show only about six or seven items, to avoid using up too much space on
the screen.

· The DBComboBox component can be used both for closed selection and for user
input. It also uses a smaller area of the form because the drop-down list is usu-
ally displayed only on request.

· The DBRadioGroup component allows only a closed selection, should be used
only for a limited number of alternatives, and allows a mapping of the display
values to different internal values, through the Values string list.

In the DbAware example I’ve used the combo box for the selection of a country and
a radio group for the selection for the department. This is actually saved in the data-
base with a code, so I’ve mapped it as follows:

object DBRadioGroup1: TDBRadioGroup
 Caption = ‘Department’
 DataField = ‘Department’

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

420 - Chapter 9: Writing Database Applications

 DataSource = DataSource1
 Items.Strings = (
 ‘Sales’
 ‘Accounting’
 ‘Production’
 ‘Management’)
 Values.Strings = (
 ‘1’
 ‘2’
 ‘3’
 ‘4’)
end

You can see an example of this program in Figure 9.6. Notice that the program is
based on a page control: moving to the second page, you can see the database data
inside a DBGrid. This should help you understand the mapping done by the Radio-
Group control. The other element is that the main page doesn’t allow you to edit the
hire date, which is displayed in a read-only DBText control. We’ll see how to handle
dates in later examples.

Figure 9.6: The
output of the DbAware
demo, which uses
check box, combo box,
and radio group data-
aware controls. Image
from the original book.

Accessing the Data Fields

Before we try to build more attractive and complex application examples, there are a
few more technical elements we should explore. Up to now, we have included all of
the fields in the source database tables. Suppose that we want to remove a field or
add a new one, such as calculated fields? In trying to solve these problems, we face a

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 421

more general question: How do we access the values—the fields—of the current
record from a program? How can we change them without direct editing by the
user?

The answer to all of these questions lies in the concept of field. Field components
(instances of class TField or of one of its subclasses) are non-visual components
that are fundamental for every Delphi database application. Data-aware controls are
directly connected to these Field objects, which correspond to database fields.

In the examples we have built up to now, Delphi automatically created the TField
classes at run time240. This happens each time the program opens a data set compo-
nent. These fields are stored in the Fields array property of tables and queries,
which is an array of fields. We can access these values in our program by number
(accessing the array directly) or by name (using the FieldByName method or the
array notation):

Table1.Fields[0].AsString
Table1.FieldByName(‘LastName’).AsString
Table1 [‘LastName’].AsString

As an alternative, the field components can be created at design time, using the
Fields editor. In this case, you can also set a number of properties for these fields at
design time. These properties affect the behavior of the data-aware controls using
them, both for visualization and for editing. When you define new fields at design
time, they are listed in the Object Inspector, just like any other component.

note Although the Fields editor is similar to the editors of the collections used by Delphi, fields are not
part of a collection. They are components created at design time, listed in its published section of
the form class, and available in the drop-down combo box at the top of the Object Inspector.

To open the Fields editor for a table, select a Table object, activate its local menu
with a right-click, and choose the Fields Editor command. Double-clicking the table
component produces the same effect. An empty Fields editor appears. Now you
have to activate the local menu of this editor, to access its capabilities. The simplest
operation you can do is to select the Add command, which allows you to add any
other fields in the database table to the list of fields. Figure 9.7 shows the Add Fields
dialog box, which lists all the fields that are available in a table. These are the data-
base table fields that are not already present in the list of fields in the editor.

The Define command of the Fields editor, instead, lets you define a new calculated
field, a lookup field, or a field with a modified type. In this dialog box, you can enter

240 The concept of TField and the role of these objects in Delphi database application hasn’t
changed at all, even if some new features have been added over the years.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

422 - Chapter 9: Writing Database Applications

a descriptive field name, which might include blank spaces. Delphi generates an
internal name—the name of the field component—that you can further customize.
Next, select a data type for the field. If this is a calculated field or a lookup field, and
not just a copy of a field redefined to use a new data type, simply check the proper
radio button. We’ll see how to define a calculated field in the section “Adding a Cal-
culated Field” and a lookup field in the next chapter.

Figure 9.7: The Fields
editor with the Add
Fields dialog box.
Images from the
original book.

note A TField component has both a Name property and a FieldName property. The Name property
is the usual component name. The FieldName property is either the name of the column in the
database table or the name you define for the calculated field. It can be more descriptive than the
Name, and it allows blank spaces. The FieldName property of the TField component is copied
to the DisplayLabel property by default, but this field name can be changed to any suitable
text. It is used, among other things, to search a field in the FieldByName method of the
TDataSet class and when using the array notation.

All of the fields that you add or define are included in the Fields editor and can be
used by data-aware controls or displayed in a database grid. If a field of the original
database table is not in this list, it won’t be accessible. When you use the Fields edi-
tor, Delphi adds the declaration of the available fields to the class of the form, as
new components (much as the Menu Designer adds TMenuItem components to the
form). The components of the TField class, or more specifically its subclasses, are
fields of the form, and you can refer to these components directly in the code of your
program to change their properties at run time or to get or set their value, as in the
expression:

Table1LastName.AsString

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 423

In the Fields editor, you can also drag the fields to a different position to change
their order. Proper field ordering is particularly important when you define a grid,
which arranges its columns using this order.

note An even better feature of the Fields editor is that you can drag fields from this editor to the sur-
face of a form and have Delphi automatically create a corresponding data-aware control (such as
a DBEdit, a DBMemo, or a DBImage). The type of control created depends on the data type of the
field and on eventual definitions in the Data Dictionary (as discussed in the next chapter). This is
a very fast way to generate custom forms, and I suggest you try it out if you’ve never used it
before. This is my preferred way to build database-related forms, much better than using the
Database Form Wizard.

The Hierarchy of Field Classes

Before we look at an example, let’s go over the use of the TField class. The impor-
tance of this component should not be underestimated. Although it is often used
behind the scenes, its role in database applications is fundamental. As I already
mentioned, even if you do not define specific objects of this kind, you can always
access the fields of a table or a query using their Fields array property, the
FieldValues indexed property, or the FieldByName method. Both the Fields prop-
erty and the FieldByName function return an object of type TField, so you
sometimes have to use the as operator to downcast their result to its actual type
(like TFloatField or TDateField) before accessing specific properties of these sub-
classes.

The FieldAcc example is a simple extension of a form generated by the Database
Form Wizard. I’ve added to it three speed buttons in the toolbar panel, accessing
various Field properties at run time. The first button changes the formatting of the
population column of the grid. To do this, we have to access the DisplayFormat
property, a specific property of the TFloatField class. For this reason we have to
write:

procedure TForm2.SpeedButton1Click(Sender: TObject);
begin
 (Table1.FieldByName (‘Population’) as
 TFloatField).DisplayFormat := ‘###,###,###’;
end;

When you set field properties related to data input or output, the change applies to
every record in the table. When you set properties related to the value of the field,
instead, you always refer to the current record only. For example, we can output the
population of the current country in a message box by writing:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

424 - Chapter 9: Writing Database Applications

procedure TForm2.SpeedButton2Click(Sender: TObject);
begin
 ShowMessage (string (Table1 [‘Name’]) +
 ‘: ‘ + string (Table1 [‘Population’]));
end;

When you access the value of a field, you can use a series of As properties to handle
the current field value using a specific data type (if this is available, otherwise an
exception is raised):

AsBoolean: Boolean;
AsDateTime: TDateTime;
AsFloat: Double;
AsInteger: LongInt241;
AsString: string;
AsVariant: Variant;

These properties can be used to read or change the value of the field. Changing the
value of a field is possible only if the DataSet is in edit mode. As an alternative to the
As properties indicated above, you can access the value of a field by using its Value
property, which is defined as a Variant.

Most of the other properties of the TField component, such as Alignment,
DisplayLabel, DisplayWidth, and Visible, reflect elements of the field’s user inter-
face and are used by the various data-aware controls, particularly DBGrid. In the
FieldAcc example, clicking the third speed button changes the Alignment of every
field:

procedure TForm2.SpeedButton3Click(Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to Table1.FieldCount - 1 do
 Table1.Fields[I].Alignment := taCenter;
end;

This affects the output of the DBGrid, and of the DBEdit control I’ve added to the
toolbar, which shows the name of the country. You can see this effect, along with the
new display format, in Figure 9.8.

241 The type of AsInteger is now Integer.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 425

Figure 9.8: The
output of the FieldAcc
example after the
Center and Format
buttons have been
pressed. Image from
the original book.

There are several field class types in the VCL. Delphi automatically uses one of them
depending on the data definition in the database, when you open a table at run time
or when you use the Fields editor at design time. Table 9.2 shows the complete list
of subclasses of the TField class242.

Table 9.2: The Subclasses of TField (the field types in bold are new to Delphi 5 and
relate with ADO support)

SUBCLASS BASE CLASS DEFINITION

TADTField TObjectField An ADT (Abstract Data Type) field, corresponding to
an object field in an object relational database.

TAggregateField TField An aggregate field represents a maintained
aggregate. It is used in the ClientDataSet component
and discussed in Chapter 21.

TArrayField TObjectField An array of objects in an object relational database.

TAutoIncField TIntegerField Whole positive number connected with a Paradox
auto-increment field of a table, a special field
automatically assigned a different value for each
record. Note that Paradox AutoInc fields do not
always work perfectly, as discussed in the next
chapter.

242 There have been only a few additions to the list of TField descendant data types, including
TSQLTimeStampField and TFMTBCDField.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

426 - Chapter 9: Writing Database Applications

TBCDField TNumericField Real numbers, with a fixed number of digits after the
decimal point.

TBinaryField TField Generally not used directly. This is the base class of
the next two classes.

TBlobField TField Binary data and no size limit (BLOB stands for
Binary Large OBject). The theoretical maximum
limit is 2GB.

TBooleanField TField Boolean value.

TBytesField TBinaryField Arbitrary data with a large (up to 64K characters)
but fixed size.

TCurrencyField TFloatField Currency values, with the same range as the new
Real data type.

TDataSetField TObjectField An object corresponding to a separate table in an
object relational database.

TDateField TDateTimeField Date value.

TDateTimeField TField Date and time value.

TFloatField TNumericField Floating-point numbers (8 byte).

TGraphicField TBlobField Graphic of arbitrary length.

TGuidField TStringField A field representing a COM Globally Unique
Identifier, part of the ADO support.

TIDispatchField TInterfaceField A field representing pointers to IDispatch COM
interfaces, part of the ADO support.

TIntegerField TNumericField Whole numbers in the range of long integers (32
bits).

TInterfaceField TField Generally not used directly. This is the base class of
fields that contain pointers to interfaces
(IUnknown) as data.

TLargeIntField TIntegerField Very large integers (64 bit).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 427

TMemoField TBlobField Text of arbitrary length.

TNumericField TField Generally not used directly. This is the base class of
all the numeric field classes.

TObjectField TField Generally not used directly. The base class for the
fields providing support for object relational
databases.

TReferenceField TObjectField A pointer to an object in an object relational
database.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

428 - Chapter 9: Writing Database Applications

TSmallIntField TIntegerField Whole numbers in the range of integers (16 bits).

TStringField TField Text data of a fixed length (up to 8192 bytes).

TTimeField TDateTimeField Time value.

TVarBytesField TBytesField Arbitrary data, up to 64K characters. Very similar to
the TBytes-Field base class.

TVariantField TField A field representing a variant data type, part of the
ADO support.

TWideStringField TStringField A field representing a Unicode (16-bit per character)
string.

TWordField TIntegerField Whole positive numbers in the range of words or
unsigned integers (16 bits).

The availability of any particular field type, and the correspondence with the data
definition, depends on the database in use. For example, InterBase doesn’t support
BCD, so you’ll never get a BCDField for a table on the InterBase server. This is par-
ticularly true for the new field types that provide support for object relational
databases.

Adding a Calculated Field

Now that you’ve been introduced to TField objects and seen an example of their
run-time use, it is time to build a simple example based on the declaration of field
objects at design time using the Fields editor. We can start again from the first
example we’ve built, GridDemo, and add a calculated field. The COUNTRY.DB data-
base table we are accessing has both the population and the area of each country, so
we can use this data to compute the population density.

To build the new example, named Calc, select the Table component in the form, and
open the Fields editor (using the form’s SpeedMenu). In this editor, choose the Add
command, and select some of the fields. (I’ve decided to include them all.) Now

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 429

select the Define command, and enter a proper name and data type (TFloatField)
for the new calculated field, as you can see in Figure 9.9243.

note It is obvious that as you create some field components at design time using the Fields editor, the
fields you skip won’t get a corresponding object. What might not be obvious is that the fields you
skip will not be available even at run time, with Fields or FieldByName. When a program
opens a table at run time, if there are no design-time field components, Delphi creates field
objects corresponding to the table definition. If there are some design-time fields, however, Del-
phi uses those fields without adding any extra ones.

Figure 9.9: The
definition of a
calculated field in the
Calc example. Image
from the original book.

Of course, we also need to provide a way to calculate the new field. This is accom-
plished in the OnCalcFields event of the Table component, which has the following
code (at least in a first version):

procedure TForm2.Table1CalcFields(DataSet: TDataSet);
begin
 Table1PopulationDensity.Value :=
 Table1Population.Value / Table1Area.Value;
end;

Everything fine? Not at all! If you enter a new record and do not set the value of the
population and area, or if you accidentally set the area to zero, the division will raise
an exception, making it quite problematic to continue using the program. As an

243 There is now a second flavor of calculated fields, called internally calculated fields and avail-
able for component with memory storage (like FDMemTable and ClientDataSet). The differ-
ence is that in this second case the calculated value is kept in memory and used for display.
Rather than calculating the value each time the record becomes active, the calculation is per-
formed only the first time or when one of the other fields of the same record changes.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

430 - Chapter 9: Writing Database Applications

alternative, we could have handled every exception of the division expression and
simply set the resulting value to zero:

 try
 Table1PopulationDensity.Value :=
 Table1Population.Value / Table1Area.Value;
 except
 on Exception do
 Table1PopulationDensity.Value := 0;
 end;

However, we can do even better. We can check if the value of the area is defined—if
it is not null—and if it is not zero. It is better to avoid using exceptions when you can
anticipate the possible error conditions:

 if not Table1Area.IsNull and
 (Table1Area.Value <> 0) then
 Table1PopulationDensity.Value :=
 Table1Population.Value / Table1Area.Value
 else
 Table1PopulationDensity.Value := 0;

The code of the Table1CalcFields method above (in each of the three versions)
accesses some fields directly. This is possible because I used the Fields editor, and it
automatically created the corresponding field declarations, as you can see in this
excerpt of the interface declaration of the form:

type
 TCalcForm = class(TForm)
 Table1: TTable;
 Table1PopulationDensity: TFloatField;
 Table1Area: TFloatField;
 Table1Population: TFloatField;
 Table1Name: TStringField;
 Table1Capital: TStringField;
 Table1Continent: TStringField;
 procedure Table1CalcFields(DataSet: TDataset);
 ...

Each time you add or remove fields in the Fields editor, you can see the effect of
your action immediately in the grid present in the form. Of course, you won’t see the
values of a calculated field at design time; they are available only at run time,
because they result from the execution of compiled Pascal code.

Since we have defined some components for the fields, we can use them to custom-
ize some of the visual elements of the grid. For example, to set a display format that
adds a comma to separate thousands, we can use the Object Inspector to change the
DisplayFormat property of some field components to “###,###,###”. This change
has an immediate effect on the grid at design time.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 431

note The display format I’ve just mentioned (and used in the previous example) uses the Windows
International Settings to format the output. When Delphi translates the numeric value of this field
to text, the comma in the format string is replaced by the proper ThousandSeparator charac-
ter. For this reason, the output of the program will automatically adapt itself to different
International Settings. On computers that have the Italian configuration, for example, the comma
is replaced by a period.

After working on the table components and the fields, I’ve customized the DBGrid
using its Columns property editor. I’ve set the Population Density column to read-
only and set its ButtonStyle property to cbsEllipsis, to provide a custom editor.
When you set this value, a small button with an ellipsis is displayed when the user
tries to edit the grid cell. Pressing the button invokes the OnEditButtonClick event
of the DBGrid:

procedure TCalcForm.DBGrid1EditButtonClick(Sender: TObject);
begin
 MessageDlg (Format (
 ‘The population density (%.2n)’#13 +
 ‘is the Population (%.0n)’#13 +
 ‘divided by the Area (%.0n).’#13#13 +
 ‘Edit these two fields to change it.’,
 [Table1PopulationDensity.AsFloat,
 Table1Population.AsFloat,
 Table1Area.AsFloat]),
 mtInformation, [mbOK], 0);
end;

Actually, I haven’t provided a real editor, but rather a message describing the situa-
tion, as you can see in Figure 9.10, which shows the values of the calculated fields.
To create an editor, you might build a secondary form to handle special data entries.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

432 - Chapter 9: Writing Database Applications

Figure 9.10: The
output of the Calc
example. Notice the
Population Density
calculated column, the
ellipsis button, and the
message displayed
when you select it.
Image from the
original book.

Searching and Adding the Fields of a
Table

TField components can be used to access data and manipulate a table at run time.
We have seen only a limited example of direct data access; in the previous example,
we used the value of two fields to calculate a third one. Now we will build some sim-
ple examples that will allow us to use the fields to search elements in a table,
operate on the values, and access information about the tables of a database. There
are many more possible uses of field components, but this should give you an idea
of what can be done.

Looking for Records in a Table

For this example we need a new form, this time connected to EMPLOYEE.DB,
another of the sample Delphi tables. To prepare the form, you can use the Database

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 433

Form Wizard or drag the fields from the Fields editor, an operation that will auto-
matically add the corresponding labels244.

note If you place the data-aware edit boxes inside a scroll box aligned to the client area, you can freely
resize the form without any problems. When the form becomes too small, scroll bars will appear
automatically in the area holding the edit boxes.

Instead of the default Delphi navigator component, we can add a standard Toolbar
control and connect the buttons to some of the predefined dataset actions available
in the ActionList component. I’ve simply added an ImageList to the form and con-
nected it to the ActionList, to let the image list receive the images for the standard
actions. Then I’ve added to the ActionList the predefined standard actions
TDataSetFirst, TDataSetLast, TDataSetNext, and TDataSetPrior, plus two normal
actions to host the custom search code.

Now you can simply connect the buttons of the toolbar with the corresponding
actions and add to the toolbar an edit box where the user can enter the name to
search for, as you can see in Figure 9.11. The buttons will carry out the proper action
when pressed, and they will be disabled when the data set is at its beginning or end.

The searching capabilities are activated by the two buttons connected with custom
actions. The first button is connected with the ActionGoto, used for an exact match,
and the second with ActionGoNear for a nearest search. In both cases, we want to
compare the text in the edit box with the LastName fields of the Employee table.

Figure 9.11: An
example of a best-
match search using the
Search application.
Image from the
original book.

244 In terms of the database form wizards, this has never been ported to recent data access li-
braries and is not available today. Notice, instead, that the ability to drag fields from the field
editor to the form to display a matching UI control is still available today. This is a very handy
and fast way to build a UI, but it’s little known and rarely used by Delphi developers. I’m really
not sure why, considering it can be configured (in code) including the UI controls mapping.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

434 - Chapter 9: Writing Database Applications

The Table component has methods to accomplish this look up, such as GotoKey,
FindKey, GotoNearest, FindNearest, and Locate. The Locate method uses the opti-
mal access: if an index is available it uses the index for a faster search; otherwise, it
does a plain sequential search. To use the first group of search methods, you need to
set the IndexFieldNames property of the Table component to the proper value. (In
this case, you can directly select the string LastName;FirstName in the drop-down
list.)

The Find Methods

When the index is properly set, we can make the actual search. The simplest
approach is to use the FindNearest method for the approximate search and the
FindKey method to look for an exact match:

// goto
Table1.FindNearest ([EditName.Text]);

// go near
if not Table1.FindKey ([EditName.Text]) then
 MessageDlg (‘Name not found’, mtError, [mbOk], 0);

Both Find methods use as parameters an array of constants. Each array element
corresponds to an indexed field. In our case, we pass only the value for the first field
of the index, so the other fields will not be considered.

The Goto Methods

The FindNearest and FindKey methods are easy to use. To better understand how
they work, though, we can look at the usage of the GotoNearest and GotoKey meth-
ods. These last two methods, in fact, map very closely to the actual low-level BDE
calls. The simpler of the two is the best-guess search of the GotoNearest speed but-
ton:

// go near
Table1.SetKey;
Table1 [‘LastName’] := EditName.Text;
Table1.GotoNearest;

As you can see in this code, each search on a table is done in three steps: start up the
search state of the table, set a target value for each lookup field, and start the lookup
process, by moving the current record to the requested position.

The code used to call the other search method, using an exact-match algorithm, is
similar. The differences are in two statements:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 435

// go to
Table1.SetKey;
Table1 [‘LastName’] := EditName.Text;
Table1.KeyFieldCount := 1;
if not Table1.GotoKey then
 MessageDlg (‘Name not found’, mtError, [mbOK], 0);

As I’ve mentioned before, this code requires a proper index for the table. Notice the
value set for the KeyFieldCount property, which indicates that I want to use just the
first of the two fields that contribute to the index. The second difference is that the
GotoNearest procedure always succeeds, moving the cursor to the closest match (a
closest match always exists, even if it is not very close). On the other hand, the
GotoKey method fails if no exact match is available, and you can check the return
value of this function, and eventually warn the user of the error.

FindKey performs exactly the same steps as the GotoKey version of the above code.
FindKey and GotoKey provide equivalent functionality, except that the former is eas-
ier to use and the latter provides for better error handling.

The Locate Method

If the table doesn’t have an index on the field you are searching for (at least for local
tables), you cannot use the two techniques above. A third, more general, technique
is to use the Locate method. This approach is very handy in any case, because if
there is an index on the field you are searching, Locate automatically uses it; other-
wise it does a plain (and slower) search.

Using Locate is quite simple: Just provide a first string with the fields you want to
search and a variant with the value or values you are searching for. To search for
multiple fields, you need an array of values. (You can create one with the
VarArrayCreate call.) Here is an example of its use, extracted again from the Search
program:

// goto
if not Table1.Locate (‘LastName’, EditName.Text, []) then
 MessageDlg (‘Name not found’, mtError, [mbOk], 0);

The Total of a Table Column

So far in our examples, the user can view the current contents of a database table
and manually edit the data or insert new records. Now we will see how we can
change some data in the table through the program code. The idea behind this
example is quite simple. The Employee table we have been using has a Salary field.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

436 - Chapter 9: Writing Database Applications

A manager of the company could indeed browse through the table and change the
salary of a single employee. But what will be the total salary expense for the com-
pany? And what if the manager wants to give a 10 percent salary increase (or
decrease) to everyone?

These are the two aims of the Total example, which is an extension of the previous
program. The toolbar of this new example has two more buttons (and two related
actions) and a SpinEdit component. There are few other minor changes from the
previous example. I opened the Fields Editor of the table and removed the
Table1Salary field, which was defined as a TFloatField. Then I selected the New
Field command and added the same field, with the same name, but using the
TCurrencyField data type. This is not a calculated field; it’s simply a field converted
into a new (but equivalent) data type. Using this new field type the program will
default to a new output format, suitable for currency values.

Now we can turn our attention to the code of this new program. First, let’s look at
the code of the total action. This action lets you calculate the sum of the salaries of
all the employees, then edit some of the values, and compute a new total. Basically,
we need to scan the table, reading the value of the Table1Salary field for each
record:

begin
 Table1.First;
 while not Table1.EOF do
 begin
 Total := Total + Table1Salary.Value;
 Table1.Next;
 end;
end

This code works, as you can see from the output in Figure 9.12, but it has a number
of problems. One problem is that the record pointer is moved to the last record, so
the previous position in the table is lost. To avoid this problem, we need to store the
current position of the record pointer in the table and restore it at the end. This can
be accomplished using a table bookmark, a special variable storing the position of a
record in a database table. The traditional approach is to declare a variable of the
TBookmark data type, and initialize it while getting the current position from the
table:

var
 Bookmark: TBookmark;
begin
 Bookmark := Table1.GetBookmark;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 437

Figure 9.12: The
output of the Total
program, showing the
total salaries of the
employees. Image from
the original book.

At the end of the ActionTotalExecute method, we can restore the position and
delete the bookmark with the following two statements:

Table1.GotoBookmark (Bookmark);
Table1.FreeBookmark (Bookmark);

As a better alternative, we can use the Bookmark property of the TDataset class,
which refers to a bookmark that is disposed of automatically. (This is technically
implemented as an opaque string, a structure subject to string lifetime manage-
ment, but it is not a string, so you’re not supposed to look at what’s inside it.) This is
how you can modify the code above:

var
 Bookmark: TBookmarkStr;
begin
 Bookmark := Table1.Bookmark;
 ...
 Table1.Bookmark := Bookmark;

Another side effect of the program is that, although we will restore the record
pointer to the initial position, we might see the records scrolling while the routine
browses through the data. This can be avoided by disabling the controls connected
with the table during browsing. The table has a DisableControls method we can
call before the while loop starts and an EnableControls method we can call at the
end, after the record pointer is restored.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

438 - Chapter 9: Writing Database Applications

note Disabling the data-aware controls connected with a table during long operations not only
improves the user interface (since the output is not changing constantly), it also speeds up the
program considerably. In fact, the time spent to update the user interface is much greater than
the time spent performing the calculations. To test this, try commenting out the
DisableControls and EnableControls methods of the Total example, and see the speed dif-
ference.

Finally, we face some dangers from errors in reading the table data, particularly if
the program were reading the data from a server using a network. If any problem
occurs while retrieving the data, an exception takes place, the controls remain dis-
abled, and the program cannot resume its normal behavior. So we should use a try-
finally block. Actually, if you want to make the program 100 percent error-proof
you should use two nested try-finally blocks. Including this change and the two
discussed above, here is the resulting code:

procedure TSearchForm.ActionTotalExecute(Sender: TObject);
var
 Bookmark: TBookmarkStr;
 Total: Real;
begin
 Bookmark := Table1.Bookmark;
 try
 Table1.DisableControls;
 Total := 0;
 try
 Table1.First;
 while not Table1.EOF do
 begin
 Total := Total + Table1Salary.Value;
 Table1.Next;
 end;
 finally
 Table1.EnableControls;
 end
 finally
 Table1.Bookmark := Bookmark;
 end;
 MessageDlg (‘Sum of new salaries is ‘ +
 Format (‘%m’, [Total]), mtInformation, [mbOK], 0);
end;

I’ve written this code to show you an example of a loop to browse the contents of a
table, but keep in mind that there is an alternative approach based on the use of a
SQL query returning the sum of the values of a field.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 439

note When you use a SQL server, the speed advantage of a SQL call to compute the total can be very
large, since you don’t need to move all the data of each field from the server to the client com-
puter. The server sends the client only the final result.

Editing a Table Column

The code of the increase action is similar to the one we have just seen. The
ActionIncreaseExecute method also scans the table, computing the total of the
salaries, as the previous method did. Although it has just two more statements,
there is a key difference. When you increase the salary, you actually change the data
in the table. The two key statements are within the while loop:

while not Table1.EOF do
begin
 Table1.Edit;
 Table1Salary.Value := Round (Table1Salary.Value *
 SpinEdit1.Value) / 100;
 Total := Total + Table1Salary.Value;
 Table1.Next;
end;

The first statement brings the table into edit mode, so that changes to the fields will
have an immediate effect. The second statement computes the new salary by multi-
plying the old one by the value of the SpinEdit component (by default, 105) and
dividing it by 100. That’s a 5 percent increase, although the values are rounded to
the nearest dollar. With this program, you can change salaries by any amount—even
double the salary of each employee—with the click of a button.

note Notice that the table enters the edit mode every time the while loop is executed. This is because
in a dataset, edit operations can take place only one record at a time. You must finish the edit
operation, calling Post or moving to a different record as in the code above. At that time, if you
want to change another record, you have to enter edit mode once more.

Database Application with Standard
Controls

Although it is generally faster to write Delphi applications based on data-aware con-
trols, this is certainly not required. When you need to have very precise control over

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

440 - Chapter 9: Writing Database Applications

the user interface of a database application, you might want to customize the trans-
fer of the data from the field objects to the visual controls. My personal view is that
this is necessary only in very specific cases, as you can customize the data-aware
controls extensively by setting the properties and handling the events of the field
objects. However, trying to work without the data-aware controls should help you
understand the default behavior of Delphi, and it will help me introduce some of the
database-related events (discussed in the sections “Database Events” and “Field
Events”).

The development of an application not based on data-aware controls can follow two
different approaches. You can mimic the standard Delphi behavior in code, possibly
departing from it in specific cases, or you can go for a much more customized
approach. I’ll demonstrate the first technique in the NonAware example and the lat-
ter in the SendToDb example.

Mimicking Delphi Data-Aware Controls

If you want to build an application that doesn’t use data-aware controls but behaves
like a standard Delphi application, you can simply write event handlers for the oper-
ations that would be performed automatically by data-aware controls245. Basically
you need to place the data set in edit mode as the user changes the content of the
visual controls, and update the field objects of the data set as the user exits from the
controls, moving the focus to another element.

note This approach can be handy for integrating a control that’s not data-aware, such as a Date-
TimePicker component, into a standard application.

The other element of the NonAware example is another list of buttons correspond-
ing to some of those in the DBNavigator control. The five buttons are connected to
five methods of the table component: Next, Previous, Insert, Cancel, and Delete.
This is a summary of the Delphi form file:

object Form1: TForm1
 Caption = ‘Non Aware’
 // 5 labels omitted
 object EditName: TEdit
 Text = ‘EditName’
 OnExit = EditNameExit

245 The additional alternative available today is the use of Live Bindings to associated database
fields and regular (non data-aware) Ui controls.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 441

 OnKeyPress = EditKeyPress
 end
 object EditCapital: TEdit...
 object EditPopulation: TEdit...
 object EditArea: TEdit...
 object ComboContinent: TComboBox
 Items.Strings = (
 ‘South America’
 ‘North America’
 ‘Europe’
 ‘Asia’
 ‘Africa’)
 Text = ‘ComboContinent’
 OnDropDown = ComboContinentDropDown
 OnExit = ComboContinentExit
 OnKeyPress = EditKeyPress
 end
 // 5 buttons omitted
 object StatusBar1: TStatusBar
 SimplePanel = True
 end
 object DataSource1: TDataSource
 DataSet = Table1
 OnStateChange = DataSource1StateChange
 OnDataChange = DataSource1DataChange
 end
 object Table1: TTable
 Active = True
 AfterInsert = Table1AfterInsert
 BeforePost = Table1BeforePost
 DatabaseName = ‘DBDEMOS’
 TableName = ‘COUNTRY.DB’
 // 5 field objects omitted
 end
end

As you can see in the listing above, the program has several event handlers we’ve
not used for past applications using data-aware controls. First of all, we have to
show the data of the current record in the visual controls (as in Figure 9.13), by han-
dling the OnDataChange event of the DataSource1 component:

procedure TForm1.DataSource1DataChange(Sender: TObject; Field:
TField);
begin
 EditName.Text := Table1Name.AsString;
 EditCapital.Text := Table1Capital.AsString;
 ComboContinent.Text := Table1Continent.AsString;
 EditArea.Text := Table1Area.AsString;
 EditPopulation.Text := Table1Population.AsString;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

442 - Chapter 9: Writing Database Applications

Figure 9.13: The
output of the
NonAware example in
Browse mode. The
program manually
fetches the data every
time the current record
changes. Image from
the original book.

The handler of the OnStateChange event of the control, instead, uses some code
we’ve already seen in the GridDemo example. This time, the status of the table is
displayed in a status bar control. As the user starts typing in one of the edit boxes or
drops down the combo box list, the program sets the table in edit mode:

procedure TForm1.EditKeyPress(Sender: TObject; var Key: Char);
begin
 if not (Table1.State in [dsEdit, dsInsert]) then
 Table1.Edit;
end;

This method is connected with the OnKeyPress event of the five components and is
similar to the OnDropDown event handler of the combo box. As the user leaves one of

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 443

the visual controls, the handler of the OnExit event copies the data to the corre-
sponding field, as in this case:

procedure TForm1.EditCapitalExit(Sender: TObject);
begin
 if (Table1.State = dsEdit) or (Table1.State = dsInsert) then
 Table1Capital.AsString := EditCapital.Text;
end;

The operation takes place only if the table is in Edit mode; that is, only if the user
has typed in this or another control. This is not really ideal, because extra operations
are done even if the text of the edit box didn’t change, but the extra steps happen
fast enough not to be a concern. For the first edit box, we check the text before copy-
ing it, raising an exception if the edit box is empty:

procedure TForm1.EditNameExit(Sender: TObject);
begin
 if (Table1.State = dsEdit) or (Table1.State = dsInsert) then
 if EditName.Text <> ‘’ then
 Table1Name.AsString := EditName.Text
 else
 begin
 EditName.SetFocus;
 raise Exception.Create (‘Undefined Country’);
 end;
end;

An alternative approach for testing the value of a field is to handle the BeforePost
event of the data set (with the effect shown in Figure 9.14). Keep in mind that in this
example the posting operation is not handled by a specific button but takes place as
soon as a user moves to a new record or inserts a new one:

procedure TForm1.Table1BeforePost(DataSet: TDataSet);
begin
 if Table1Area.Value < 100 then
 raise Exception.Create (‘Area too small’);
end;

In each of these cases, an alternative to raising an exception is to set a default value.
However, if a field has a default value it is better to set it up front, so that a user can
see which value will be sent to the database. To accomplish this, you can handle the
AfterInsert event of a data set, which is fired immediately after a new record has
been created (we could have used the OnNewRecord event, as well):

procedure TForm1.Table1AfterInsert(DataSet: TDataSet);
begin
 Table1Continent.Value := ‘Asia’;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

444 - Chapter 9: Writing Database Applications

Figure 9.14: The
error message
displayed when the
value of the area is too
small. Image from the
original book.

Sending Requests to the Database

You can further customize the user interface of your application if you decide not to
handle the same sequence of editing operations as in standard Delphi data-aware
controls. This allows you complete freedom, although there might be some side
effects (such as limited ability to handle concurrency, which is something I’ll discuss
in the next chapter).

For this new example, I’ve replaced the first edit box with another combo box, and
replaced all the buttons related to table operations (which corresponded to DBNavi-
gator buttons) with two custom ones, used to get the data from the database and
send an update to it. To underline the difference of this example, I’ve even removed
the DataSource component.

The GetData method, connected with the corresponding button, simply gets the
fields corresponding to the record indicated in the first combo box:

procedure TForm1.GetData;
begin
 Table1.FindNearest ([ComboName.Text]);
 ComboName.Text := Table1Name.AsString;
 EditCapital.Text := Table1Capital.AsString;
 ComboContinent.Text := Table1Continent.AsString;
 EditArea.Text := Table1Area.AsString;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 445

 EditPopulation.Text := Table1Population.AsString;
end;

This method is called whenever the user presses the button, selects an item of the
combo box, or presses the Enter key while in the combo box:

procedure TForm1.ComboNameClick(Sender: TObject);
begin
 GetData;
end;

procedure TForm1.ComboNameKeyPress(Sender: TObject; var Key: Char);
begin
 if Key = #13 then
 GetData;
end;

To make this example work smoothly, at start-up the combo box is filled with all the
names of the countries of the table:

procedure TForm1.FormCreate(Sender: TObject);
begin
 // fill the list of names
 Table1.Open;
 while not Table1.Eof do
 begin
 ComboName.Items.Add (Table1Name.AsString);
 Table1.Next;
 end;
end;

With this approach, the combo box becomes a sort of selector of the record, as you
can see in Figure 9.15. Notice that thanks to this selection, the program doesn’t need
navigational buttons.

Finally, the user can change the values of the controls and press the Send button.
The code to be executed depends on whether the operation is an update or an insert.
We can determine this by looking at the name (although with this code, a wrong
name cannot be modified any more):

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

446 - Chapter 9: Writing Database Applications

Figure 9.15: In the
SendToDb example,
you can select the
record you want to see
in a combo box. Image
from the original book.

procedure TForm1.SendData;
begin
 // raise an exception if there is no name
 if ComboName.Text = ‘’ then
 raise Exception.Create (‘Insert the name’);

 // check if the record is already in the table
 if Table1.FindKey ([ComboName.Text]) then
 begin
 // modify found record
 Table1.Edit;
 Table1Capital.AsString := EditCapital.Text;
 Table1Continent.AsString := ComboContinent.Text;
 Table1Area.AsString := EditArea.Text;
 Table1Population.AsString := EditPopulation.Text;
 Table1.Post;
 end
 else
 begin
 // insert new record
 Table1.InsertRecord ([ComboName.Text,
 EditCapital.Text, ComboContinent.Text,
 EditArea.Text, EditPopulation.Text]);
 // add to list
 ComboName.Items.Add (ComboName.Text)
 end;

Before sending the data to the table, you can do any sort of validation test on the
values. In this case, it doesn’t make much sense to handle the events of the database
components, because we have full control on when the update or insert operation is
done.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 447

Database Events

To further illustrate how you can use the events of a database application, I’ve writ-
ten a simple program that logs all the events being fired. This program handles all of
the events of a table and a data source component (although some of these events
won’t actually be executed, unless you add some extra code, as described later). For
each event, I simply send its description to a list box, with the effect you can see in
Figure 9.16.

Figure 9.16: The
output of the DbEvts
program, which logs all
the events related to
database components.
Image from the
original book.

Most of the event handlers simply display the name of the component and that of
the event, as in

procedure TForm1.Table1AfterEdit(DataSet: TDataset);
begin
 AddToList (‘Table: AfterEdit’);
end;

The field events are slightly more complex, but they use a single handler for the var-
ious field components:

procedure TForm1.FieldChange(Sender: TField);
begin
 AddToList (‘Field ‘ + Sender.FieldName + ‘: OnChange’);
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

448 - Chapter 9: Writing Database Applications

The form’s AddToList method adds a new item to the list box and selects it, auto-
matically scrolling the list if required:

procedure TForm1.AddToList(Str: string);
begin
 // add item and select it
 Listbox1.ItemIndex := Listbox1.Items.Add (Str);
end;

Finally, the program has a pop-up menu connected to the list box to clear the list or
save the items to a file. The menu also has a command you can use to add a blank
line, thus separating blocks of events. This operation is also done automatically by a
timer, which adds a blank line to the list box unless the last item is already an empty
string. This makes the output more readable, as you can see in Figure 9.16.

It is very important to study the output of this program as well as its code. You can
try doing all the various operations on the table using the DBGrid, such as inserting,
editing, and deleting records, and see the corresponding effect in terms of events
fired by the VCL components. To see even more events, you can set the Filtered
property of the table to True, define a calculated field, try to cause errors (for exam-
ple, by duplicating the value of the name field), add a check box to open or close the
table, and so forth.

Field Events

The DbEvts program shows the calls to the OnChange and OnValidate events of the
field objects. Two other events, OnSetText and OnGetText, are not shown, because
the handlers of these events are not simply called to indicate that an operation
occurred. On the contrary, their event handler must perform the operation of get-
ting data from or setting it to the corresponding field objects.

These two events are quite special, and their use is not as simple as it might seem at
first sight. For this reason, they require a separate example, named FldText. This is
only a slight revision of the DbAware example described earlier in this chapter,
replacing the DBRadioGroup control with a DBListbox control. The problem is that
a DBListBox control directly connects with a string field, while I want to connect it
with an integer field, with each value indicating an option. Of course, I don’t want a
user to see or select a number, so I have to map the numbers stored in the database
to the strings visible on the screen. In the earlier example, the DBRadioGroup con-
trol provided that mapping. Now I have to use an alternative approach.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 449

In the FldText example, the Department field has two handlers for the OnGetText
and OnSetText events. In the OnGetText event handler you can extract the numeric
value of the Sender field and set the value of the Text reference parameter:

procedure TDbaForm.Table1DepartmentGetText(Sender: TField;
 var Text: String; DisplayText: Boolean);
begin
 case Sender.AsInteger of
 1: Text := ‘Sales’;
 2: Text := ‘Accounting’;
 3: Text := ‘Production’;
 4: Text := ‘Management’;
 else
 Text := ‘[Error]’;
 end;
end;

note In the code of the OnGetText event handler you cannot refer to the text of the field, for example,
using the DisplayText property or the GetData method, since they would call the OnGetText
event, in an infinite recursion.

In the OnSetText event handler you can examine the string and decide the value of
the field, according to the conversion rule, in this case a simple mapping of values
done with an if-then-else statement:

procedure TDbaForm.Table1DepartmentSetText(Sender: TField;
 const Text: String);
begin
 if Text = ‘Sales’ then
 Sender.Value := 1
 else if Text = ‘Accounting’ then
 Sender.Value := 2
 else if Text = ‘Production’ then
 Sender.Value := 3
 else if Text = ‘Management’ then
 Sender.Value := 4
 else
 raise Exception.Create (
 ‘Error in Department field conversion’);
end;

The effect is that not only is the value visible in the DBListBox (as you can see in
Figure 9.17), it also shows up in the DBGrid. By contrast, in the DbAware example,
the grid displayed the numeric value.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

450 - Chapter 9: Writing Database Applications

Figure 9.17: The
output of the FldText
example, which
demonstrates the use
of the OnGetText and
OnSetText events of
the field objects. Image
from the original book.

Editing Dates with a Calendar

As a final example of the use of non–data-aware controls, the DbDates application
shows how to use a MonthCalendar component to handle dates with a nice graphi-
cal component instead of a plain edit box. This example is based on the Events table
from the DBDemos database, which lists Olympic events.

This example uses (for the first time) a DBImage control, with the following settings
(whose effect is illustrated in Figure 9.18):

object DBImage1: TDBImage
 DataField = ‘Event_Photo’
 DataSource = DataSource1
 Stretch = True
end

note Graphic, memo, and BLOB fields in Delphi are handled exactly like other fields. Just connect the
proper editor or viewer, and most of the work is done behind the scenes by the system.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 451

Figure 9.18: The
selection of a date with
the monthly calendar.
Image from the
original book.

Although the DBImage control works with no extra effort on our part, we must con-
nect the MonthCalendar control with the corresponding field by handling two
events of the DataSource control:

procedure TForm1.DataSource1DataChange(Sender: TObject; Field:
TField);
begin
 MonthCalendar1.Date := Table1Event_Date.Value;
end;

procedure TForm1.DataSource1UpdateData(Sender: TObject);
begin
 Table1Event_Date.Value := MonthCalendar1.Date;
end;

Besides copying the data back and forth, with the code listed above, the program
must also put the table into edit mode as the user clicks the calendar control. The
most obvious approach is to write a handler for the OnClick event of the control:

procedure TForm1.MonthCalendar1Click(Sender: TObject);
begin
 Table1.Edit;
end;

However, this code doesn’t work properly. As you set the table in edit mode, the
OnDataChange event is executed once more, resetting the selection in the calendar.
The overall effect is that the user’s first click doesn’t change the selection. To avoid
this problem we can set a flag in the OnClick event handler and test it in the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

452 - Chapter 9: Writing Database Applications

OnDataChange event handler, or we can temporarily disconnect the second event
handler. In the following code, I’ve taken the second approach:

procedure TForm1.MonthCalendar1Click(Sender: TObject);
begin
 // disconnect handler
 DataSource1.OnDataChange := nil;
 // set table in edit mode
 Table1.Edit;
 // reconnect handler
 DataSource1.OnDataChange := DataSource1DataChange;
end;

Exploring the Tables of a Database

In our examples so far, we have always accessed a database table by setting its name
at design time. But what if you do not know which table your program will be con-
nected to? At first, you might think that if you do not know the details of the
database at design time, you won’t be able to create forms and operate on the table.
This is not true. Setting everything at design time is certainly easier. Changing
almost anything at run time requires you to write more code. This is what I’ve done
in the next example, called Tables, which demonstrates how to access the list of
databases available to the Borland Database Engine246, how to access the list of the
tables for each database, and how to select which fields to view from a specific table.

Choosing a Database and a Table at Run Time

For the Tables example, I’ve prepared a form with a combo box you can use to select
a database and a list box you can use to select a table of that database. The form also
hosts a DBGrid, which can be connected with the selected database table. You can
see the output of this program in Figure 9.19.

When the program starts, it fills the combo box, fills the list box (forcing the selec-
tion of the first item of the combo box), and then shows a table in the DBGrid
(simulating the selection of the first item of the list box):

246 Something similar could be done by picking a stored FireDAC table file to use with the FD-
MemTable component.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 453

procedure TMainForm.FormCreate(Sender: TObject);
begin
 Session.GetDatabaseNames (ComboBox1.Items);
 // force an initial list in the listbox
 ComboBox1.Text := ‘DBDEMOS’;
 ComboBox1Change (Self);
 // force an initial selection in the DBGrid
 ListBox1.ItemIndex := 0;
 ListBox1Click (Self);
end;

Figure 9.19: The
output of the Tables
program, which shows
the data of a table
selected at run time.
Image from the
original book.

The key element is the call to the GetDatabaseNames procedure of the Session global
object247. An object of class TSession is automatically defined and initialized by each
Delphi database application (even if you don’t define one), and to access its meth-
ods, you only need to refer to the DBTables unit in the uses statement. When the
combo box is filled, the program immediately selects one of the databases and then
triggers the ComboBox1Change event handler, which uses another method of the
TSession class, GetTableNames. This method has five parameters: the name of a
database, a filter string, two Boolean values indicating whether to include the table
file extensions (for local tables only) and whether to include system tables in the list
(for SQL databases only), and the TStringList that will be filled with the names of
the tables. Here is the code the program executes when the user selects an item in
the combo box:

procedure TMainForm.ComboBox1Change(Sender: TObject);

247 This isn’t available any more, as it was specific to the BDE.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

454 - Chapter 9: Writing Database Applications

begin
 Session.GetTableNames (ComboBox1.Text, ‘’,
 True, False, ListBox1.Items);
end;

In the FormCreate method, a further step is automatically executed at start-up; the
program fills the DBGrid as if a list box item had been selected:

procedure TMainForm.ListBox1Click(Sender: TObject);
begin
 Table1.Close;
 Table1.DatabaseName := ComboBox1.Text;
 Table1.Tablename := Listbox1.Items [Listbox1.ItemIndex];
 Table1.Open;
 Caption := Format (‘Table: %s - %s’,
 [Table1.DatabaseName, Table1.Tablename]);
end;

Viewing Multiple Tables

The program allows a user to see the content of any table. As a further extension,
when the user double-clicks the list box, the program displays the grid in a separate
form. This allows the user to open multiple modeless forms and see different tables
at once, as you can see in Figure 9.20.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 455

Figure 9.20: The
Tables program can be
used to open two or
more grid-based table
viewers. Images from
the original book.

When the user double-clicks the list box in the main form, the code creates a
TGridForm object, connects the Table1 component of this form to the proper data-
base and table, and shows the form:

procedure TMainForm.ListBox1DblClick(Sender: TObject);
var
 GridForm: TGridForm;
begin
 GridForm := TGridForm.Create (Self);
 {connect the table component to the selected
 table and activate it}
 GridForm.Table1.DatabaseName := ComboBox1.Text;
 GridForm.Table1.TableName :=
 Listbox1.Items [Listbox1.ItemIndex];
 try
 GridForm.Table1.Open;
 GridForm.Show;
 except
 GridForm.Close;
 end;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

456 - Chapter 9: Writing Database Applications

note Notice that the code above simply creates the form and never destroys it. It is the responsibility of
the form to delete itself in its OnClose event handler by setting the Action reference parameter
to caFree.

When the secondary form is created, the program fills a combo box with the names
of the fields of the table. However, this code can’t go in the OnCreate event of the
form, because the form is created before its Table1 component is properly set up.
Instead of adding a custom method and calling it, I’ve used the OnShow event han-
dler, which also sets the caption of the form using the name of the table and the
database:

procedure TGridForm.FormShow(Sender: TObject);
var
 I: Integer;
begin
 Caption := Format (‘Table: %s - %s’,
 [Table1.DatabaseName, Table1.TableName]);

 // fill the combo box with the names of the fields
 ComboBox1.Items.Clear;
 for I := 0 to Table1.FieldCount - 1 do
 ComboBox1.Items.Add (Table1.Fields[I].FieldName);
end;

note A possible extension to this program would be to generate a form based on data-aware controls,
chosen depending on the type of field. You can find a Database Form Wizard capable of generat-
ing similar forms on my Web site, www.marcocantu.com.

What is the purpose of this combo box? Each time a user selects an element, the
corresponding field is either shown or hidden, depending on its current state:

procedure TGridForm.ComboBox1Change(Sender: TObject);
begin
 // toggle the visibility of the field
 Table1.FieldByName (ComboBox1.Text).Visible :=
 not Table1.FieldByName (ComboBox1.Text).Visible;
end;

Notice the use of the FieldByName method to retrieve the field using the current
selection of the combo box and the use of the Visible property. Once a field
becomes invisible, it is immediately removed from the grid associated with the
table. Therefore, by simply setting this property, we change the grid automatically.

The combo box I’ve placed in the toolbar of the GridForm works, but if you need to
select several fields in a big table, it is slow and error-prone. As an alternative, I’ve

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 457

created a field-editor form, which is used both by the main and by the secondary
form. This is the third form of the Tables example, named FieldsForm.

This form is displayed as a modal dialog box, so we can use a single global object
every time. The new form has no code of its own. When the form is activated, its
multiple-selection list box is filled with the names of the fields of the table. At the
same time, the code selects the list box items corresponding to visible fields, as you
can see in Figure 9.21.

Figure 9.21: The list
box can be used to
select the table fields to
show in the grid. Image
from the original book.

The user can toggle the selection of each item in this list box while the modal form is
active. When it is closed, the other form retrieves the values of the selected items
and sets the Visible property of the fields accordingly. Here is the complete code of
this method:

procedure TGridForm.SpeedButton1Click(Sender: TObject);
var
 I: Integer;
begin
 FieldsForm.FieldsList.Clear;
 for I := 0 to Table1.FieldCount - 1 do
 begin
 FieldsForm.FieldsList.Items.Add (
 Table1.Fields [I].FieldName);
 if Table1.Fields [I].Visible then
 FieldsForm.FieldsList.Selected [I] := True;
 end;
 if FieldsForm.ShowModal = mrOK then
 for I := 0 to Table1.FieldCount - 1 do
 Table1.Fields.Visible [I] :=
 FieldsForm.FieldsList.Selected [I];
 FieldsForm.FieldsList.Clear;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

458 - Chapter 9: Writing Database Applications

This code ends the description of this example. We have seen that you can write
database applications that do most of the work at run time, although this approach
is slightly more complex.

A Multi-Record Grid

So far we have seen that you can either use a grid to display a number of records of a
database table or build a form with specific data-aware controls for the various
fields, accessing the records one by one. There is a third alternative: use a multi-
record object (a DBCtrlGrid248), which allows you to place many data-aware controls
in a small area of a form and automatically duplicate these controls for a number of
records.

Here is what we can do to build the Multi1 example. Create a new blank form, place
a Table component and a DataSource component in it, and connect them to the
COUNTRY.DB table. Now place a DBCtrlGrid on the form, set its size and the num-
ber of rows and columns, and place two edit components connected with the Name
and Capital fields of the table. To place these DBEdit components, you can also open
the Fields editor and drag the two fields to the control grid. At design time, you sim-
ply work on the active portion of the grid (see Figure 9.22, on the right), and at run
time, you can see these controls replicated a number of times (see Figure 9.22, on
the left).

Figure 9.22: The
DBCtrlGrid of the
Multi1 example at
design time (on the
right) and at run time
(on the left). Images
from the original book.

Here are the most important properties of the DBCtrlGrid object and the other com-
ponents of this example:

248 As mentioned early in this chapter, this component still exists but it’s not commonly used.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 459

object Form1: TForm1
 Caption = ‘Multi Record Grid’
 object DBCtrlGrid1: TDBCtrlGrid
 ColCount = 2
 DataSource = DataSource1
 RowCount = 2
 object DBEdit1: TDBEdit
 DataField = ‘Name’
 DataSource = DataSource1
 end
 object DBEdit2: TDBEdit...
 end
 object Table1: TTable
 Active = True
 DatabaseName = ‘DBDEMOS’
 TableName = ‘COUNTRY.DB’
 end
 object DataSource1: TDataSource
 DataSet = Table1
 end
end

Actually, you can simply set the number of columns and rows. Then each time you
resize the control, the width and height of each panel are set accordingly. What is
not available is a way to align the grid automatically to the client area of the form.

Moving Control Grid Panels

To improve the last example, we might resize the grid using the FormResize
method. We could simply write the following code (in the Multi2 example):

procedure TForm1.FormResize(Sender: TObject);
begin
 DBCtrlGrid1.Height := ClientHeight - Panel1.Height;
 DBCtrlGrid1.Width := ClientWidth;
end;

This works, but it is not what I want. I’d like to increase the number of panels, not
enlarge them. To accomplish this, we can define a minimum height for the panels
and compute how many panels can fit in the available area each time the form is
resized. For example, in Multi2, I’ve added one more statement to the FormResize
method above, which now becomes

procedure TForm1.FormResize(Sender: TObject);
begin
 DBCtrlGrid1.RowCount :=
 (ClientHeight - Panel1.Height) div 100;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

460 - Chapter 9: Writing Database Applications

 DBCtrlGrid1.Height := ClientHeight - Panel1.Height;
 DBCtrlGrid1.Width := ClientWidth;
end;

Instead of doing the same for the columns of the control grid component, I’ve added
a TrackBar component to a panel. When the position of the trackbar changes (the
range is from 2 to 10), the program sets the number of columns of the control grid
and resizes it. In fact, if you simply set the number of columns, they’ll have the same
width as before. Here is the code of the trackbar’s OnChange event handler:

procedure TForm1.TrackBar1Change(Sender: TObject);
begin
 LabelCols.Caption := Format (
 ‘%d Columns’, [TrackBar1.Position]);
 DBCtrlGrid1.ColCount := TrackBar1.Position;
 DBCtrlGrid1.Width := ClientWidth;
end;

This code and the FormResize method above allow you to change the configuration
of the control grid at run time in a number of ways. You can see an example of a
crammed version of the form in Figure 9.23.

Figure 9.23: The
output of the Multi2
example, with an
excessive number of
columns. Image from
the original book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 461

Database Charts

Another interesting component you can use in database applications is the data-
aware version of the TeeChart control built by David Berneda and available in the
Professional and Enterprise versions of Delphi249. This component is very easy to
use, particularly if your version of Delphi includes the corresponding TeeChart Wiz-
ard (found in the Business page of the File New dialog box).

To demonstrate the use of the DBChart control, I’ve added this component to the
GridDemo example. The new application, called ChartDB, shows a DBGrid in the
upper portion and a pie chart with the surface of each country at the bottom, as you
can see in Figure 9.24.

The program has almost no code, as all the settings can be done using the specific
component editor, which has a number of options but is quite easy to use. Here are
some of the key properties of the component, taken from the form description:

object DBChart1: TDBChart
 Legend.Visible = False
 Align = alClient
 object Series1: TPieSeries
 Marks.ArrowLength = 8
 Marks.Visible = True
 DataSource = Table1
 XLabelsSource = ‘Name’
 ExplodeBiggest = 3
 OtherSlice.Style = poBelowPercent
 OtherSlice.Text = ‘Others’
 OtherSlice.Value = 2
 PieValues.ValueSource = ‘Area’
 end
end

249 The light version of the component is still available in Delphi as an extra installer opotion.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

462 - Chapter 9: Writing Database Applications

Figure 9.24: The
output of the ChartDb
example, which is
based on the TDbChart
control. Image from
the original book.

note To understand these properties and the structure of the charts and the series, you can refer to the
examples of the Chart component in the Chapter 22 “Graphics in Delphi”. This same chapter
shows also how to dynamically export from a Web server application the graph produced by the
DBChart, after converting it to a JPEG image.

What I’ve done was to show the area field as the data source for the pie chart (the
PieValues.ValueSource property of the series), use the name field for the labels
(the XLabelsSource property of the series), and condense all the countries with a
value below 2 percent in a single section indicated as ‘Others’ (the OtherSlide sub-
properties).

As a minor addition to the code, I’ve added two radio buttons you can use to toggle
between the area and the population. The code of the two radio buttons simply sets
the source of the series, after casting it to the proper series type, as in:

procedure TForm1.RadioPopulationClick(Sender: TObject);
begin
 DBChart1.Title.Text [0] := ‘Population of Countries’;
 (DBChart1.Series [0] as TPieSeries).
 PieValues.ValueSource := ‘Population’;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 463

What’s Next?

In this chapter, we have seen a number of examples of database access from Delphi
programs. I have covered the basic data-aware components as well as the develop-
ment of database applications based on standard controls. We’ve explored the
internal architecture of the field objects, created brand-new database tables at
design time and at run time, and worked though many examples.

In particular, besides looking at the use of the data-aware controls, we’ve also used a
couple of different manual approaches. You might wonder when the harder and
lower-level approach might make sense. The short answer is to use the data-aware
controls unless you need to do something unusual that conflicts with the default
behavior of the data-aware controls. A typical example is the use of particular tech-
niques for concurrency in multi-user applications, as we’ll see in the next two
chapters.

Is this all there is to say about Delphi database programming? Not at all. Delphi
database support is very extensive and complete. The purpose of this chapter has
been to give you an idea of what you can do, concentrating on the use of the Table
component for database access. In the next chapter, we’ll focus on the Query com-
ponent, on working with multiple database tables (with joins and with master-detail
and lookup structures), and on many other advanced features. We’ll also cover the
use of the new Data Module Designer in Delphi 5.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

	Preface to the 2025 Commented Edition
	Acknowledgments
	Introduction
	Five Versions and Counting
	The Structure of the Book
	Free Source Code on the Web
	How to Reach the Author

	Chapter I: Delphi and Object Pascal
	Editions of Delphi 5
	The Delphi 5 IDE
	Command-Line Options
	Saving the Desktop Settings
	The To-Do List

	The AppBrowser Editor
	The Code Explorer
	Browsing in the Editor
	Class Completion
	Code Insight
	More Editor Shortcut Keys

	The Form Designer
	The Object Inspector in Delphi 5

	Secrets of the Component Palette
	Defining Event Handlers
	Copying and Pasting Components
	From Component Templates to Frames

	Managing Projects
	Project Options
	Compiling and Building Projects
	Exploring a Project

	Additional and External Delphi Tools
	The Files Produced by the System
	Looking at Source Code Files

	The Object Repository
	What’s Next?

	Chapter 2: Object-Oriented Programming in Delphi
	Introducing Classes and Objects
	Delphi’s Object Reference Model
	Private, Protected, and Public
	Encapsulation and Forms
	The Self Keyword
	Creating Components Dynamically

	Constructors
	Overloaded Methods and Constructors
	The Complete TDate Class

	Inheriting from Existing Types
	Protected Fields and Encapsulation
	Accessing Protected Data of Other Classes
	Inheritance and Type Compatibility

	Late Binding and Polymorphism
	Overriding, Redefining, and Reintroducing Methods
	Virtual versus Dynamic Methods
	Message Handlers
	Abstract Methods

	Run-Time Type Information
	Visual Form Inheritance
	Inheriting from a Base Form
	Polymorphic Forms

	What’s Next?

	Chapter 3: Advanced Object Pascal
	Class Methods and Class Data
	A Class with an Object Counter
	Method Pointers

	Class References
	Creating Components Using Class References

	Objects and Memory
	Destroying Objects Only Once
	Passing and Copying Objects

	Handling Exceptions
	Exceptions and the Stack
	The Finally Block
	Logging Errors

	The published Access Specifier
	Defining Properties
	Adding Properties to Forms
	Adding Properties to the TDate Class

	Events in Delphi
	Events Are Properties
	Adding an Event to the TDate Class

	Creating a TDate Component
	Using Interfaces
	Declaring an Interface
	Interface Properties, Delegation, Redefinitions
	An Example of Multiple Inheritance
	Interface Polymorphism
	Is This Multiple Inheritance?

	What’s Next?

	Chapter 4: VCL Programming Techniques
	The TObject Class
	Showing Class Information

	The VCL Hierarchy
	Components
	Windows Components
	Objects

	Common VCL Properties
	The Name Property
	The Components Array
	The Owner Property
	Removing Form Fields
	Hiding Form Fields
	Properties Related to Control Size and Position
	Activation and Visibility Properties
	The Customizable Tag Property
	The User Interface: Color and Font

	Common VCL Methods
	Common VCL Events
	Understanding Frames
	Lists and Container Classes
	Using Lists of Objects
	Delphi 5 Container Classes
	Type-Safe Containers and Lists

	What’s Next?

	Chapter 5: Advanced Use of the Standard Components
	Opening the Component Tool Box
	The Text Input Component
	Selecting Options
	Lists
	Ranges
	Dragging from One Component to Another
	Handling the Input Focus

	Working with Menus
	Accelerator Keys in Delphi 5
	Pop-Up Menus and the OnContextPopup Event
	Creating Menu Items Dynamically
	Using Menu Images
	Customizing the System Menu

	The ActionList Component
	Actions in Practice

	Owner-Draw Controls
	Owner-Draw Menu Items
	A ListBox of Colors

	ListView and TreeView
	A Graphical Reference List
	A Tree of Data

	What’s Next?

	Chapter 6: Forms, Windows, and Applications
	Forms versus Windows
	The Application Is a Window
	Displaying the Application Window
	The Application System Menu
	Activating Applications and Forms

	Setting Form and Border Styles
	The Border Style
	The Border Icons
	Setting More Window Styles

	Scaling Forms
	Manual Form Scaling
	Automatic Form Scaling

	Setting the Form’s Position and Size
	The Size of a Form and Its Client Area
	Form Constraints

	Creating Forms
	Delphi Form Creation Order
	Tracking Forms with the Screen Object
	Closing a Form

	Form Input
	Supervising Keyboard Input
	Getting Mouse Input
	Dragging and Drawing with the Mouse

	Painting in Windows
	What’s Next?

	Chapter 7: Building a User Interface
	The Toolbar Control
	The Toolbar and the ActionList of an Editor
	A Combo Box in a Toolbar
	Toolbar Hints

	Customizing the Hints
	Toolbar Containers
	A Really Cool Toolbar
	The ControlBar
	A Menu in a Control Bar

	Creating a Status Bar
	Menu Hints in the Status Bar

	Scrolling a Form
	The Scroll Testing Example
	Automatic Scrolling
	Scrolling and Form Coordinates

	Form-Splitting Techniques
	Horizontal Splitting
	Splitting with a Header

	Control Anchors
	Docking Toolbars and Controls
	Docking Toolbars in ControlBars

	What’s Next?

	Chapter 8: Using Multiple Forms
	Dialog Boxes versus Forms
	Adding a Second Form to a Program
	Creating Secondary Forms at Run Time

	Creating a Dialog Box
	The Dialog Box of the RefList Example
	A Modeless Dialog Box
	Windows Common Dialogs
	A Parade of Message Boxes
	Expandable Dialog Boxes

	About Boxes and Splash Screens
	Building a Custom Hidden Screen
	Building a Splash Screen

	Multiple-Page Forms
	PageControls and TabSheets
	Frames and Pages
	Multiple Frames with No Pages
	An Image Viewer with Owner-Draw Tabs
	The User Interface of a Wizard
	Docking to a PageControl

	Creating MDI Applications
	MDI in Windows: A Technical Overview

	Frame and Child Windows in Delphi
	Building a Complete Window Menu
	The MdiDemo Example

	MDI Applications with Different Child Windows
	Child Forms and Menus
	Changing the Main Form
	Subclassing the MdiClient Window

	What’s Next?

	Chapter 9: Writing Database Applications
	Accessing Data with and without the BDE
	Delphi Database Components
	Tables and Queries
	The Status of a Data Set
	Other Database Related Components
	Delphi Data-Aware Controls

	Customizing a Database Grid
	The Table State

	Field-Oriented Data-Aware Controls
	Using DBEdit Controls
	Creating a Database Table
	Listing Alternative Values

	Accessing the Data Fields
	The Hierarchy of Field Classes
	Adding a Calculated Field

	Searching and Adding the Fields of a Table
	Looking for Records in a Table
	The Total of a Table Column
	Editing a Table Column

	Database Application with Standard Controls
	Mimicking Delphi Data-Aware Controls
	Sending Requests to the Database
	Database Events
	Field Events

	Editing Dates with a Calendar
	Exploring the Tables of a Database
	Choosing a Database and a Table at Run Time
	Viewing Multiple Tables

	A Multi-Record Grid
	Moving Control Grid Panels

	Database Charts
	What’s Next?

