

2 -

Marco Cantù

Mastering Delphi 5
 2025 Annotated Edition

Original Edition: Sybex, 1995

2025 Annotated Edition: Marco Cantu, 2025

Release 0.2 – February 17th, 2025

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

 - 3

Author: Marco Cantù

Publisher: Sybex (original edition), Marco Cantù (2025 edition)

Copyright 1995-2025 Marco Cantù, Piacenza, Italy. World rights reserved.

The author created example code in this publication expressly for the free use by its readers.
Source code for this book is copyrighted freeware, distributed via a GitHub project listed in the
book and on the book’s web site. The copyright prevents you from republishing the code in print or
electronic media without permission. Readers are granted limited permission to use this code in
their applications, as long at the code itself is not distributed, sold, or commercially exploited as a
stand-alone product.

Aside from the above exception concerning the source code, no part of this publication may be
stored in a retrieval system, transmitted, or reproduced in any way, either in the original or in a
translated language, including but not limited to photocopy, photograph, magnetic, or other
record, without the prior agreement and written permission of the publisher.

Delphi is a trademark of Embarcadero Technologies (a division of Idera, Inc.). Other trademarks
are of the respective owners, as referenced in the text. Whilst the author and publisher have made
their best efforts to prepare this book, they make no representation or warranties of any kind with
regard to the completeness or accuracy of the contents herein and accept no liability of any kind
including but not limited to performance, merchantability, fitness for any particular purpose, or
any losses or damages of any kind caused or alleged to be caused directly or indirectly from this
book.

Mastering Delphi 5 2025 Annotated Edition

This PDF version is a draft dated February 17th, 205

The electronic edition of this book is freely distributed by the author, but doesn’t further distribu-
tion. Do not distribute the PDF version of this book without permission from the author.

More information at http://www.marcocantu.com/md52025

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

4 -

To my wife, Lella, the love of my life1

1 I've kept the dedication of the book, as it was originally. In fact, that is still true today!

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Preface to the 2025 Commented Edition - 5

Preface To The

2025 Commented

Edition

As you know I wrote several Mastering Delphi books over the course of the years. I
thoughts a few times about writing a new one... but the task is fairly daunting, given
Delphi (as an IDE and considering the libraries and target platforms it now sup-
ports) has dramatically grown in size and complexity, and you’d now need several
thousand pages to cover the product adequately, and not even in depth. While I
have several draft of my older books, it turns out Mastering Delphi 5 is the oldest
one I have in an electronic version with images and proper formatting. A few years
back, I acquired the rights of this edition from my original publisher (Sybex, now
part of Wiley) and considering a new edition I asked a person to reformat the text,
import the images, and turn this into a complete volume.

That was a few years back. More recently, I found this edited and formatted manu-
script, and decided to make it public rather than keeping it on my hard drive. The

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

6 - Preface to the 2025 Commented Edition

text of the book is, with minor and limited changes, the original text covering ver-
sion 5 of Delphi, released in 1999.

This is not a book on recent versions of Delphi: A few of the sections are
clearly dated, but most of the core content covering the key features of the product
is still actual today. However, publishing it as is would have been of very limited use
and possibly confusing. Therefore I’ve made two primary changes to the book. First
I’ve captured some updated images of the IDE and of the running applications. I’ve
kept some of the original images alongside, though, mixing the old and the new. The
different is so striking I don’t even need to call them out. Second I’ve added a large
number of footnotes to underline new features, significant changes, code I’d write
differently, assertions that are no longer true. I haven’t rewritten the text, as this
would have been way more time consuming, but I’ve pointed out many facts, giving
ideas and suggestions for further study, or just providing some tidbits and facts,
along with many links to additional information available online. I’ve used footnotes
to reduce the impact on the existing text, compared to adding notes in the text flow
or doing direct edits.

But you might still wonder, who is this book for? Although it might appeal them,
this is not only for the nostalgic, although some of the old timers might find it inter-
esting to read it. It is for anyone who wants to understand Delphi. Even covering
the product how it was many years ago, this book helps understanding all of
Delphi’s core concepts.

You might be wondering if this is possible because Delphi is an old product. This is
certainly not the case. It underlines the fact the product has a great history, but also
that it has kept and keeps evolving in a fantastic way while maintaining its core
tenets and offering an unparalleled degree of compatibility in the development
tools space. The fact that most of the code in this old book can be compiled and run
today, producing modern looking Windows 11 applications is a testament of the
power of Delphi.

This preface is the only new section of the book. From now on, this is the old book
with my comments and annotation. Have a good reading!

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Acknowledgments - 7

Acknowledgments

This incarnation of Mastering Delphi marks the fifth year of the Delphi era2. As it
has for many other programmers, Delphi has been my primary interest throughout
these years; and writing, consulting, teaching, and speaking at conferences about
Delphi have absorbed more and more of my time, leaving other languages and pro-
gramming tools in the dust of my office3. Because my work and my life are quite
intertwined, many people have been involved in both, and I wish I had enough
space and time to thank them all as they deserve. Instead, I’ll just mention a few
particular people and say a warm “Thank You” to the entire Delphi community (also
for the Spirit of Delphi 1999 Award I’ve been happy to share with Bob Swart).

The first official thanks are for the Borland programmers and managers4 who made
Delphi possible and continue to improve it: Chuck Jazdzewski, Danny Thorpe5,
Eddie Churchill, Allen Bauer, Steve Todd, Mark Edington, Jim Tierney, Ravi

2 I made further editions of Mastering Delphi for Delphi 6, Delphi 7, and Delphi 2005 with the
same publisher. Later I moved to self publishing and started the “Delphi 20xx Handbook” se-
ries, focused on specific new features of the given version of Delphi, rather than providing the
broad overview of the Mastering Delphi volumes. That's one of the reasons for this new “re-
print” of Mastering Delphi 5. You can find more on my web site www.marcocantu.com.

3 A few years ago I ended up accepting a Product Manager position at Embarcadero (now part
of Idera Inc.), the company who owns Delphi. So my focus on Delphi continues to be a full
time focus even today, although with a different perspective. I have used Delphi for 30 years
and continue to do so. My knowledge of the technologies behind the product has grown during
the years I've been working for Embarcadero.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://www.marcocantu.com/

8 - Acknowledgments

Kumar, Jörg Weingarten, Anders Ohlsson, and all the others I have not had a
chance to meet. I’d also like to give particular mention to my friends Ben Riga (the
current Delphi product manager), Charlie Calvert, John Kaster, and David I (all
three at Borland Developer’s Relations). I cannot forget the help I received from
Zack Urlocker and Nan Borreson.

The next thanks are for the Sybex editorial and production crew, many of whom I
don’t even know. Special thanks go to Denise Santoro, Jim Compton, and Diane
Lowery for their editorial acumen; I’d also like to thank Richard Mills, Kristine
O’Callaghan, Maureen Forys, Teresa Trego, Jennifer Campbell, Carol Iverson, and
Tony Jonick.

This edition of Mastering Delphi has had an incredibly picky and detailed review
from Delphi team member Danny Thorpe. His highlights and comments have
improved the book in all areas: technical content, accuracy, examples, and even
readability. Thanks a lot. Past editions of the book also had special contributions:
Tim Gooch worked on Part V for Mastering Delphi 4 and Giuseppe Madaffari con-
tributed a lot of database material for this and the last edition. Many improvements
to the text and sample programs were suggested by technical reviewers of the past
editions (Juancarlo Añez, Ralph Friedman, Tim Gooch, and Alain Tadros) and from
other reviews done over the years by Bob Swart, Giuseppe Madaffari, and Steve
Tendon.

Special thanks go to my friends Bruce Eckel, Andrea Provaglio, Norm McIntosh,
Johanna and Phil of the BUG-UK, Ray Konopka, Mark Miller, Cary Jensen, Chris
Frizelle of The Delphi Magazine, Foo Say How, John Howe, Mike Orriss, Chad
“Kudzu” Hower, Dan Miser, and Marco Miotti. Also, a very big “Thank You” to all
the attendees of my Delphi programming courses, seminars, and conferences in
Italy, the United States, France, the United Kingdom, Singapore, the Netherlands,
Germany, and Sweden.

Aside from the people involved with Delphi, my biggest thanks go to my patient
wife, Lella, who (while carrying a child6) had to spend another summer with little
vacation, as the book always took more time than I expected. Many of our friends
provided healthy breaks in the work: Sandro and Monica with Luca, Stefano and

4 Needless to say none of this developers and managers work at Embarcadero any more, after 25
years. I’ve kept this Acknowledgments section as it was, despite the changes to my like and
that of all of the people mentioned here.

5 Unfortunately we lost Danny a few years back. Danny was the technical reviewer of the origi-
nal edition of this book, Mastering Delphi 5, and I’ve long been in touch with him after he left
the company.

6 That child is now a young adult. We also have a second one, who's also grown up.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Acknowledgments - 9

Elena, Marco and Laura with Matteo, Bianca, Chiara, Luca and Elena, Chiara and
Daniele with Leonardo, Laura, Vito and Marika with Sofia. Our parents, brothers,
sisters, and their families were very supportive, too. It was nice to spend some of
our free time with them and our six nephews, Matteo, Andrea, Giacomo, Stefano,
Andrea, and Pietro.

Finally, I would like to thank all of the people, many of them unknown, who enjoy
life and help to build a better world. If I never stop believing in the future and in
peace, it is also because of them.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

10 - Introduction

Introduction

The first time Zack Urlocker7 showed me a yet-to-be-released product code-named
Delphi, I realized that it would change my work—and the work of many other soft-
ware developers. I used to struggle with C++ libraries for Windows, and Delphi was
and still is the best combination of object-oriented programming and visual pro-
gramming for Windows.

Delphi 5 simply builds on this tradition and on the solid foundations of the VCL to
deliver another astonishing and all-encompassing software development tool. Look-
ing for database, client/server, multi tier, intranet, or Internet solutions? Looking
for control and power? Looking for fast productivity? With Delphi 5 and the
plethora of techniques and tips presented in this book, you’ll be able to accomplish
all this8.

7 Zack was the first Delphi Product Manager, and made a career in many other management po-
sitions including at MySQL and, more recently, several startups.

8 Most of the features discussed here are still valid in the latest versions of Delphi, even if they
represent a subset of the available features. A few have been discontinued or are not recom-
mended any more, and this will all be covered in footnotes.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Introduction - 11

Five Versions and Counting

Some of the original Delphi features that attracted me were its form-based and
object-oriented approach, its extremely fast compiler, its great database support, its
close integration with Windows programming, and its component technology. But
the most important element was the Object Pascal language, which is the founda-
tion of everything else.

Delphi 2 was even better! Among its most important additions were these: the
Multi-Record Object and the improved database grid, OLE Automation support and
the variant data type, full Windows 95 support and integration, the long string data
type, and Visual Form Inheritance. Delphi 3 added to this the Code Insight technol-
ogy, DLL debugging support, component templates, the TeeChart, the Decision
Cube9, the Web Broker technology, component packages, ActiveForms, and an
astonishing integration with COM, thanks to interfaces.

Delphi 4 gave us the AppBrowser editor, new Windows 98 features, improved OLE
and COM support, extended database components, and many additions to the core
VCL classes, including support for docking, constraining, and anchoring controls.
There are a great many new features in Delphi 4, as you can still discover by reading
this book if you missed the last edition.

Delphi 5 adds to the picture many more improvements of the IDE (too many to list
here), extended database support (with specific ADO and InterBase datasets), an
improved version of MIDAS10 with Internet support, the TeamSource version-con-
trol tool11, translation capabilities, the concept of frames, many new components,
and much more, as you’ll see in the following pages.

Delphi is a great tool, but it is also a complex programming environment that
involves many elements. This book will help you master Delphi programming,
including the Object Pascal language, Delphi components (both using the existing
ones and developing your own), database and client/server support, the key ele-
ments of Windows and COM programming, and Internet and Web development.

9 The Decision Cube is a feature that was later dropped form the product.

10 MIDAS was later turned into DataSnap and some of the related technologies are still around,
even if the world of multi-tier development and web services has changed a bit since the early
days. Today's multi-tier solutions tend to use the REST architecture, which is true for RAD
Server, the current multi-tier technology in Delphi.

11 More recent versions of Delphi have added support for modern version control systems, in-
cluding Subversion and Git.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

12 - Introduction

You do not need an in-depth knowledge of any of these topics to read this book, but
you do need to know the basics of Pascal programming. Having some familiarity
with Delphi will help you considerably, particularly after the introductory chapters.
The book starts covering its topics in depth immediately; much of the introductory
material from previous editions has been removed. Some of this left-out material
and an introduction to Pascal12 is available on the author’s Web site and can be a
starting point if you are not confident with Delphi basics. Each new Delphi 5 feature
is covered in the relevant chapters throughout the book.

The Structure of the Book

The book is divided into five parts:

· Part I, “Delphi and Object Pascal,” introduces new features of the Delphi 5 Inte-
grated Development Environment (IDE) in Chapter 1 and then moves to the
Object Pascal language and the Visual Component Library (VCL), providing both
foundations and advanced tips13.

· Part II, “Using Components,” covers standard components, Windows common
controls, graphics, menus, dialog, scrolling, docking, multiple-page controls,
Multiple Document Interface, and many other topics14.

· Part III, “Writing Database Applications,” covers plain database access, advanced
Paradox topics, in-depth coverage of the data-aware controls, client/server pro-
gramming, InterBase Express, and ADO15.

12 This material on the Pascal language later turned into the Essential Pascal e-book, but it is also
included in my “Object Pascal Handbook”, a book I'm maintaining up to date over time. It is
available as a PDF via Embarcadero and as a printed book on Amazon, see www.marcocantu.-
com/objectpascalhandbook/ for more information.

13 While the IDE changed considerably a fair number of the techniques and tips still applied to-
day. Also the core of the language remains the same, even if additions have been relevant. So
most of the content of Part I is quite relevant.

14 The core techniques related with using components have not changed at all. So these founda-
tion chapters provide a very good introduction to Delphi, even after many years. I'll mention
changes in notes, like on all other chapters, of course.

15 The database part of the product has seen many significant changes, with the demise of Para-
dox and the introduction of the dbExpress library and later the migration to FireDAC. ADO
components are still available and the core classes in the DB.pas unit did not change that
much.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://www.marcocantu.com/objectpascalhandbook/
https://www.marcocantu.com/objectpascalhandbook/

Introduction - 13

· Part IV, “Components and Libraries,” covers Delphi component and Dynamic
Link Library (DLL) development; it then looks at COM and OLE, covering Win-
dows shell extensions, OLE Automation, and ActiveX development16.

· Part V, “Real-World Delphi Programming,” discusses many common program-
ming techniques, such as multithreading, memory handling, debugging, using
resources, printing support, file handling, programming TCP/IP sockets, Inter-
net development, Web server-side extensions, three-tier architectures, and
distributed database applications build upon the MIDAS technology17.

As this brief summary suggests, the book covers topics of interest to Delphi users at
nearly all levels of programming expertise, from “advanced beginners” to compo-
nent developers.

In this book, I’ve tried to skip reference material almost completely and focus
instead on techniques for using Delphi effectively. Because Delphi provides exten-
sive online documentation, to include lists of methods and properties of
components in the book would not only be superfluous, it would also make it obso-
lete as soon as the software changes slightly. I suggest that you read this book with
the Delphi help files at hand, to have reference material readily available. You can
find some more Delphi reference material on my Web site, as described later.

However, I’ve done my best to allow you to read the book away from a computer if
you prefer. Screen images and the key portions of the listings should help in this
direction. The book uses just a few conventions to make it more readable. All the
source code elements, such as the keywords, the names of properties, classes, and
functions appear in this font, and listings are formatted as they appear in the Del-
phi editor, with boldfaced keywords and italic comments and strings.

16 The section on components and libraries is still surprisingly up-to-date, as the COM layer in
Windows is still there and Delphi's support saw limited improvements (as it was already very
good and Microsoft didn't touch COM for many years, focusing on the newer .NET frame-
work).

17 While some core techniques like multi-threading are still based on the same foundations, most
of what relates to Web development saw significant improvements. Still WebBroker is still an
architecture heavily used today.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

14 - Introduction

Free Source Code on the Web

This book focuses on examples. After the presentation of each concept or Delphi
component, you’ll find a working program example (sometimes more than one) that
demonstrates how the feature can be used. All told, there are more than 200 exam-
ples presented in the book18. Most of the examples are quite simple and focus on a
single feature. More complex examples are often built step-by-step, with intermedi-
ate steps including partial solutions and incremental improvements.

note Some of the database examples also require you to have the Delphi sample database DBDEMOS
installed; it is part of the default Delphi installation.

Besides the archive with the minimal source code files required to build the pro-
grams, a second archive includes an HTML version of the source code, with full
syntax highlighting, along with a complete cross-reference of keywords and identi-
fiers (class, function, method, and property names, among others). The cross-
reference is an HTML file, so you’ll be able to use your browser to easily find all the
programs that use a Delphi keyword or identifier you’re looking for.

The directory structure of the downloaded files is quite simple. Basically, each part
of the book has its own folder, with a subfolder for each chapter, and a further sub-
folder for each example (e.g., Part2\06\Borders). In the text, the examples are
simply referenced by name (e.g., Borders).

note Be sure to read the source code archive’s Readme file, which contains important information
about using the software legally and effectively.

How to Reach the Author

If you find any problems in the text or examples in this book, I would be happy to
hear from you. Besides reporting errors and problems, please give us your unbiased

18 I have not updated or modified the source code demos, although I might do it in the future. I’ll
occasionally point out to code that needs an update. The source code demos are available on
more modern repositories, like github.com/MarcoDelphiBooks/MasteringDelphi5.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://github.com/MarcoDelphiBooks/MasteringDelphi5

Introduction - 15

opinion of the book and tell us which examples you found most useful and which
you liked least. There are several ways you can provide this feedback19:

· My own Web page (www.marcocantu.com) hosts news and tips, technical articles,
the free online book “Essential Pascal,” Delphi 5 reference information we could
not fit in this book, Delphi links, and my collection of Delphi components and
tools.

· Finally, you can reach me via e-mail at marco@marcocantu.com. My mailbox is
usually quite full and, regretfully, I cannot reply promptly to every request.
Please write to me in English or Italian.

19 Here I've made an exception to the “no edits” rule and removed referenced to the original pub-
lisher, Sybex. My contact information is still valid, but some is missing like my blog (blog.mar-
cocantu.com).

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://www.marcocantu.com/
https://blog.marcocantu.com/
https://blog.marcocantu.com/

16 - Chapter 1: Delphi and Object Pascal

Chapter 1: Delphi

And Object Pascal

In a visual programming tool such as Delphi, the role of the environment is at times
even more important than the programming language. Delphi 5 provides many new
features in its visual development environment, and this chapter covers them in
detail. This chapter isn’t a complete tutorial but mainly a collection of tips and sug-
gestions aimed at the average Delphi user. In other words, it’s not for newcomers.
I’ll be covering the new features of the Delphi 5 Integrated Development Environ-
ment (IDE) and some of the advanced and/or little-known features of previous
versions as well, but in this chapter I won’t provide a step-by-step introduction.
Throughout this book I’ll assume you already know how to carry out the basic
hands-on operations of the IDE, and all the chapters after this one focus on pro-
gramming issues and techniques.

If you are a beginning programmer, don’t be afraid. The Delphi Integrated Develop-
ment Environment is quite intuitive to use. Delphi itself includes a manual
(available in Acrobat format on the Delphi CD20) with a tutorial that introduces the

20 There is no Delphi CD any more, but you can find tutorials and documentation at docwiki.em-
barcadero.com/RADStudio/.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://docwiki.embarcadero.com/RADStudio/
https://docwiki.embarcadero.com/RADStudio/

Chapter 1: Delphi and Object Pascal - 17

development of Delphi applications. You can also find a step-by-step introduction to
the Delphi 5 IDE on my Web site, www.marcocantu.com. The short online book
Essential Pascal21 is based on material from the first chapters of earlier editions of
Mastering Delphi.

Editions of Delphi 5

Before delving into the details of the Delphi programming environment, let’s take a
side step to underline two key ideas. First, there isn’t a single edition of Delphi 5;
there are many of them. Second, any Delphi environment can be customized. For
these reasons, Delphi screens you see illustrated in this chapter may differ from
those on your own computer. Here are the current editions of Delphi:

· The basic version (the “Standard” edition) is aimed at Delphi newcomers and
casual programmers.22

· The second level (the “Professional” edition) is aimed at professional developers.
It includes all the basic features, plus database programming support, extensive
Web server support (WebBroker), and some of the external tools. This book gen-
erally assumes you are working with at least the Professional edition.

· The full-blown Delphi (the “Enterprise” edition, previously called the “Client/
Server Suite”) is aimed at developers building enterprise applications. It includes
SQL Links for native Client/Server BDE connections, ADO and InterBase
Express components, support for multiuser applications, internationalization,
and three-tier architecture, and many other tools, including the SQL Monitor.
Some chapters cover features included only in Delphi Enterprise; these sections
are specifically identified.

21 See www.marcocantu.com/epascal/ for the latest information about this e-book.

22 The “Standard” edition of Delphi has been long discontinued. It was temporarily replaced by a
Turbo edition (now discontinued as well). Later the company introduced a new low cost ver-
sion called Starter edition. Today you can use the free Delphi Community Edition (if you qual-
ity in terms of use case and earnings) or buy the “Professional” and “Enterprise” versions,
which continue to be the core offerings, with differences not radically changed since Delphi 5.
Check the latest product description and Feature Matrix at www.embarcadero.com/
products/delphi for information on differences between the versions, so you can download or
buy the one that better serves your needs.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://www.embarcadero.com/products/delphi
https://www.embarcadero.com/products/delphi
http://www.marcocantu.com/epascal/

18 - Chapter 1: Delphi and Object Pascal

Some of the features of Delphi Enterprise are available as an “upsell” to owners of
Delphi Professional. Although this is a marketing decision that may change in the
future, you should be able to buy ADO components and TeamSource (for coopera-
tion among programmers). If you can’t justify the cost of the full Enterprise edition
for your work, you may be able to buy Delphi Professional plus the specific subsys-
tems you want separately from the Borland Online Store23.

Besides the different editions available, there are a number of ways to customize the
Delphi environment. In the screen illustrations throughout the book, I’ve tried to
use a standard user interface (as it comes out of the box); however, I have my pref-
erences, of course, and I generally install many add-ons, which might be reflected in
some of the screen shots.

The Delphi 5 IDE

The Delphi 5 IDE includes some of the broadest changes Borland has introduced
since it upgraded Delphi 1 to Delphi 2. Among the new features are a redesigned
Object Inspector, a new Project Manager, the ability to save the position of the desk-
top windows, the to-do list, and much more. Most of the features are quite easy to
grasp, but it’s worth examining them with some care so that you can start using Del-
phi 5 at its full potential.

Command-Line Options

The first thing to notice is that there are changes even before you start Delphi. In
fact, the delphi32.exe program24, which starts the IDE, has many new command-
line options. Most of these options (listed in the Help topic “IDE command-line
options”25) are aimed at advanced users and allow you to track the status of the Del-
phi IDE itself.

23 Extra add-ins are currently not sold separately any more.

24 The executable file that starts the IDE is now called “bds.exe” (which originally was a short
version of Borland Developer Studio), some of the command lines parameters mentioned here
still work and little known by developers.

25 See docwiki.embarcadero.com/RADStudio/en/IDE_Command_Line_Switches_and_Options

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://docwiki.embarcadero.com/RADStudio/en/IDE_Command_Line_Switches_and_Options

Chapter 1: Delphi and Object Pascal - 19

For example, you can load a program into the debugger or attach the system to a
process that’s already running (topics I’ll discuss along with other debugging fea-
tures in Chapter 18).

Other features might be useful even to the casual programmer. The –ns (“no
splash”) flag skips the splash screen, and the –np (“no project”) flag tells Delphi not
to open an empty project on startup. (This allows for a fast boot because it prevents
the loading of any package of components, which are attached to projects.)

Probably the most commonly used feature isn’t strictly a command-line option, or
even a startup option. You can easily specify a project, project group, or Pascal
source code file to open. When Delphi is already running, double-clicking a file-
name or icon in Windows Explorer doesn’t open a new copy of the IDE, it simply
opens a PAS or DFM file in the current copy of Delphi. When you select a project file
(.DPR), Delphi first closes the current project after asking you to save any changes26.

From the command line you can load a project and let Delphi automatically build or
make it (with the –b and –m) options, immediately closing the IDE after the opera-
tion is completed. This doesn’t seem terribly useful; for compiling a series of large
projects with a script or batch file, you should instead use the faster command-line
compiler27 (which doesn’t need the IDE).

Saving the Desktop Settings

Building on past versions of Delphi and on the support for docking that was added
in Win32, Delphi has since version 4 allowed programmers to customize the IDE in
a number of ways, typically opening many windows and arranging them and dock-
ing them to each other. However, programmers often need to open one set of
windows at design time and a different set at debug time. Similarly, programmers
might need one layout when working with forms and a completely different layout
when writing components or low-level code using only the editor. Rearranging the
IDE for each of these needs is a tedious task.

With Delphi 5, every time you come up with an arrangement of IDE windows you
like for a specific purpose, you can save it with a name and restore it easily. Also,
you can make one of these groupings your default debugging setting, so that it will

26 This behavior has changed: As you activate a project in Explorer, the IDE by default adds the
project to the current project group, rather than replacing the currently open project.

27 Starting from Delphi 2005 the command line compilation can also be invoked using a MS-
Build script, which is what the IDE does anyway. Compiling outside of the IDE is also directly
available as a compiler project option.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

20 - Chapter 1: Delphi and Object Pascal

be restored automatically when you start the debugger. All these features are avail-
able in the new Desktops toolbar, shown in Figure 1.1. (It’s the only toolbar with a
combo box.) You can also work with desktop settings using the View Desktops
menu. This has the features of the toolbar, and also allows you to delete one of the
saved settings28.

Figure 1.1:
The main window of
Delphi 5 includes the
Desktops toolbar,
which you can use to
reload a configuration
of the IDE windows.
Images captured in
Delphi 5 and Delphi 12.

Desktop setting information is saved in DST files29, which are INI files in disguise.
The saved settings include the position of the main window, the Project Manager,
the Alignment Palette, the Object Inspector (including its new property category
settings), the editor windows (with the status of the Code Explorer and the Message
View), and many others, plus the docking status of the various windows.

Here is a small excerpt from a DST file, which should be easily readable:

[Main Window]
Create=1
Visible=1
State=0
Left=0
Top=0
Width=1024
Height=105
ClientWidth=1016
ClientHeight=78

[ProjectManager]
Create=1
Visible=0
State=0
...
Dockable=1

28 While the UI has changed the same idea remains today, with the addition of a new default
desktop settings called “Startup Layout”, used when no project is open.

29 In recent versions, the DST files are saved in the folder with the version number under C:\
Users\<username>\AppData\Roaming\Embarcadero\BDS\xxx. The file content remains
largely the same.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 21

[AlignmentPalette]
Create=1
Visible=0
...

[PropertyInspector]
Create=1
Visible=1
...
Dockable=1
SplitPos=85
ArrangeBy=Name
HiddenCategories=Legacy
ShowStatusBar=1

note Desktop settings override project settings. This helps eliminate the problem of moving a project
between machines (or between developers) and having to rearrange the windows to your liking.
Delphi 5 separates per-user and per-machine preferences from the project settings, to better sup-
port team development.

The To-Do List

Another brand-new feature of Delphi 5’s IDE is the to-do list30. This is a list of tasks
you still have to do to complete a project, a collection of notes for the programmer
(or programmers, as this tool can be very handy in a team). While the idea is not
new, the key concept of the to-do list in Delphi 5 is that it works as a two-way tool.

In fact, you can add or modify to-do items by adding special comments to the source
code of any file of a project; you’ll then see the corresponding entries in the list. But
you can also visually edit the items in the list to modify the corresponding source
code comment. For example, here is how a to-do list item might look like in the
source code:

procedure TForm1.FormCreate(Sender: TObject);
begin
 // TODO -oMarco: Add creation code
end;

The same item can be visually edited in the window shown in Figure 1.2.

30 While superseded by modern developer collaboration tools for tracking changes and work, the
To-Do list has still a nice role and I think it has been a bit neglected, while I find it handy to
leave notes for myself and occasionally for others using this format rather than using a general
comment, as the IDE makes it easier to find them.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

22 - Chapter 1: Delphi and Object Pascal

Figure 1.2:
The Edit To-Do Item
window can be used to
modify a to-do item, an
operation you can also
do directly in the
source code. Images
captured in Delphi 5
and Delphi 12.

The exception to this two-way rule is the definition of project-wide to-do items. You
must add these items directly to the list. To do that, you can either use the Ctrl+A
key combination in the To-Do List window or right-click in the window and select
Add from the shortcut menu. These items are saved in a special file with the .TODO
extension.

There are multiple options you can use with a TODO comment. You can use –o (as in
the code excerpt above) to indicate the owner, the programmer who entered the
comment; the –c option to indicate a category; or simply a number from 1 to 5 to
indicate the priority (0, or no number, indicates that no priority level is set). For
example, using the Add To-Do Item command on the editor’s shortcut menu (or the
Ctrl+Shift+T shortcut31) generated this comment:

{ TODO 2 -oMarco : Button pressed }

Delphi treats everything after the colon, up to the end of line or the closing brace,
depending on the type of comment, as the text of the to-do item.

31 The shortcut still opens the Edit To-Do item dialog above, but you can also type “todo” in the
editor and press space to trigger the generation of this line:

{TODO -oOwner -cGeneral : ActionItem}

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 23

Finally, in the To-Do List window you can check off an item to indicate that it has
been done. The source code comment will change from TODO to DONE. You can also
change the comment in the source code manually to see the check mark appear in
the To-Do List window.

One of the most powerful elements of this architecture is the main To-Do List win-
dow, shown in Figure 1.3, which can automatically collect to-do information from
the source code files as you type them. The items of this list are part of this chapter’s
ToDoTest example (which does nothing but has lots of things to do). The list items
in this window show the various attributes I’ve just described, along with the source
code files where they are defined. The initial check box is marked for Done items,
which also have their text crossed out.

Figure 1.3:
The To-Do List window
for the ToDoTest
example. Images
captured in Delphi 5
and Delphi 12.

note To try out ToDoTest and all the program examples in this book, you need to download the source
code32. Every reader should download the source code in order to get the full value of this book.
Each time the text mentions a new program example by name, you should look for a folder of that
name among the downloaded files and read the complete source code. For most examples you’ll
also want to compile the program and run it.

The To-Do List window has a shortcut menu that allows you to add, edit, or delete
items, filter and sort them, and export them to the Clipboard. The command used to
perform this last operation, Copy As, lets you export the items either as text or as an
HTML table, which can be customized using the Table Properties command. The
HTML table settings include a nice preview, as you can see in Figure 1.4. The infor-
mation is not saved in an HTML file; it’s just copied to the Clipboard. You have to

32 In this case, I’ve deleted portions of the text as the old locations don’t exist any more. Again,
the correct link is github.com/MarcoDelphiBooks/MasteringDelphi5.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://github.com/MarcoDelphiBooks/MasteringDelphi5

24 - Chapter 1: Delphi and Object Pascal

open your favorite HTML editor (or Notepad or a text window in the Delphi editor)
to save it to a file.33

Figure 1.4:
The HTML table
preview of the to-do
list. Images captured in
Delphi 5 and Delphi 12.

33 I realized I had not seen that HTML preview in so many years, I thought the feature had been
dropped, but – as Figure 1.4 shows – it’s still in the most recent versions of Delphi.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 25

The AppBrowser Editor

The editor included with Delphi 5 hasn’t changed much from Delphi 4. However,
Delphi 4 had many new features, so it’s worth briefly examining this tool. Delphi 4
introduced three fundamental innovations: a Code Explorer window (which lists all
the definitions of a unit), support for navigation (similar to that of a Web browser),
and Class Completion (a code-generation technology).

Delphi 5 adds to the editor a new keyboard mapping for Visual Studio emulation
and the ability to extend the editor with custom key mapping modules. These last
settings are defined in the new Key Bindings tab of the Editor Properties dialog box,
which you can activate with the Tools Editor Options34 command. This new dialog
box shows the environment settings related to the editor.

note The custom key mapping modules can be written using new Tools API features added to Delphi 5.
You can write a completely new key mapping module or simply add a few extra shortcut keys to
the existing one. This advanced topic is not covered in the book, but you can find examples in the
Editor Keybinding folder of Delphi’s Demos directory. One of these additional key bindings, called
Buffer List, is installed by default and available by pressing the Ctrl+B key combination.

The Delphi editor allows you to work on several files at once, using a “notebook with
tabs” metaphor, and you can also open multiple editor windows35. You can jump
from one page of the editor to the next by pressing Ctrl+Tab (or Shift+Ctrl+Tab to
move in the opposite direction). There are a number of options that affect the edi-
tor, located in the new Editor Properties dialog box. You have to go to the
Preferences page of the Environment Options36 dialog box, however, to set the edi-
tor’s AutoSave feature, which saves the source code files each time you run the
program (preventing data loss in case the program crashes badly).

I won’t discuss the various settings of the editor, as they are quite intuitive and are
described in the online Help. What is not officially documented is that you can use
two entries of the Windows Registry to set the initial width and height of the editor37

34 This is now found in the Editor section of the Tools | Options dialog box.

35 Starting with very recent versions of Delphi, you can also use “split views” which is the ability
to slit an editor horizontally or vertically to see more than one file, but also see two different
locations of the same file side by side. I like this “split views” new feature a lot!

36 Now under Tools | Options. I won’t keep adding footnotes for each occurrence, it’s a general
changes how options are now surfaced I a single all-encompassing dialog box.

37 This entire concept doesn’t exist any more, given the editor is now docked to the main IDE
window.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

26 - Chapter 1: Delphi and Object Pascal

(to make it as large as your screen, for example). Go to the Delphi section in the
Registry38, HKEY_CURRENT_USER/Software/Borland/Delphi/5.0, and add under the
Editor key two new DWORD items, called DefaultHeight and DefaultWidth, indicat-
ing the height and width of the editor in pixels. To modify the Windows Registry
you can use the RegEdit.EXE application under Windows 95 and 98 or
RegEdt32.EXE under NT39.

Another tip to remember is that beginning with Delphi 4, using Cut and Paste com-
mands is not the only way to move source code. You can also select and drag words,
expressions, or entire lines of code. You can also copy text instead of moving it, by
pressing the Ctrl key while dragging.

The Code Explorer

The Code Explorer window40, which is generally most useful when it’s docked on
the side of the editor, simply lists all of the types, variables, and routines, defined in
a unit, plus other units appearing in uses statements. For complex types, such as
classes, the Code Explorer can list detailed information including a list of fields,
properties, and methods. All the information is updated as soon as you start typing
in the editor. You can use the Code Explorer to navigate in the editor. If you double-
click one of the entries in the Code Explorer, the editor jumps to the corresponding
declaration.

While all that is quite obvious after you’ve used Delphi for a few minutes, there are
some features of the Code Explorer that are not so intuitive. One important point is
that you have full control of the layout of the information, and you can reduce the
depth of the tree usually displayed in this window by customizing the Code
Explorer. Collapsing the tree can help you make your selections more quickly. You
can configure the Code Explorer by using the corresponding page of the Environ-
ment Options41, as shown in Figure 1.5.

38 In recent releases, that’s a key under Computer\HKEY_CURRENT_USER\Software\Embar-
cadero\BDS\23.0 or similar (depending on the internal product version number).

39 Today, it’s just called regedit.exe.

40 The content of what was the Code Explorer windows now displayed in the Structure view in
case a source code file is open in the editor (while the same pane doubles as a form layout view
when a designer is selected). The Code Explorer pane has now some more information, includ-
ing Error Insight, the list of errors in the given unit.

41 In recent versions these settings are available under Tools | Options, User Interface, Structure.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 27

Figure 1.5:
You can configure the
Code Explorer in the
Environment Options
dialog box. Images
captured in Delphi 5
and Delphi 12: The
content it surprisingly
similar.

Notice that when you deselect one of the Explorer Categories items on the right side
of this page of the dialog box, the Explorer doesn’t remove the corresponding ele-
ments from view, it simply adds the node in the tree. For example, if you deselect
the Uses check box, Delphi doesn’t hide the list of the used units from the Code
Explorer. On the contrary, the used units are listed as main nodes instead of being
kept in the Uses folder. As another example, by disabling the Types, Classes, and
Variables selections, you obtain the output shown in Figure 1.6.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

28 - Chapter 1: Delphi and Object Pascal

The most important settings are probably those related to classes. The definitions
related to a class can be arranged in three ways:

· According to the private, protected, public, and published categories

· According to the methods and fields categories

· All together in a single group

As each item of the Code Explorer tree has an icon marking its type, arranging by
field and method seems less important than arranging by access specifier. My pref-
erence is to show all items in a single group, as this requires the fewest mouse clicks
to reach each item. Selecting items in the Code Explorer, in fact, provides a very
handy way of navigating the source code of a large unit. When you double-click on a
method in the Code Explorer, the focus moves to the definition in the class declara-
tion (in the interface portion of the unit). You can use the Ctrl+Shift combination
with the up or down arrow keys to jump from the definition of a method or proce-
dure in the interface portion of a unit to its complete definition in the
implementation portion (or back again).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 29

Figure 1.6:
Some of the folders of
the Code Explorer can
be removed by
removing the items
from the
corresponding settings.
Images captured in
Delphi 5 and Delphi 12.

note Some of the Explorer Categories shown in Figure 1.5 are used by the new Project Explorer (or
Browser) introduced in Delphi 5, rather than by the Code Explorer. These include, among others,
the Virtuals, Statics, Inherited, and Introduced grouping options.

The Code Explorer is not only an output and browsing tool. In fact, you can use it for
entering new items in each category. Actually, the type of the new item generally
depends on what you type. A name that starts with the procedure or function key-
words is automatically considered a method, while a name followed by a semicolon
and a data type is considered a field. The editing capabilities of the Code Explorer
are too limited to provide any real advantage compared to editing in the source-
code window. It would be nice to have dragging capabilities, for example, to move a
field or method to a different visibility section or copy it to another class.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

30 - Chapter 1: Delphi and Object Pascal

note Field, methods, public, private…? If you’re not familiar with the terminology of the Object Pascal
language, you’ll find good coverage of these terms in Chapter 2. I’ve used them here without
explaining them simply because most readers of this book probably have at least some exposure
to Delphi and its programming language.

Browsing in the Editor

Another feature of the AppBrowser editor is the Tooltip Symbol Insight. Move the
mouse over a symbol in the editor, and a Tooltip will show you where the identifier
is declared. This feature can be particularly important for tracking identifiers,
classes, and functions within an application you are writing, and also for referring to
the source code of the Visual Component Library (VCL).

note Although it may seem a good idea at first, you cannot use Tooltip Symbol Insight to find out
which unit declares an identifier you want to use. If the corresponding unit is not already
included, in fact, the Tooltip won’t appear.

The real bonus of this feature, however, is that you can turn it into a navigational
aid. When you hold down the Ctrl key and move the mouse over the identifier Del-
phi creates an active link to the definition instead of showing the Tooltip. These
links are displayed with the blue color and underline style that are typical of Web
browsers, and the pointer changes to a hand whenever it’s positioned on the link, as
shown in Figure 1.7.

For example, you can Ctrl-click on the TLabel identifier to open its definition in the
VCL source code. As you select references, the editor keeps track of the various posi-
tions you’ve jumped to, and you can move backward and forward among them—
again as in a Web browser. You can also click on the drop-down arrows near the
Back and Forward buttons to view a detailed list of the lines of the source code files
you’ve already jumped to, for more control over the backward and forward move-
ment.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 31

Figure 1.7:
Delphi’s browsing
capability is activated
by keeping the Ctrl key
pressed and moving the
mouse over an
identifier. Images
captured in Delphi 5
and Delphi 12.

How can you jump directly to the VCL source code if it is not part of your project?
The AppBrowser editor can find not only the units in the Search path (which are
compiled as part of the project), but also those in Delphi’s Debug Source, Browsing,
and Library paths. These directories are searched in the order I’ve just listed, and
you can set them in the Directories/Conditionals page42 of the Project Options dia-
log box and in the Library page of the Environment Options dialog box. By default,
Delphi adds the VCL source code directories in the Browsing path of the environ-
ment, which has the following declaration:

$(DELPHI)\source\vcl;$(DELPHI)\source\rtl\Corba;
$(DELPHI)\source\rtl\Sys;$(DELPHI)\source\rtl\Win;
$(DELPHI)\source\Internet

42 The Browsing Path is now configured the Language | Delphi | Library section of the Tools |
Options dialog box. The default path is very long, and not worth listing here.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

32 - Chapter 1: Delphi and Object Pascal

In this series of paths, the declaration $(DELPHI) stands for the directory where Del-
phi is installed43.

Class Completion

The third important feature of Delphi’s AppBrowser editor is Class Completion,
activated by pressing the Ctrl+Shift+C key combination. Adding an event handler to
an application is a fast operation, as Delphi automatically adds the declaration of a
new method to handle the event in the class and provides you with the skeleton of
the method in the implementation portion of the unit. This is part of Delphi’s sup-
port for visual programming.

Newer versions of Delphi also simplify life in a similar way for programmers who
write a little extra code behind event handlers. The new code-generation feature, in
fact, applies to general methods, message-handling methods, and properties. For
example, if you type the following code in the class declaration:

public
 procedure Hello (MessageText: string);

and then press Ctrl+Shift+C, Delphi will provide you with the definition of the
method in the implementation section of the unit, generating the following lines of
code:

{ TForm1 }
procedure TForm1.Hello(MessageText: string);
begin
end;

This is really handy, compared with the traditional approach of many Delphi pro-
grammers, which is to copy and paste one or more declarations, add the class
names, and finally duplicate the begin .. end code for every method copied.

Class Completion can also work the other way around. You can write the implemen-
tation of the method with its code directly, and then press Ctrl+Shift+C to generate
the required entry in the class declaration.

Glancing back at the Explorer settings shown in Figure 1.5, you’ll see one option for
Class Completion—you can use it to complete the definition of a property. If you
simply type in a brand-new form class,

property X: Integer;

43 This is now replaced by the $(BDS) symbolic reference.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 33

and activate Class Completion, Delphi generates a SetX method for the property and
adds the FX field to the class. The resulting code looks like this:

type
 TForm1 = class(TForm)
 private
 FX: Integer;
 procedure SetX(const Value: Integer);
 public
 property X: Integer read FX write SetX;
 end;

implementation

procedure TForm1.SetX(const Value: Integer);
begin
 FX := Value;
end;

This really saves a lot of typing. In fact, you can even partially control how Class
Completion generates Set and Get methods for the property, as discussed in Chap-
ter 3 in the section devoted to properties.

Code Insight

Besides the Code Explorer, Code Completion, and the navigational features, the
Delphi editor still supports the Code Insight44 technology originally introduced in
Delphi 3. Collectively, the Code Insight techniques are based on a constant back-
ground parsing, both of the source code you write and of the source code of the
system units your source code refers to. Code Insight comprises five capabilities:

· Code Completion allows you to choose the property or method of an object
simply by looking it up on a list, or by typing its initial letters. To activate it you
can simply type the name of an object, such as Button1, then add the dot, and
wait. To force the display of the list, press Ctrl+Spacebar; to remove it when you
don’t want it, press Esc. Code Completion also lets you look for a proper value in
an assignment statement. As you type := after a variable or property, Delphi will
list all the other variables or objects of the same type, plus the objects having
properties of that type. While the list is visible, you can right-click on it to change
the order of the items, sorting either by scope or by name.

44 Most of the Code Insight features are now based on a DelphiLSP engine, a Delphi implementa-
tion of the Language Server Ptotocol defined by Microsoft. The behavior in the IDE remains
almost unchanged.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

34 - Chapter 1: Delphi and Object Pascal

· Code Templates allow you to insert one of the predefined code templates, such
as a complex statement with an inner begin..end block. Code Templates must be
activated manually, by typing Ctrl+J to show a list of all of the templates45. If you
type a few letters (such as a keyword) before pressing Ctrl+J, Delphi will list only
the templates starting with those letters.

· Code Parameters display, in a hint or Tooltip window, the data type of a func-
tion’s or method’s parameters while you are typing it. Simply type the function or
method name and the open (left) parenthesis, and the parameter names and
types appear immediately in a popup hint window. To force the display of Code
Parameters, you can press Ctrl+Shift+spacebar. As a further help, the current
parameter appears in boldface type.

· Tooltip Expression Evaluation is a debug-time feature. It shows you the
value of the identifier, property, or expression that is under the mouse cursor.

· Tooltip Symbol Insight lets you see the definition of an identifier in a Tooltip,
as discussed earlier, in the section “Browsing in the Editor.”

You can enable and disable or configure each of these features in the Code Insight
page of the Editor Options dialog box46, shown in Figure 1.8.

45 Since Delphi 2006, Code Templates have been replaced and superseded by the more powerful
Live Templates, which are invoked either by the Tab key or the plain Space key, but are still
listed if you press the original Ctrl+J shortcut key. Live Templates are covered in my “Delphi
2007 Handbook”.

46 The configuration is now under the Editor | Language page of the Tools | Options dialog box.
The page has multiple tabs including a “Code Insigth” one, as shown in Figure 1.8.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 35

Figure 1.8:
The Code Insight page
of the Editor Options
dialog box allows you
to activate or disable
each of these
technologies and to set
the delay time. Images
captured in Delphi 5
and Delphi 12.

note When the code you’ve written is not correct, Code Insight won’t work, and you may see just a
generic error message indicating the situation. It is possible to display specific Code Insight errors
in the Message pane (which must already be open; it doesn’t open automatically to display compi-
lation errors). To activate this feature you need to set another undocumented registry entry,
setting the string key Delphi\5.0\Compiling\ShowCodeInsiteErrors to the value “1”.47

47 This feature is now active by default and it can be configured in the same page of the Tools Op-
tions dialog box, in the “Error Insight” tab.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

36 - Chapter 1: Delphi and Object Pascal

More Editor Shortcut Keys

The editor has many more shortcut keys, which depend on the editor style you’ve
selected. Here are a few of the less-known shortcuts, most of which are useful:

· Ctrl+Shift plus a number key from 0 to 9 activates a bookmark, indicated in a
“gutter” margin on the side of the editor. To jump back to the bookmark you can
press the Ctrl key plus the number key. The usefulness of bookmarks in the edi-
tor is limited by the fact that a new bookmark can override an existing one and
that bookmarks are not persistent48; they are lost when you close the file.

· Ctrl+E activates the incremental search. You can press Ctrl+E and then directly
type the word you want to search for, without the need to go through a special
dialog box and click the Enter key to do the actual search.

· Ctrl+Shift+I indents multiple lines of code at once. The number of spaces used is
the one that is set by the Block Indent option in the Editor page of the Environ-
ment Options dialog box. Ctrl+Shift+U is the corresponding key for unindenting
the code.

· Ctrl+O+U toggles the case of the selected code; you can also use Ctrl+K+E to
switch to lowercase and Ctrl+K+F to switch to uppercase.

· Ctrl+Shift+R starts recording a macro, which you can later play by using the
Ctrl+Shift+P shortcut. The macro records all the typing, moving, and deleting
operations done in the source code file. Playing the macro simply repeats the
sequence—an operation that has little meaning once you’ve moved on to a differ-
ent source code file. I have yet to find a use for this technique, although I guess
Borland uses it for testing purposes49.

· Holding down the Alt key, you can drag the mouse to select rectangular areas of
the editor, not just consecutive lines and words.

48 This is not true any more: Editor bookmarks are saved along with other local project settings.

49 I started using this feature (which is now surfaced with specific buttons at the bottom of the
editor pane) when I need to perform repeated editing, like deleting or adding the same text to
multiple lines. It can be very effective.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 37

The Form Designer

Another Delphi window you’ll interact with very often is the Form Designer, a visual
tool for placing components on forms. In the Form Designer you can select a com-
ponent directly with the mouse or through the Object Inspector, a handy feature
when a control is behind another one or is very small. If a control covers another
one completely, you can use the Esc key to select the parent control of the current
one. You can press Esc one or more times to select the form, or press and hold Shift
while you click on the selected component. This will deselect the current component
and select the form by default.

note What if you need to move a control at design time by dragging it, but its area is covered by a child
control? Just drag the child control and then press the Esc key (while holding down the mouse
button) to switch the dragging operation to the parent control.

There are two alternatives to using the mouse to set the position of a component.
You can either set values for the Left and Top properties, or you can use the arrow
keys while holding down Ctrl. Using arrow keys is particularly useful for fine-tuning
an element’s position. (The Snap to Grid option works only for mouse operations.50)
Similarly, by pressing the arrow keys while you hold down Shift, you can fine-tune
the size of a component. (If you press Shift+Ctrl along with an arrow key, the com-
ponent will be moved only at grid intervals.) Unfortunately, during these fine-
tuning operations the component hints with the position and size are not displayed.

To align multiple components or make them the same size, you can select several
components and set the Top, Left, Width, or Height property for all of them at the
same time. To select several components, you can click on them with the mouse
while holding down the Shift key, or, if all the components fall into a rectangular
area, you can drag the mouse to “draw” a rectangle surrounding them. When you’ve
selected multiple components, you can also set their relative position using the
Alignment dialog box (with the Align command of the form’s shortcut menu) or the
Alignment palette (accessible through the View Alignment Palette51 menu com-
mand).

50 The design time guidelines now available in Delphi offer you a lot of power for aligning compo-
nents to the sides or the text baseline and effectively replace some of the techniques described
here and later. Notice also that you now get some of the hints that were missing when I wrote
the text.

51 Now available with the menu View | Toolbars | Align.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

38 - Chapter 1: Delphi and Object Pascal

When you’ve finished designing a form, you can use the Lock Controls command of
the Edit menu to avoid accidentally changing the position of a component in a form.
This is particularly helpful, as there is no real Undo operation on forms (only an
Undelete one), but the setting is not persistent.

Among its other features, the Form Designer offers a number of Tooltip hints:

· As you move the pointer over a component, the hint shows you the name and
type of the component. This is an alternative to the Show Component Captions
environment setting, which I tend to keep always active.

· As you resize a control, the hint shows the current size (the Width and Height
properties). Of course, this feature is available only for controls, not for non-vis-
ual components (which are indicated in the Form Designer by icons).

· As you move a component, the hint indicates the current position (the Left and
Top properties).

Finally, what may be the most important new Delphi 5 feature of the Form Designer
is that you can save DFM (Delphi Form Module) files in plain text instead of the tra-
ditional binary resource format52. You can toggle this option for an individual form
with the Form Designer’s shortcut menu, or you can set a default value for newly
created forms in the Preferences page of the Environment Options dialog box (see
Figure 1.9).

52 Using textual DFM files has now long been the default in Delphi.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 39

Figure 1.9:
The Preferences page
of the Environment
Options dialog box in
Delphi 5 allows you to
determine whether
forms will be created
by default and whether
the DFM files will hold
plain text. Images
captured in Delphi 5
and Delphi 12.

In the same page you can also specify whether the secondary forms of a program
will be automatically created at startup, a decision you can always reverse for each
individual form (using the Forms page of the Project Options dialog box). But the
most obvious difference between Delphi 5 and past versions, when working with
forms, is the Object Inspector.

Having DFM files stored as text is a welcome addition; it lets you better operate
with version-control systems. Programmers won’t get a real advantage from this

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

40 - Chapter 1: Delphi and Object Pascal

feature, as you could already open the binary DFM files in the Delphi editor with a
specific common of the shortcut menu of the designer. Version control systems, on
the other hand, need to store the textual version of the DFM files to be able to com-
pare them and capture the differences between two versions of the same file. This
was probably introduced in Delphi 5 in conjunction with the new TeamSource ver-
sion control system interface, discussed in Chapter 1953.

In any case, note that if you use DFM files as text, Delphi will still convert them into
a binary resource format before including them in the executable file of your pro-
grams. DFM are linked into your executable in binary format to reduce the
executable size (although they are not really compressed) and to improve run-time
performance (they can be loaded faster).

note Earlier versions of the Delphi IDE won’t recognize text DFM files. When you open a textual DFM
in Delphi 4 (or past versions), you’ll get an error. To fix it, you should manually first use Delphi 5
to convert the DFM file to the binary format, using the shortcut menu of the Form Designer. (On
a computer that doesn’t have Delphi 5, you can use the Delphi 4 command-line tool CONVERT.54)
When you open an existing DFM in the Delphi 5 IDE, the original DFM format will be preserved
(unless you explicitly change it using the Text DFM shortcut menu item), thus allowing you to
reopen the same form in past version of Delphi.

The Object Inspector in Delphi 5

If you have used Delphi in the past, you will immediately see that there is something
new in the Object Inspector. The most important changes involve the graphical
drop-down lists and the property categories.

The first element is the simplest to use. The drop-down list for a property in the
Object Inspector can include graphical elements. Many of the relevant properties
use this feature by default: Color, Cursor and its variations, generally the
ImageIndex property of components connected with an ImageList (such as an
action, a menu item, or a toolbar button), the Pen and Brush styles, and a few oth-
ers. For example, Figure 1.10 shows the list of cursors (Cursor properties)55. Of
course, developers of Delphi components and add-ins will be able to customize this
feature, and you’ll see more graphical drop-down elements in the future. See the fol-

53 Given this entire feature is no longer available (and it has been removed from the product for a
long time), I’m going to remove that section of the book.

54 The convert.exe tools continues to exist and be available in the bin folder today

55 The list of cursors is still displayed today, even if I haven’t included an updated image.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 41

lowing section “Drop-Down Fonts in the Object Inspector” for a simple customiza-
tion of this window.

Figure 1.10:
A graphical drop-down
list in the Delphi 5
Object Inspector,
showing available
cursors.

It takes a little more time to get used to the property categories56. To understand this
feature, you first need to make it visible. To display properties by category instead of
by name, right-click in the Object Inspector and choose the proper Arrange option
from the shortcut menu. You can see the effect of this choice in Figure 1.11. Looking
carefully at this figure, you may notice something strange—the Align property is
available in two different categories. This is a general rule; categories are not exclu-
sive, and a property can register itself for multiple categories.

56 While the ability to group Object Inspector properties in categories still exists today (see Fig-
ure 1.11), this feature is not frequently used and generally not recommended. Because of this,
I’ve skipped capturing new versions of some of the other figures.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

42 - Chapter 1: Delphi and Object Pascal

Figure 1.11:
The effect of arranging
properties by category.
Images captured in
Delphi 5 and Delphi 12.

Categories have the benefit of reducing the complexity of the Object Inspector. You
can use the View submenu from the shortcut menu to hide properties of given cate-
gories, regardless of the way they are displayed (that is, even if you prefer the
traditional arrangement by name, you can still hide the properties of some cate-
gories). For example, in Figure 1.12 you can see the properties of a form arranged by
name, but only the properties within the Visual and Input categories. In fact, as you
can see in the status bar of the Object Inspector, 44 properties are hidden. The
arrangement and the visibility you select will affect events, as well.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 43

Figure 1.12:
You can hide
properties of some
categories, even when
they are arranged by
name.

note Another new feature of the Delphi 5 Object Inspector is the ability to select the component refer-
enced by a property. To do this, double-click with the left mouse button on the property value
while keeping the Ctrl key pressed. For example, if you have a MainMenu component in a form
and you are looking at the properties of the form in the Object Inspector, you can select the Main-
Menu component by moving to the MainMenu property of the form and Ctrl+double-clicking on
the value of this property. This selects the main menu indicated as the value of the property in the
Object Inspector. This feature can be very useful when you have many connected components; for
example, when using multiple data-source and dataset components.57

57 The ability to jump to the connected component has later been extended with the ability to ex-
pand the properties of the connected component in place, as if it was a local property with sub-
properties.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

44 - Chapter 1: Delphi and Object Pascal

Drop-Down Fonts in the Object Inspector58

The Delphi 5 Object Inspector has graphical drop-down lists for several properties.
You might want to add one showing the actual image of the font you are selecting,
corresponding to the Name subproperty of the Font property. This capability is actu-
ally built into Delphi 5, but it has been disabled because most computers have a
large number of fonts installed and rendering them can really slow down the com-
puter. If you want to enable this feature, you have to install in Delphi a package that
enables the FontNamePropertyDisplayFontNames global variable of the DsgnIntf
unit. I’ve done this in the OiFontPk package, which you can find among the program
examples for this chapter59.

Once this package is installed, you can move to the Font property of any component,
and use the graphical Name drop-down menu, as displayed below:

58 This Object Inspector customization still works today, but it is rarely used as painting the drop
down list of fonts with the actual fonts can be very slow, compared to showing the font names
only.

59 Again, this is not recommended as this makes the display terribly slow. The feature can be en-
abled without the special add-in package.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 45

There is a second, more complex customization of the Object Inspector I like and
use frequently, a custom font for the entire Object Inspector, to make its text more
visible. This feature is particularly useful for public presentations60. You can find the
package to install custom fonts in the Object Inspector on my Web site,
www.marcocantu.com.

60 I won’t recommend using this old add-in package either, I doubt it’s going to work smoothly.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

46 - Chapter 1: Delphi and Object Pascal

Secrets of the Component Palette

The Component Palette61 is very simple to use, but there are a few things you might
not know. There are four simple ways to place a component on a form:

· After selecting a control in the palette, click within the form to set the position
for the control, and press-and-drag the mouse to size it.

· After selecting any component, simply click within the form to place it with the
default height and width.

· Double-click the icon in the palette to add a component of that type in the center
of the form.

· Shift-click on the component icon to place several components of the same kind
in the form. To stop this operation, simply click on the standard selector (the
arrow icon) on the left side of the Component Palette.

You can select the Properties command on the shortcut menu of the palette to com-
pletely rearrange the components in the various pages, possibly adding new
elements or just moving them from page to page. In the resulting Properties page,
you can simply drag a component from the Components list box to the Pages list box
to move that component to a different page.

note When you have too many pages in the Component Palette, you’ll need to scroll them to reach a
component. There is a simple trick you can use in this case: Rename the pages with shorter
names, so that all the pages will fit on the screen. Obvious—once you’ve thought about it.

The real undocumented feature of the Component Palette is the “hot-track” activa-
tion. By setting special keys of the Registry, you can simply select a page of the
palette by moving over the tab, without any mouse click. The same feature can be
applied to the component scrollers on both sides of the palette, which show up when
a page has too many components.

To activate this hidden feature you have to add an Extras key under
HKEY_CURRENT_USER\Software\Borland\Delphi\5.0. Under this key you have to

61 The Component Palette has been replaced by the Tools Palette, but some of the description in
this section (like the ways to select components) still applies. Delphi still has also a Compo-
nents Toolbar that acts, behaves, and can be customized much like the original Component
palette, although it’s not a stable and reliable feature and Embarcadero has hinted at deprecat-
ing and removing it.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 47

enter two string values, AutoPaletteSelect and AutoPaletteScroll, and set each
value to the string ‘1’.

Defining Event Handlers

There are several techniques you can use to define a handler for an event of a com-
ponent:

· Select the component, move to the Events page, and either double-click in the
white area on the right side of the event or type a name in that area and press the
Enter key.

· For many controls, you can double-click on them to perform the default action,
which is to add a handler for the OnClick, OnChange, or OnCreate events.

When you want to remove an event handler you have written from the source code
of a Delphi application, you could delete all of the references to it. However, a better
way is to delete all of the code from the corresponding procedure, leaving only the
declaration and the begin and end keywords. The text should be the same as what
Delphi automatically generated when you first decided to handle the event. When
you save or compile a project, Delphi removes any empty methods from the source
code and from the form description (including the reference to them in the Events
page of the Object Inspector). Conversely, to keep an event handler that is still
empty, consider adding a comment to it (even simply the // characters), so that it
will not be removed.

Copying and Pasting Components

An interesting feature of the Form Designer is the ability to copy and paste compo-
nents from one form to another or to duplicate the component in the form. During
this operation Delphi duplicates all the properties and keeps the connected event
handlers, and, if necessary, changes the name of the control (which must be unique
in each form).

It is also possible to copy components from the Form Designer to the editor and vice
versa. When you copy a component to the Clipboard, Delphi also places the textual
description there. You can even edit the text version of a component, copy the text
to the Clipboard, and then paste it back into the form as a new component. For
example, if you place a button on a form, copy it, and then paste it into an editor

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

48 - Chapter 1: Delphi and Object Pascal

(which can be Delphi’s own source code editor or any word processor), you’ll get the
following description:

object Button1: TButton
 Left = 152
 Top = 104
 Width = 75
 Height = 25
 Caption = 'Button1'
 TabOrder = 0
end

Now, if you change the name of the object, its caption, or its position, for example,
or add a new property, these changes can be copied and pasted back to a form. Here
are some sample changes:

object Button1: TButton
 Left = 152
 Top = 104
 Width = 75
 Height = 25
 Caption = 'My Button'
 TabOrder = 0
 Font.Name = 'Arial'
end

Copying this description and pasting it into the form will create a button in the spec-
ified position with the caption My Button in an Arial font.

To make use of this technique, you need to know how to edit the textual representa-
tion of a component, what properties are valid for that particular component, and
how to write the values for string properties, set properties, and other special prop-
erties. When Delphi interprets the textual description of a component or form, it
might also change the values of other properties related to those you’ve changed,
and it might change the position of the component so that it doesn’t overlap a previ-
ous copy. Of course, if you write something completely wrong and try to paste it into
a form, Delphi will display an error message indicating what has gone wrong.

You can also select several components and copy them all at once, either to another
form or to a text editor. This might be useful when you need to work on a series of
similar components. You can copy one to the editor, replicate it a number of times,
make the proper changes, and then paste the whole group into the form again.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 49

From Component Templates to Frames

When you copy one or more components from one form to another, you simply copy
all of their properties. A more powerful approach is to create a component template,
which makes a copy of both the properties and the source code of the event han-
dlers. As you paste the template into a new form, by selecting the pseudo-
component from the palette, Delphi will replicate the source code of the event han-
dlers in the new form.

To create a component template, select one or more components and issue the
Component Create Component Template menu command. This opens the Com-
ponent Template Information dialog box (see Figure 1.13) where you enter the name
of the template, the page of the Component palette where it should appear, and an
icon.

Figure 1.13:
The Component
Template Information
dialog box. Images
captured in Delphi 5
and Delphi 12.

By default, the template name is the name of the first component you’ve selected
followed by the word Template. The default template icon is the icon of the first
component you’ve selected, but you can replace it with an icon file. The name you
give to the component template will be used to describe it in the Component Palette
(when Delphi displays the pop-up hint).

All the information about component templates is stored in a single file, DEL-
PHI32.DCT62, but there is apparently no way to retrieve this information and edit a

62 The file is now bds.dct, stored in C:\Users\xxx\AppData\Roaming\Embarcadero\BDS\xxx.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

50 - Chapter 1: Delphi and Object Pascal

template. What you can do, however, is place the component template in a brand-
new form, edit it, and install it again as a component template using the same
name. This way you can overwrite the previous definition.

note A group of Delphi programmers can share component templates by storing them in a common
directory, adding to the Registry the entry CCLibDir under the key Software\Borland\
Delphi\5.0\Component Templates.63

Component templates are handy when different forms need the same group of com-
ponents and associated event handlers. The problem is that once you place an
instance of the template in a form, Delphi makes a copy of the components and their
code, which is no longer related to the template. There is no way to modify the tem-
plate definition itself, and it is certainly not possible to make the same change
effective in all the forms that use the template. Am I asking too much? Not at all.
This is what the new frames technology in Delphi 5 does.

A frame is a sort of panel you can work with at design time in a way similar to a
form. You simply create a new frame, place some controls in it, and add code to the
event handlers. After the frame is ready you can open a form, select the Frame
pseudo-component from the Standard page of the Component Palette, and choose
one of the available frames (of the current project). After placing the frame in a
form, you’ll see it as if the components were copied to it. If you modify the original
frame (in its own designer), the changes will be reflected in each of the instances of
the frame.

You can see a simple example, called Frames1, in Figure 1.1464. A screen snapshot
doesn’t really mean much; you should open the program or rebuild a similar one if
you want to start playing with frames.

Like forms, frames define classes, so they fit within the VCL object-oriented model
much more easily than Component Templates. Chapter 4 provides an in-depth look
at the VCL and includes a more detailed description of frames. As you might imag-
ine from this short introduction, frames are a powerful new technique.

63 The registry key is still exists, but I’m not sure if this undocumented configuration works to-
day.

64 Frames work today, for both VCL and FireMonkey, even if I haven’t captured a new image for
Figure 1.14.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 51

Figure 1.14:
The Frames1 example
demonstrates the use
of frames. The frame
(on the left) and its
instance inside a form
(on the right) are kept
in synch.

Managing Projects

One of the new features of the Delphi 4 IDE was the multi-target Project Manager
(View Project Manager). The Project Manager works on a project group, which
can have one or more projects under it. For example, a project group can include a
DLL and an executable file, or multiple executable files.

In Figure 1.15 you can see the Project Manager with the project group for the exam-
ples of the current chapter. As you can see, the Project Manager is based on a tree
view, which shows the hierarchical structure of the project group, the projects, and
all of the forms and units that make up each project. You can use the simple toolbar
and the more complex shortcut menus of the Project Manager to operate on it. The
shortcut menu is context-sensitive; its options depend on the selected item. There
are menu items to add a new or existing project to a project group, to compile or
build a specific project, or to open a unit.

Of all the projects in the group only one is active, and this is the project you operate
upon when you select a command such as Project Compile. The Project pull-down
of the main menu has two commands you can use to compile or build all the
projects of the group. (Strangely enough, these commands are not available in the
shortcut menu of the Project Manager for the project group.65) When you have mul-

65 They were not, now they've been added. The Project Manager has seen many extensions over
the years, but its core behavior is still what I described here (see also Figure 1.15).

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

52 - Chapter 1: Delphi and Object Pascal

tiple projects to build, you can set a relative order by using the Build Sooner and
Build Later commands. These two commands basically rearrange the projects in the
list.

Figure 1.15:
Delphi’s multi-target
Project Manager.
Images captured in
Delphi 5 and Delphi 12.

Delphi 5 adds some features to the Project Manager. You can now drag source code
files from Windows folders or Windows Explorer onto a project in the Project Man-
ager window to add them to that project. Unfortunately, you cannot drag an existing

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 53

project or package file to add it to the entire project group. You can also drag from
one project to another of the same project group.

Another big advantage is that the Project Manager automatically selects as current
project the one you are working with, for example, opening a file. You can easily see
which project is selected and change it by using the combo box on the top of the
form66.

note Besides adding Pascal files and projects, you can add Windows resource files to the Project Man-
ager; they are compiled along with the project. Simply move to a project, select the Add shortcut
menu, and choose Resource file (*.rc) as the file type. This resource file will be automatically
bound to the project, even without a corresponding $R directive.

Delphi saves the project groups with the new .BPG extension, which stands for Bor-
land Project Group67. This feature comes from C++Builder and from past Borland
C++ compilers, a history that is clearly visible as you open the source code of a
project group, which is basically that of a makefile in a C/C++ development envi-
ronment68.

Project Options

The Project Manager doesn’t provide a way to set the options of two different
projects at one time. What you can do instead is invoke the Project Options dialog
from the Project Manager for each project69. The first page of Project Options
(Forms) lists the forms that should be created automatically at program startup and
the forms that are created manually by the program. The next page (Application) is
used to set the name of the application and the name of its Help file, and to choose
its icon. Other Project Options choices relate to the Delphi compiler and linker, ver-
sion information, and the use of run-time packages.

66 That combo box is still available in the form of a drop down split button, the first button of the
Project Manager toolbar, with the symbol of a target superimposed.

67 This is not the case any more. Project and project groups are now XML files in the MSBuild
format, as this is the tool for building applications since Delphi 2007, as detailed in my “Del-
phi 2007 Handbook”. I took the freedom of removing the project group files listed in the origi-
nal book, as they are totally useless in today's Delphi.

68 The format was later changed to the MSBUILD XML format. You can still open a Delphi 5
project group file today, although the IDE will ask you to save it in the current format.

69 The Project Options dialog still exists, but the sequence of pages has changed, with many more
features available.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

54 - Chapter 1: Delphi and Object Pascal

There are two ways to set compiler options. One is to use the Compiler page of the
Project Options dialog. The other is to set or remove individual options in the source
code with the {$X+} or {$X-} commands, where you’d replace X with the option you
want to set. This second approach is more flexible, since it allows you to change an
option only for a specific source-code file, or even for just a few lines of code. The
source-level options override the compile-level options.

All of the Project Options are saved automatically with the project, but in a separate
file with a .DOF extension70. This is a text file you can easily edit. You should not
delete this file if you have changed any of the default options. Delphi also saves the
compiler options in another format in a CFG file, for command line compilation.

Another alternative for saving compiler options is to press Ctrl+O+O (press the O
key twice while keeping Ctrl pressed). This inserts, at the top of the current unit,
compiler directives that correspond to the current project options, as in the follow-
ing listing71:

{$A+,B-,C+,D+,E-,F-,G+,H+,I+,J+,K-,L+,M-,N+,O+,P+,Q-,
R-,S-,T-,U-,V+,W-,X+,Y+,Z1}

{$MINSTACKSIZE $00004000}

{$MAXSTACKSIZE $00100000}

{$IMAGEBASE $00400000}

{$APPTYPE GUI}

Compiling and Building Projects

There are several ways to compile a project. If you run it (by pressing F9 or clicking
the Run toolbar icon), Delphi will compile it first. When Delphi compiles a project,
it compiles only the files that have changed.

70 Project options files are gone as well, and so are their command line counterparts (as compila-
tion now follows the same steps both from the command line and from the IDE. In current
versions of Delphi, the project settings are saved in project files or in build configurations, can
be shared among projects, have release and build variations, and much more. Still the core ap-
plication settings haven't changed much. Coverage of project settings management is my Del-
phi Handbooks, as they were extended from version to version.

71 There are now many more lines inserted, but the keyboard shortcut and the overall concept re-
main the same.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 55

If you select Compile Build All instead72, every file is compiled, even if it has not
changed. You should only need this second command infrequently, since Delphi can
usually determine which files have changed and compile them as required. The only
exception is when you change some project options. In this case you have to use the
Build All command to put the new options into effect.

To build a project, Delphi first compiles each source code file, generating a Delphi
compiled unit (DCU). (This step is performed only if the DCU file is not already up
to date.) The second step, performed by the linker, is to merge all the DCU files into
the executable file, optionally with compiled code from the VCL library (if you
haven’t decided to use packages at run time). The third step is binding into the exe-
cutable file any optional resource files, such as the RES file of the project, which
hosts its main icon, and the DFM files of the forms. You can better understand the
compilation steps and follow what happens during this operation if you enable the
Show Compiler Progress option (in the Preferences page of the Environment
Options dialog box).

note Delphi doesn’t always properly keep track of when to rebuild units based on other units you’ve
modified. This is particularly true for the cases (and there are many) in which user intervention
confuses the compiler logic. For example, renaming files, modifying source files outside the IDE,
copying older source files or DCU files to disk, or having multiple copies of a unit source file in
your search path can break the compilation. Every time the compiler shows some strange error
message, the first thing you should try is the Build All command to resynchronize the make fea-
ture with the current files on disk.

The Compile command can be used only when you have loaded a project in the edi-
tor. If no project is active and you load a Pascal source file, you cannot compile it.
However, if you load the source file as if it were a project, that will do the trick and
you’ll be able to compile the file. To do this, simply select the Open Project toolbar
button and load a PAS file. Now you can check its syntax or compile it, building a
DCU.73

I’ve mentioned before that Delphi allows you to use run-time packages, which affect
the distribution of the program more than the compilation process. Delphi packages
are dynamic link libraries (DLLs) containing Delphi components. By using pack-
ages, you can make an executable file much smaller. However, the program won’t

72 The menu command is now Project | Build.

73 In recent versions of Delphi (probably since MSBuild was introduced) this trick doesn't work
any more. There is apparently no way to compile an individual source code file outside of a
project in the IDE. However, you can easily compile a single Pascal source code files with the
command line compiler.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

56 - Chapter 1: Delphi and Object Pascal

run unless the proper dynamic link libraries (such as vcl50.bpl, which is quite large)
are available on the computer where you want to run the program.

If you add the size of this dynamic library to that of the small executable file, the
total amount of disk space required by the apparently smaller program built with
run-time packages is much larger than the space required by the apparently bigger
stand-alone executable file. Of course if you have multiple applications on a single
system, you’ll end up saving a lot, both in disk space and memory consumption at
run time. The use of packages is often but not always recommended. I’ll discuss all
the implications of packages in detail in Chapter 13, where we’ll build some pack-
ages, and in Chapter 14, which is devoted to DLLs and packages.

note You don’t have to use the stock vcl50.bpl package if you only need a small set of VCL units. You
can create your own mini-VCL package, as long as you don’t call it vcl50.bpl.

In both cases, Delphi executable files are extremely fast to compile, and the speed of
the resulting application is comparable to that of a C or C++ program. Delphi com-
piled code runs at least five times faster than the equivalent code in interpreted or
“semicompiled” tools74.

Conditional Compilation for Different versions of
Delphi

You can test the VER130 define to check whether you are compiling with Delphi 5 or
an earlier version. This can be useful if you want to compile the same program with
different versions of Delphi and make minor changes to the source code in each of
the versions. If you want to add some specific Delphi 5 code, you can write that code
as follows:

{$IFDEF VER130}
 // Delphi 5 specific code
{$ENDIF}

Each of the past versions of the Delphi included a specific define, so you can write a
complex statement to provide alternative coding solutions for different Delphi ver-
sions. The numbering scheme starts from the last version of Pascal compiler from

74 I’m not sure if this specific number (“five times faster”, which I assume was in reference to Vis-
ual Basic) makes sense today, with many alternatives between compiled and interpreted code.
Delphi programs are still native and remain fast. Some of the options used today for desktop
development, like JavaScript, are clearly in a different league, both in terms of slower perfor-
mance and in terms of the complex deployment dependencies.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 57

Borland before Delphi, Borland Pascal with Object version 7, and also includes the
versions of the Pascal compiler included in Borland C++Builder75:

· VER80 for Delphi 1

· VER90 for Delphi 2

· VER93 for C++Builder 1

· VER100 for Delphi 3

· VER110 for C++Builder 3

· VER120 for Delphi 4

· VER125 for C++Builder 4

Exploring a Project76

Past versions of Delphi included an Object Browser, which you could use when a
project was compiled to see a hierarchical structure of its classes and to look for its
symbols and the source code lines where they are referenced. Delphi 5 includes a
similar but enhanced tool, with a new name—Project Explorer. Like the Code
Explorer, it is updated automatically as you type, without recompiling the project.

The Project Explorer retains from the Object Browser the main structure of Classes,
Units, and Globals, but it lets you choose whether to look only for symbols defined
within your project or for those from both your project and the VCL. You can see an
example with project symbols only in Figure 1.16.

75 The list has been added to the Delphi docwiki, and it can be found at docwiki.embarcadero.-
com/RADStudio/en/Compiler_Versions. The Delphi 12 compiler defines VER360.

76 This entire feature isn’t part of recent versions of Delphi, so you can skip this section.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://docwiki.embarcadero.com/RADStudio/en/Compiler_Versions
https://docwiki.embarcadero.com/RADStudio/en/Compiler_Versions

58 - Chapter 1: Delphi and Object Pascal

Figure 1.16:
The Project Explorer, a
completely updated
Object Browser77

You can change the settings of this Explorer and those of the Code Explorer in the
Explorer page of the Environment Options (see Figure 1.5) or by selecting the Prop-
erties command in the shortcut menu of the Project Explorer. Some of the Explorer
categories you see in this window are specific to the Project Explorer, others relate
to both tools.

Additional and External Delphi Tools

Besides the IDE, when you install Delphi you get other, external tools. Some of
them, such as the Database Desktop, the Package Collection Editor (PCE.EXE), and
the Image Editor (ImagEdit.EXE), are available from Tools menu of the IDE. In
addition, the Client/Server edition has a link to the SQL Monitor (SqlMon.EXE)78.

Other tools that are not directly accessible from the IDE include many command-
line tools you can find in the Bin directory of Delphi. For example, there is a com-
mand-line Delphi compiler (DCC.EXE), a Borland resource compiler (BRC32.EXE
and BRCC32.EXE), and an executable viewer (TDump.EXE).79

77 As mentioned earlier, this feature is no longer available in recent versions of Delphi.

78 Most of these tools are now gone. The Tools menu in Delphi 12 includes by default the Bitmap
Style Designer, the FireDAC Explorer, the FireDAC Monitor, the REST Debugger, the XML
Mapper, and – in some editions – the RAD Server Console.

79 These low level tools, instead, are still available today, even if with some differences. There are
multiple Delphi compilers, for example.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 59

Finally, some of the sample programs that ship with Delphi are actually useful tools
that you can compile and keep at hand. I’ll discuss some of these tools in the book,
as needed. Here are a few of the useful and higher-level tools80:

· WinSight (WS.EXE) is a Windows “message spy” program available in the Bin
directory.81

· Database Explorer can be activated from the Delphi IDE or as a stand-alone
tool, using the DBExplor.EXE program of the Bin directory.82

· Convert (Convert.EXE) is a command-line tool you can use to convert DFM files
into the equivalent textual description and vice versa.

· Turbo Grep (Grep.EXE) is a command-line search utility, much faster than the
embedded Find in Files mechanism but not so easy to use.

· Turbo Register Server (TRegSvr.EXE) is a tool you can use to register
ActiveX libraries and COM servers. The source code of this tool is available
under Demos/ActiveX/TRegSvr.83

· Resource Explorer is a powerful resource viewer (but not a full-blown
resource editor) you can find under Demos/ResXplor84.

· The Delphi 5 CD also includes a separate installation for Resource Work-
shop85. This is an old 16-bit resource editor that can also manage Win32
resource files. It was formerly included in Borland C++ and Pascal compilers for
Windows, and it was much better than the standard Microsoft resource editors
then available. Although its user interface hasn’t been updated and it doesn’t
handle long file names, this tool can still be very useful for building custom or
special resources. It also lets you explore the resources of existing executable
files. You’ll find more information about Windows resources and the use of
Resource Workshop in Chapter 19.

80 Convert, Grep, and TRegSvr still exist today. For the other tools, see the respective footnotes.

81 The WinSight tool is not available any more. There are similar free utilities for Windows.

82 DbExplorer has been replaced by equivalent FireDAC utilities, some of which are listed in the
Tools menu, as covered in a previous footnote.

83 The tool is still available, but not its source code.

84 This demo is no longer part of the core product demos.

85 Not only there is no CD, but also no version of the Resource Explorer available with the prod-
uct. There are similar free utilities for Windows.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

60 - Chapter 1: Delphi and Object Pascal

The Files Produced by the System

Delphi produces a number of files for each project, and you should know what they
are and how they are named. There are basically two elements that have an impact
on how files are named: the names you give to a project and its units, and the prede-
fined file extensions used by Delphi. Table 1.1 lists the extensions of the files you’ll
find in the directory where a Delphi project resides86. The table also shows when or
under what circumstances these files are created and their importance for future
compilations. Extensions that are new to Delphi 5 are marked in bold.

Table 1.1: Delphi Project File Extensions

EXTENSION FILE TYPE AND
DESCRIPTION

CREATION TIME REQUIRED TO COMPILE?

.BMP, .ICO,

.CUR
Bitmap, icon, and cursor files:
standard Windows files used
to store bitmapped images.

Development:
Image Editor

Usually not, but they might be needed at
run time and for further editing.

.BPG Borland Project Group87: the
files used by the new multiple-
target Project Manager. It is a
sort of makefile.

Development Required to recompile all the projects of
the group at once.

.BPL Borland Package Library: a
DLL including VCL
components to be used by the
Delphi environment at design
time or by applications at run
time. (These files used a .DPL
extension in Delphi 3.)

Compilation:
Linking

You’ll distribute packages to other Delphi
developers and, optionally, to end-users.

.CAB The Microsoft Cabinet
compressed-file format used
for Web deployment by Delphi.
A CAB file can store multiple
compressed files.

Compilation Distributed to users.

.CFG Configuration file with project
options. Similar to the DOF
files.

Development Required only if special compiler options
have been set.

.DCP Delphi Component Package: a
file with symbol information
for the code that was compiled

Compilation Required when you use packages. You’ll
distribute it only to other developers along
with DPL files.

86 Most of these file types are still used, but not all of them. I haven’t added here new files avail-
able, including the new project files in MSBUILD format, but only added a few comments to
the original list.

87 This files is not used any more, replaced by Project Group files, with the .groupproj extension.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 61

into the package. It doesn’t
include compiled code, which
is stored in DCU files.

.DCU Delphi Compiled Unit: the
result of the compilation of a
Pascal file.

Compilation Only if the source code is not available.
DCU files for the units you write are an
intermediate step, so they make
compilation faster.

.DFM Delphi Form File: a binary file
with the description of the
properties of a form (or a data
module) and of the
components it contains.

Development Yes. Every form is stored in both a PAS
and a DFM file.

.~DF88 Backup of Delphi Form File
(DFM).

Development No. This file is produced when you save a
new version of the unit related to the form
and the form file along with it.

.DFN89 Support file for the
Integrated Translation
Environment (there is one
DFN file for each form and
each target language).

Development
(ITE)

Yes (for ITE). These files contain the
translated strings that you edit in
the Translation Manager.

.DLL Dynamic Link Library: another
version of an executable file.

Compilation:
Linking

See .EXE.

.DOF90 Delphi Option File: a text file
with the current settings for
the project options.

Development Required only if special compiler options
have been set.

.DPK Delphi Package: the project
source code file of a package.

Development Yes.

.DPR Delphi Project file. (This file
actually contains Pascal source
code.)

Development Yes.

.~DP Backup of the Delphi Project
file (.DPR).

Development No. This file is generated automatically
when you save a new version of a project
file.

.DSK Desktop file: contains
information about the position
of the Delphi windows, the
files open in the editor, and
other Desktop settings.

Development No. You should actually delete it if you
copy the project to a new directory.

88 Backup files are now saved in sequence under the __history sub-folder of the project source
code folder and they use a different logic. The same is true for all of the backup files listed in
this table.

89 This format still exists but the translation support isn’t installed any more as part of Delphi.
The same is true for other file formats associated with the old translation system. The feature
can currently be installed using the GetIt package manager.

90 Project options are now part of the .dproj project file.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

62 - Chapter 1: Delphi and Object Pascal

.DSM91 Delphi Symbol Module: stores
all the browser symbol
information.

Compilation (but
only if the Save
Symbols option is
set)

No. Object Browser uses this file, instead
of the data in memory, when you cannot
recompile a project.

.DTI92 Design Time Information,
used by the new Data
Module Designer

Development No. This file stores “design-time
only” information, not required by
the resulting program but very
important for the programmer.

.EXE Executable file: the Windows
application you’ve produced

Compilation:
Linking

No. This is the file you’ll distribute. It
includes all of the compiled units, forms,
and resources.

.HTM Or .HTML, for HyperText
Markup Language: the file
format used for Internet Web
pages

Web deployment of
an ActiveForm

No. This is not involved in the project
compilation.

.LIC The license files related to an
OCX file.

ActiveX Wizard
and other tools

No. It is required to use the control in
another development environment.

.OBJ Object (compiled) file, typical
of the C/C++ world.

Intermediate
compilation step,
generally not used
in Delphi

It might be required to merge Delphi with
C++ compiled code in a single project.

.OCX OLE Control eXtension: a
special version of a DLL,
containing ActiveX controls or
forms.

Compilation:
Linking

See .EXE.

.PAS Pascal file: the source code of a
Pascal unit, either a unit
related to a form or a stand-
alone unit.

Development Yes.

.~PA Backup of the Pascal file
(.PAS).

Development No. This file is generated automatically by
Delphi when you save a new version of the
source code.

.RES, .RC Resource file: the binary file
associated with the project and
usually containing its icon.
You can add other files of this
type to a project. When you
create custom resource files
you might use also the textual
format, .RC.

Development
Options dialog box.
The ITE
(Integrated
Translation
Environment)
generates resource
files with special
comments.

Yes. The main RES file of an application is
rebuilt by Delphi according to the
information in the Application page of the
Project Options dialog box.

.RPS Translation Repository
(part of the Integrated
Translation

Development
(ITE)

No. Required to manage the
translations.

91 This file format and the associated feature don’t exist any more.

92 This feature is also long gone, with the matching file format.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 63

Environment).

.TLB Type Library: a file built
automatically or by the Type
Library Editor for OLE server
applications.

Development This is a file other OLE programs might
need.

.TODO To-do list file, holding the
items related to the entire
project.

Development No. This file hosts notes for the
programmers.

.UDL Microsoft Data Link Development Used by ADO to refer to a data
provider. Similar to an alias in the
BDE world (see Chapter 12).

Besides the files generated during the development of a project in Delphi, there are
many others generated and used by the IDE itself. In Table 1.2 I’ve provided a short
list of extensions worth knowing about. Most of these files are in proprietary and
undocumented formats, so there is little you can do with them.

Table 1.2: Selected Delphi IDE Customization File Extensions93

EXTENSION FILE TYPE

.DCI Delphi Code Templates

.DRO Delphi’s Object Repository (The repository should be modified with the Tools
Repository command.)

.DMT Delphi Menu Templates

.DBI Database Explorer Information

.DEM Delphi Edit Mask (Files with country-specific formats for edit masks)

.DCT Delphi Component Templates

.DST Desktop settings file (one for each desktop setting you’ve defined)

Looking at Source Code Files

I’ve just listed some files related to the development of a Delphi application, but I
want to spend a little time to cover their actual format. The fundamental Delphi files
are Pascal source code files, which are plain ASCII text files. The bold, italic, and
colored text you see in the editor depend on syntax highlighting, but they are not
saved with the file. It is worth noting that there is one single file for the whole code
of the form, not just small code fragments.

93 Many of these files don’t exist any more. Desktops settings and component template files are
still used.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

64 - Chapter 1: Delphi and Object Pascal

note In the listings in the book I’ve tried to match the bold syntax highlighting of the editor for key-
words and the italic for strings and comments.

For a form, the Pascal file contains the form class declaration and the source code of
the event handlers. The values of the properties you set in the Object Inspector are
stored in a separate form description file (with a .DFM extension). The only excep-
tion is the Name property, which is used in the form declaration to refer to the
components of the form.

The DFM file is a binary and in Delphi 5 can be saved either as a plain text file or in
the traditional Windows Resource format. You can set the default format you want
to use for new projects in the Preferences page of the Environment Options dialog
box, and you can toggle the format of individual forms with the Text DFM command
of a form’s shortcut menu. A plain-text editor can read only the text version. How-
ever, you can load DFM files of both types in the Delphi editor, which will, if
necessary, first convert them into a textual description. The simplest way to open
the textual description of a form (whatever the format) is to select the View As Text
command on the shortcut menu in the Form Designer. This closes the form, saving
it if necessary, and opens the DFM file in the editor. You can later go back to the
form using the View As Form command on the shortcut menu in the editor window.

You can actually edit the textual description of a form, although this should be done
with extreme care. As soon as you save the file, it will be turned back into a binary
file. If you’ve made incorrect changes, compilation will stop with an error message
and you’ll need to correct the contents of your DFM file before you can reopen the
form. For this reason, you shouldn’t try to change the textual description of a form
manually until you have a good knowledge of Delphi programming.

note In the book I’ll often show you excerpts of DFM files. With most of these excerpts, I’ll only be
showing the most relevant components or properties; generally, I will have removed the posi-
tional properties, the binary values, and other lines providing little useful information.

In addition to the two files describing the form (PAS and DFM), a third file is vital
for rebuilding the application. This is the Delphi project file (DPR), which is another
Pascal source code file. This file is built automatically, and you seldom need to
change it manually. You can see this file with the View Project Source menu com-
mand.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 65

Some of the other, less relevant, files produced by the IDE use the structure of Win-
dows INI files, in which each section is indicated by a name enclosed in square
brackets. For example, this is a fragment of an option file (DOF)94:

[Compiler]
A=1
B=0
ShowHints=1
ShowWarnings=1

[Linker]
MinStackSize=16384
MaxStackSize=1048576
ImageBase=4194304

[Parameters]
RunParams=
HostApplication=

The same structure is used by the Desktop files (DSK), which store the status of the
Delphi IDE for the specific project, listing the position of each window. Here is a
small excerpt:

[MainWindow]
Create=1
Visible=1
State=0
Left=2
Top=0
Width=800
Height=97

note A lot of information related to the status of the Delphi environment is saved in the Windows Reg-
istry, as well as in DSK and other files. I’ve already indicated a few special undocumented entries
of the Registry you can use to activate specific features. You should explore the HKEY_CUR-
RENT_USER/Software/Borland/Delphi/5.095 section of the Registry to examine all the setting of
the Delphi IDE (including all those you can modify with the Project Options and the Environment
Options dialog boxes, as well as many others).

94 As mentioned earlier, option files content is now part of the .drpoj project file.

95 This is still true, although the location in the registry is now HKEY_CURRENT_USER\Soft-
ware\Embarcadero\BDS\xx.0.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

66 - Chapter 1: Delphi and Object Pascal

The Object Repository

Delphi has several menu commands you can use to create a new form, a new appli-
cation, a new data module, a new component, and so on. These commands are
located in the File menu and in other pull-down menus. What happens if you simply
select File New96? Delphi opens the Object Repository, which is used to create
new elements of any kind: forms, applications, data modules, thread objects,
libraries, components, automation objects, and more.

The New dialog box (shown in Figure 1.17) has a number of pages, hosting all the
new elements you can create, existing forms and projects stored in the Repository,
Delphi wizards, and the forms of the current project (for visual form inheritance).
The pages and the entries in this tabbed dialog box depend on the specific version of
Delphi, so I won’t list them here.

note The Object Repository has a shortcut menu that allows you to sort its items in different ways (by
name, by author, by date, or by description) and to show different views (large icons, small icons,
lists, and details). The Details view gives you the description, the author, and the date of the tool,
information that is particularly important when looking at wizards, projects, or forms that you’ve
added to the Repository.

The simplest way to customize the Object Repository is to add new projects, forms,
and data modules as templates. You can also add new pages and arrange the items
on some of them (not including the New and “current project” pages). Adding a new
template to Delphi’s Object Repository is as simple as using an existing template to
build an application. When you have a working application you want to use as a
starting point for further development of similar programs, you can save the current
status to a template, ready to use later on. Simply use the Project Add to Reposi-
tory command, and fill in its dialog box.

Just as you can add new project templates to the Object Repository, you can also
add new form templates. Simply move to the form that you want to add and select
the Add To Repository command of its shortcut menu. Then indicate the title,
description, author, page, and icon in its dialog box.

You might want to keep in mind that as you copy a project or form template to the
repository and then copy it back to another directory, you are simply doing a copy
and paste operation. This isn’t much different than copying the files manually.

96 Beside the fact that the menu command is now File | New | Other and the totally different UI,
the role, content, and behavior of the Object Repository remains very similar to what’s de-
scribed here.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 67

Figure 1.17:
The first page of the
New dialog box,
generally known as the
“Object Repository”.
Images captured in
Delphi 5 and Delphi 12.

The Empty Project Template

When you start a new project, it automatically opens a blank form, too. If you want to base a
new project on one of the form objects or Wizards, this is not what you want, however. To solve
this problem, you can add an Empty Project template to the Gallery.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

68 - Chapter 1: Delphi and Object Pascal

The steps required to accomplish this are simple97:

1. Create a new project as usual.

2. Remove its only form from the project.

3. Add this project to the templates, naming it Empty Project.

When you select this project from the Object Repository, you gain two advantages: You have
your project without a form, and you can pick a directory where the project template’s files will
be copied. There is also a disadvantage—you have to remember to use the File Save Project
As command to give a new name to the project, because saving the project any other way
automatically uses the default name in the template.

To further customize the Repository, you can use the Tools Repository command.
This opens the Object Repository dialog box, which you can use to move items to
different pages, to add new elements, or to delete existing ones. You can even add
new pages, rename or delete them, and change their order. An important element of
the Object Repository setup is the use of defaults:

· Use the New Form check box below the list of objects to designate a form as the
one to be used when a new form is created (File New Form).

· The Main Form check box indicates which type of form to use when creating the
main form of a new application (File New Application) when no special New
Project is selected.

· The New Project check box, available when you select a project, marks the
default project that Delphi will use when you issue the File New Application
command.

Only one form and only one project in the Object Repository can have each of these
three settings marked with a special symbol placed over its icon. If no project is
selected as New Project, Delphi creates a default project based on the form marked
as Main Form. If no form is marked as the main form, Delphi creates a default
project with an empty form.

When you work on the Object Repository, you work with forms and modules saved
in the OBJREPOS sub-directory of the Delphi main directory98. At the same time, if
you use a form or any other object directly without copying it, then you end up hav-
ing some files of your project in this directory. It is important to realize how the

97 I haven’t actually tried these steps, but I assume they still work.

98 Current folder is still under the application folder, at C:\Program Files (x86)\Embarcadero\
Studio\xx.0\ObjRepos

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 1: Delphi and Object Pascal - 69

Repository works, because if you want to modify a project or an object saved in the
Repository, the best approach is to operate on the original files, without copying
data back and forth to the Repository.

Installing New DLL Wizards

Technically, new wizards come in two different forms: They may be part of components or
packages, or they may be distributed as stand-alone DLLs. In the first case, they would be
installed the same way you install a component or a package. When you’ve received a stand-
alone DLL, you should add the name of the DLL in the Windows Registry under the key
Software\Borland\Delphi\5.0\Experts99. Simply add a new string key under this key, choose a
name you like (it doesn’t really matter what it is), and use as text the path and filename of the
wizard DLL. You can look at the entries already present under the Experts key to see how the
path should be entered.

What’s Next?

This chapter has presented an overview of the new and more advanced features of
Delphi 5 programming environment, including a number of tips and suggestions
about some lesser-known features that were already available in previous Delphi
versions. I didn’t provide a step-by-step description of the IDE, partly because it is
generally simpler to start using Delphi than it is to read about how to use it. More-
over, there is a detailed Help file describing the environment and the development
of a new simple project; and you might already have some exposure to one of the
past versions of Delphi or a similar development environment.

We haven’t finished covering new features of Delphi 5 IDE, though. I’ll discuss the
new Data Module Designer in Chapter 10, new debugging features in Chapter 18,
and TeamSource and the Integrated Translation Environment in Chapter 19100. But
now we are ready to spend the next three chapters looking into the Object Pascal
language and the VCL library. Then, in Part II, we’ll start focusing on the user inter-
face of applications and using the components available in Delphi.

99 The registry key is now HKEY_CURRENT_USER\Software\Embarcadero\BDS\xx.0\Experts

100 As already mentioned, these two features don’t exist any more (or are not officially supported
any more).

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

70 - Chapter 2: Object-Oriented Programming in Delphi

Chapter 2: Object-

Oriented

Programming In

Delphi

Most modern programming languages support object-oriented programming
(OOP). OOP languages are based on three fundamental concepts: encapsulation
(usually implemented with classes), inheritance, and polymorphism (or late bind-
ing).

You can write Delphi applications even without knowing the details of Object Pas-
cal. As you create a new form, add new components, and handle events, Delphi
prepares most of the related code for you automatically. But knowing the details of

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 71

the language and its implementation will help you to understand precisely what
Delphi is doing and to master the language completely.

A single chapter doesn’t allow space for a full introduction to the principles of
object-oriented programming and the Object Pascal language101. Instead, I will out-
line the key OOP features of the language and show how they relate to everyday
Delphi programming. Even if you don’t have a precise knowledge of OOP, the chap-
ter will introduce each of the key concepts so that you won’t need to refer to other
sources.

note If you don’t know the basics of the Pascal language (which is not covered in this book), you can
refer to the online electronic version of the text Essential Pascal at www.marcocantu.com. The
language has not changed significantly from Delphi 4 to Delphi 5.102

Introducing Classes and Objects

Class and object are two terms commonly used in Object Pascal and other OOP lan-
guages. However, because they are often misused, let’s be sure we agree on their
definitions. A class is a user-defined data type, which has a state (its representation)
and some operations (its behavior). A class has some internal data and some meth-
ods, in the form of procedures or functions, and usually describes the generic
characteristics and behavior of a number of similar objects.

An object is an instance of a class, or a variable of the data type defined by the class.
Objects are actual entities. When the program runs, objects take up some memory
for their internal representation. The relationship between object and class is the
same as the one between variable and type.

To declare a new class data type in Object Pascal, with some local data fields and
some methods, use the following syntax:

type
 TDate = class
 Month, Day, Year: Integer;
 procedure SetValue (m, d, y: Integer);
 function LeapYear: Boolean;

101 I’ve published a book covering the Delphi Object Pascal language in detail. It’s called “Object
Pascal Handbook” and it’s available in print on Amazon. See www.marcocantu.com/objectpas-
calhandbook/ for more information.

102 My ebook Essential Pascal remains available for free.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://www.marcocantu.com/objectpascalhandbook/
https://www.marcocantu.com/objectpascalhandbook/

72 - Chapter 2: Object-Oriented Programming in Delphi

 end;

The function and the procedure declared above should be fully defined in the imple-
mentation portion of the same unit, including the class declaration. You can let
Delphi generate a skeleton of the definition of the methods by using the Class Com-
pletion feature of the editor (simply press Ctrl+C while the cursor is within the class
definition). You can tell the methods are part of the TDate class by class-name pre-
fixing (using a dot in between), as in the following code:

procedure TDate.SetValue(m, d, y: Integer);
begin
 Month := m;
 Day := d;
 Year := y;
end;

function TDate.LeapYear: Boolean;
begin
 // call IsLeapYear in SysUtils.pas103

 Result := IsLeapYear (Year);
end;

note The convention in Delphi is to use the letter T as a prefix for the name of every class you write and
every other type (T stands for Type). This is just a convention—to the compiler, T is just a letter
like any other—but it is so common that following it will make your code easier to understand. In
the book I’ll try to stick with this convention.

Once the class has been defined, we can create an object and use it as follows:

var
 ADay: TDate;
begin
 // create
 ADay := TDate.Create;
 // use
 ADay.SetValue (1, 1, 2000);
 if ADay.LeapYear then
 ShowMessage (‘Leap year: ‘ + IntToStr (ADay.Year));
 // destroy
 ADay.Free;
end;

The notation used is nothing unusual, but it is powerful. We can write a complex
function (such as LeapYear) and then access its value for every TDate object as if it
were a primitive data type. Notice that ADay.LeapYear is an expression similar to

103 Using today’s notation, the unit name is now System.SysUtils.pas.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 73

ADay.Year, although the first is a function call and the second a direct data access.
As we’ll see in the next chapter, the notation used by Object Pascal to access proper-
ties is again the same.

Delphi’s Object Reference Model

In some OOP languages, declaring a variable of a class type creates an instance of
that class. Object Pascal, instead, is based on an object reference model. The idea is
that each variable of a class type, such as ADay in the code fragment above, does not
hold the value of the object. Rather, it contains a reference, or a pointer, to indicate
the memory location where the object has been stored.

note The object reference model is powerful yet easier to use than other models. Other OOP languages
use similar models, notably Eiffel and Java104. In my opinion, adopting this model was one of the
best design decisions made by the Delphi development team at Borland.

The only problem with this approach is that when you declare a variable, you don’t
create an object in memory, you only reserve the memory location for a reference to
an object. Object instances must be created manually, at least for the objects of the
classes you define. Instances of a component you place on a form are built automati-
cally by Delphi.

To create an instance of an object, we can call its Create method, which is a con-
structor. As you can see in the last code fragment, the constructor is applied to the
class, not to the object. Where does the Create method come from? It is a construc-
tor of the class TObject, from which all the other classes inherit. Once you have
created an object and you’ve finished using it, you need to dispose of it (to avoid fill-
ing up memory you don’t need any more, which causes what is known as a memory
leak). This can be accomplished by calling the Free method (yet another method of
the TObject class), as demonstrated in the previous listing. As long as you create
objects when you need them and free them when you’re finished with them, the
object reference model works without a glitch.

Private, Protected, and Public

A class can have any amount of data and any number of methods. However, for a
good object-oriented approach, data should be hidden, or encapsulated, inside the

104 Also C# uses the same machanism.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

74 - Chapter 2: Object-Oriented Programming in Delphi

class using it. When you access a date, for example, it makes no sense to change the
value of the day by itself. In fact, changing the value of the day might result in an
invalid date, such as February 30. Using methods to access the internal representa-
tion of an object limits the risk of generating erroneous situations, as the methods
can check whether the date is valid and refuse to modify the new value if it is not.
Encapsulation is important because it allows the class writer to modify the internal
representation in a future version.

The concept of encapsulation is quite simple: just think of a class as a “black box”
with a small, visible portion. The visible portion, called the class interface, allows
other parts of a program to access and use the objects of that class. However, when
you use the objects, most of their code is hidden. You seldom know what internal
data the object has, and you usually have no way to access the data directly. Of
course, you are supposed to use methods to access the data, which is shielded from
unauthorized access. This is the object-oriented approach to a classical program-
ming concept known as information hiding.

Object Pascal has three access specifiers: private, protected, and public105. A
fourth one, published, will be discussed in the next chapter. Here are the three
basic ones:

· The private directive denotes fields and methods of a class that are not accessi-
ble outside the unit (the source code file) that declares the class.

· The public directive denotes fields and methods that are freely accessible from
any other portion of a program as well as in the unit in which they are defined.

· The protected directive is used to indicate methods and fields with limited visi-
bility. Only the current class and its subclasses can access protected elements.
We’ll discuss this keyword again in the “Protected Fields and Encapsulation” sec-
tion.

Generally, the fields of a class should be private; the methods are usually public.
However, this is not always the case. Methods can be private or protected if they
are needed only internally to perform some partial computation. Fields can be
protected or public when you want an easy and direct access and you are fairly
sure that their type definition is not going to change.

105 Two further access specifiers, strict private and strict protected were added to match the be-
havior of other OOP languages having no special rules for classes declared within the same
unit or source code file. The strict versions of the access specifiers provide an even more robust
encapsulation, but remain rarely used by Delphi developers.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 75

note Instead of having public fields, you should generally use properties, as we’ll see in detail in the
next chapter. Properties are an extension to the encapsulation mechanism of other OOP lan-
guages and are very important in Object Pascal.

Access specifiers only restrict code outside your unit from accessing certain mem-
bers of classes declared in the interface section of your unit. This means that if two
classes are in the same unit, there is no protection for their private fields. Only by
placing a class in the interface portion of a unit will you limit the visibility from
classes and functions in other units to the public method and fields of the class.

As an example, consider this new version of the TDate class:

type
 TDate = class
 private
 Month, Day, Year: Integer;
 public
 procedure SetValue (m, d, y: Integer);
 function LeapYear: Boolean;
 function GetText: string;
 procedure Increase;
 end;

In this version, the fields are now declared to be private106, and there are some new
methods. The first, GetText, is a function that returns a string with the date. You
might think of adding other functions, such as GetDay, GetMonth, and GetYear,
which simply return the corresponding private data, but similar direct data-access
functions are not always needed. Providing access functions for each and every field
might reduce the encapsulation and make it harder to modify the internal imple-
mentation of a class. Access functions should be provided only if they are part of the
logical interface of the class you are implementing.

The second new method is the Increase procedure, which increases the date by one
day. This is far from simple, because you need to consider the different lengths of
the various months as well as leap and nonleap years. What I’ll do to make it easier
to write the code is to change the internal implementation of the class to use Del-
phi’s TDateTime type for the internal implementation. The class will change to

type
 TDate = class
 private
 fDate: TDateTime;
 public
 procedure SetValue (m, d, y: Integer);

106 You could consider using strict private, instead.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

76 - Chapter 2: Object-Oriented Programming in Delphi

 function LeapYear: Boolean;
 function GetText: string;
 procedure Increase;
 end;

Notice that because the only change is in the private portion of the class, you won’t
have to modify any of your existing programs that use it. This is the advantage of
encapsulation!

note The TDateTime type is actually a floating-point number. The integral portion of the number
indicates the date since 12/30/1899, the same base date used by OLE Automation and Microsoft
applications. (Use negative values to express previous years.) The decimal portion indicates the
time as a fraction. For example, a value of 3.75 stands for the second of January 1900, at 6:00
p.m. (three-quarters of a day). To add or subtract dates, you can simply add or subtract the num-
ber of days, which is much simpler than adding days with a day/month/year representation.

Encapsulation and Forms

One of the key ideas of encapsulation is to reduce the number of global variables
used by a program. A global variable can be accessed from every portion of a pro-
gram. For this reason, a change in a global variable affects the whole program. On
the other hand, when you change the representation of a field of a class, you only
need to change the code of some methods of that class and nothing else. Therefore,
we can say that information hiding refers to encapsulating changes.

Let me clarify this idea with an example. When you have a program with multiple
forms, you can make some data available to every form by declaring it as a global
variable in the interface portion of the unit of one of the forms:

var
 Form1: TForm1;
 nClicks: Integer;

This works but has two problems. First, the data is not connected to a specific
instance of the form, but to the entire program. If you create two forms of the same
type, they’ll share the data. If you want every form of the same type to have its own
copy of the data, the only solution is to add it to the form class:

type
 TForm1 = class(TForm)
 public
 nClicks: Integer;
 end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 77

The second problem is that if you define the data as a global variable or as a public
field of a form, you won’t be able to modify its implementation in the future without
affecting the code that uses the data. For example, if you only have to read the cur-
rent value from other forms, you can declare the data as private and provide a
method to read the value:

type
 TForm1 = class(TForm)
 public
 function GetClicks: Integer;
 private
 nClicks: Integer;
 end;

function TForm1.GetClicks: Integer;
begin
 Result := nClicks;
end;

An even better solution is to add a property to the form, as we’ll see in the next
chapter.

The Self Keyword

We’ve seen that methods are very similar to procedures and functions. The real dif-
ference is that methods have an implicit parameter, which is a reference to the
current object. Within a method you can refer to this parameter—the current object
—using the Self keyword. This extra hidden parameter is needed when you create
several objects of the same class, so that each time you apply a method to one of the
objects, the method will operate only on its own data and not affect the other sibling
objects.

For example, in the SetValue method of the TDate class, listed earlier, we simply
use Month, Year, and Day to refer to the fields of the current object, something you
might express as

Self.Month := m;
Self.Day := d;

This is actually how the Delphi compiler translates the code, not how you are sup-
posed to write it. The Self keyword is a fundamental language construct used by the
compiler, but at times it is used by programmers to resolve name conflicts and to

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

78 - Chapter 2: Object-Oriented Programming in Delphi

make tricky code more readable. (The C++ and Java languages107 have a similar fea-
ture based on the keyword this.)

All you really need to know about Self is that the technical implementation of a call
to a method differs from that of a call to a generic subroutine. Methods have an
extra hidden parameter, Self. Because all this happens behind the scenes, you do
not need to know how Self works at this time.

note If you look at the definition of the TMethod data type in the VCL, you’ll see that it is a record with
a Code field and a Data field. The first is a pointer to the function’s address in memory, the sec-
ond the value of the Self parameter to use when calling that function address. We’ll discuss
method pointers in the next chapter.

Creating Components Dynamically

In Delphi, the Self keyword is often used when you need to refer to the current
form explicitly in one of its methods. The typical example is the creation of a compo-
nent at run time, where you must pass the owner of the component to its Create
constructor and assign the same value to its Parent property. (The difference
between Owner and Parent properties is discussed in the next chapter.) In both
cases, you have to supply the current form as parameter or value, and the best way
to do this is to use the Self keyword.

To demonstrate this kind of code, I’ve written the CreateC108 example (the name
stands for Create Component). This program has a simple form with no compo-
nents and a handler for its OnMouseDown event. I’ve used OnMouseDown because it
receives as its parameter the position of the mouse click (differently from the
OnClick event). I need this information to create a button component in that posi-
tion. Here is the code of the method:

procedure TForm1.FormMouseDown (Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
var
 Btn: TButton;
begin
 Btn := TButton.Create (Self);
 Btn.Parent := Self;
 Btn.Left := X;

107 And C#, as well.

108 A lot of the example of the book are short, to comply with the 8 char file name limitations of
the DOS word. I know it can sound odd, but it was common at the time. The original Delphi li-
brary unit names were all 8 char maximum for the same reason.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 79

 Btn.Top := Y;
 Btn.Width := Btn.Width + 50;
 Btn.Caption := Format (‘Button at %d, %d’, [X, Y]);
end;

The effect of this code is to create buttons at mouse-click positions, with a caption
indicating the exact location, as you can see in Figure 2.1. In the code above, notice
in particular the use of the Self keyword, as the parameter of the Create method
and as the value of the Parent property.

Figure 2.1:
The output of the
CreateC example,
which creates Button
components at run
time. Images from the
original book and
captured today after
rebuilding it in Delphi
12, running on
Windows 11.

It is very common to write code like the above method using a with109 statement, as
in the following listing:

procedure TForm1.FormMouseDown (Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 with TButton.Create (Self) do
 begin
 Parent := Self;
 Left := X;
 Top := Y;
 Width := Width + 50;
 Caption := Format (‘Button in %d, %d’, [X, Y]);
 end;
end;

109 I’ve later changed my mind regarding the with statement: I don’t recommend using it as it can
lead to hard-to-spot bugs, given the scope of the symbols used is not always clear.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

80 - Chapter 2: Object-Oriented Programming in Delphi

note When writing a procedure like the code you’ve just seen, you might be tempted to use the Form1
variable instead of Self. In this specific example, that change wouldn’t make any practical differ-
ence, but if there are multiple instances of a form, using Form1 would really be an error. In fact, if
the Form1 variable refers to the first form of that type being created, by clicking in another form
of the same type, the new button will always be displayed in the first form. Its owner and Parent
will be Form1 and not the form the user has clicked onto. In general, referring to a particular
instance of a class when the current object is required is a bad OOP practice.110

Constructors

To allocate the memory for the object, we call the Create method. This is a con-
structor, a special method that you can apply to a class to allocate memory for an
instance of that class. The instance is returned by the constructor and can be
assigned to a variable for storing the object and using it later on. The default
TObject.Create constructor initializes all the data of the new instance to zero.

If you want your instance data to start out with a nonzero value, then you need to
write a custom constructor to do that. The new constructor can be called Create, or
it can have any other name: simply use the constructor keyword in front of it.
Notice that in this case, you don’t need to call TObject.Create: every constructor
can automatically allocate the memory for an object instance simply by applying this
special method to the related class.

The main reason to add a custom constructor to a class is to initialize its data. If you
create objects without initializing them, calling methods later on may result in odd
behavior or even a run-time error. Instead of waiting for these errors to appear, you
should use preventive techniques to avoid them in the first place. One such tech-
nique is the consistent use of constructors to initialize objects’ data. For example,
we must call the SetValue procedure of the TDate class after we’ve created the
object. As an alternative, we can provide a customized constructor, which creates
the object and gives it an initial value.

Although in general you can use any name for a constructor, keep in mind that if
you use a name other than Create, the Create constructor of the base TObject class
will still be available. If you are developing and distributing code for others to use, a
programmer calling this default constructor might bypass the initialization code
you’ve provided. By defining a Create constructor with some parameters, you

110 I’ve defined a rule “Never use Form1” (or a reference to a specific form) in your code. While
not an absolute rules, it’s a very good idea in almost all cases.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 81

replace the default definition with a new one and make its use compulsory. This is
possible for generic classes, but it should be avoided for custom components. As
we’ll see in Chapter 13, when you inherit from TComponent, you should override the
default Create constructor with one parameter and avoid disabling it.

In the same way that a class can have a custom constructor, it can have a custom
destructor, a method declared with the destructor keyword and called Destroy,
which can perform some resource cleanup before an object is destroyed. Just as a
constructor call allocates memory for the object, a destructor call frees the memory.
Destructors are needed only for objects that acquire resources in their constructors
or during their lifetime.

Instead of calling Destroy directly, a program should call Free, which calls Destroy
only if the object exists—that is, if it is not nil111. Keep in mind, however, that call-
ing Free doesn’t set the object to nil automatically; this is something you should do
yourself! The reason is that the object doesn’t know which variables may be refer-
ring to it, so it has no way to set them all to nil.

note Delphi 5 has finally introduced a simple FreeAndNil procedure you can use to free an object and
set its reference to nil at the same time. Simply call FreeAndNil (Obj1) instead of calling
Obj1.Free and then setting Obj1 to nil.112

Overloaded Methods and Constructors

Starting with Delphi 4, Object Pascal supports overloaded functions and methods:
you can have multiple methods with the same name, provided that the parameters
are different. By checking the parameters, the compiler can determine which of the
versions of the routine you want to call.

There are two basic rules:

· Each version of the method must be followed by the overload keyword.

· The differences must be in the number or type of the parameters or both. The
return type, instead, cannot be used to distinguish among two methods.

111 Delphi’s nil is the equivalent of null in other programming languages.

112 There have been discussions in the Delphi community whether FreeAndNil should be used or
if its use implies a bad code architecture. In general, I tend to agree that the use of FreeAndNil
should be a rare occurrence. Then a lcoal variable is about to get out of scope, setting it to nil
has no benefit.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

82 - Chapter 2: Object-Oriented Programming in Delphi

Overloading can be applied to global functions and procedures and to methods of a
class. This feature is particularly relevant for constructors, because we can have
multiple constructors and call them all Create, which makes them easy to remem-
ber.

note Historically, overloading was added to C++ to allow the use of multiple constructors that each
have the same name (the name of the class). In Object Pascal, this feature was considered unnec-
essary simply because multiple constructors can have different specific names. The increased
integration of Delphi with C++Builder has motivated Borland to make this feature available in
both languages. Technically, when C++Builder constructs an instance of a Delphi VCL class, it
looks for a Delphi constructor named Create and nothing but Create. If the Delphi class has
constructors by other names, they cannot be used from C++Builder code. Therefore, when creat-
ing classes and components you intend to share with C++Builder programmers, you should be
careful to name all your constructors Create and distinguish between them by their parameter
lists (using overload). This is not required by Delphi, but it is required for C++Builder to use
your Delphi classes.

As an example of overloading, I’ve added to the TDate class two different versions of
the SetValue method:

type
 TDate = class
 public
 procedure SetValue (y, m, d: Integer); overload;
 procedure SetValue (NewDate: TDateTime); overload;

procedure TDate.SetValue (y, m, d: Integer);
begin
 fDate := EncodeDate (y, m, d);
end;

procedure TDate.SetValue(NewDate: TDateTime);
begin
 fDate := NewDate;
end;

After this simple step, I’ve added to the class two separate Create constructors, one
with no parameters, which hides the default constructor, and one with the initializa-
tion values. The constructor with no parameters uses as the default value today’s
date:

type
 TDate = class
 public
 constructor Create; overload;
 constructor Create (y, m, d: Integer); overload;

constructor TDate.Create (y, m, d: Integer);

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 83

begin
 fDate := EncodeDate (y, m, d);
end;

constructor TDate.Create;
begin
 fDate := Date;
end;

Having these two constructors makes it possible to define a new TDate object in two
different ways:

var
 Day1, Day2: TDate;
begin
 Day1 := TDate.Create (1999, 12, 25);
 Day2 := TDate.Create; // today

The Complete TDate Class

Throughout this chapter, I’ve shown you bits and pieces of the source code for dif-
ferent versions of a TDate class. The first version was based on three integers to
store the year, the month, and the day; a second version used a field of the
TDateTime type provided by Delphi. Here is the complete interface portion of the
unit that defines the TDate class:

unit Dates;

interface

type
 TDate = class
 private
 fDate: TDateTime;
 function GetYear: Integer;
 public
 constructor Create; overload;
 constructor Create (y, m, d: Integer); overload;
 procedure SetValue (y, m, d: Integer); overload;
 procedure SetValue (NewDate: TDateTime); overload;
 function LeapYear: Boolean;
 procedure Increase (NumberOfDays: Integer = 1);
 procedure Decrease (NumberOfDays: Integer = 1);
 function GetText: string;
 end;

implementation

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

84 - Chapter 2: Object-Oriented Programming in Delphi

...

The aim of the new methods, Increase and Decrease (which have a default value for
their parameter), is quite easy to understand. If called with no parameter, they
change the value of the date to the next or previous day. If a NumberOfDays parame-
ter is part of the call, they add or subtract that number:

procedure TDate.Increase (NumberOfDays: Integer = 1);
begin
 fDate := fDate + NumberOfDays;
end;

GetText returns a string with the formatted date, using the DateToStr function:

function TDate.GetText: string;
begin
 GetText := DateToStr (fDate);
end;

We’ve already seen most of the methods in the previous sections, so I won’t provide
the complete listing; you can find it in the code of the ViewDate example I’ve writ-
ten to test the class. The form has a caption to display a date and six buttons, which
can be used to modify the date. You can see the main form of the ViewDate example
at run time in Figure 2.2. To make the label component look nice, I’ve given it a big
font, made it as wide as the form, set its Alignment property to taCenter, and set its
AutoSize property to False.

Figure 2.2:
The output of the
ViewDate example at
start-up. Images
captured now and in
the original book.

The start-up code of this program is in the OnCreate event handler. In the corre-
sponding method, we create an instance of the TDate class, initialize this object, and
then show its textual description in the Caption of the label, as shown in Figure 2.2.

procedure TDateForm.FormCreate(Sender: TObject);
begin

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 85

 TheDay := TDate.Create (1999, 12, 25);
 LabelDate.Caption := TheDay.GetText;
end;

TheDay is a private field of the class of the form, TDateForm. By the way, the name for
the class is automatically chosen by Delphi when we change the Name property of the
form to DateForm. The object is then destroyed along with the form:

procedure TDateForm.FormDestroy(Sender: TObject);
begin
 TheDay.Free;
end;

When the user clicks one of the six buttons, we need to apply the corresponding
method to the TheDay object and then display the new value of the date in the label:

procedure TDateForm.BtnTodayClick(Sender: TObject);
begin
 TheDay.SetValue (Date);
 LabelDate.Caption := TheDay.GetText;
end;

An alternative way to write the last method is to destroy the current object and cre-
ate a new one:

procedure TDateForm.BtnTodayClick(Sender: TObject);
var
 NewDay: TDate;
begin
 TheDay.Free;
 NewDay := TDate.Create;
 TheDay := NewDay;
 LabelDate.Caption := TheDay.GetText;
end;

In this particular circumstance, this is not a very good approach (because creating a
new object and destroying an existing one entails a lot of time overhead, when all we
need is to change the object’s value), but it allows me to show you a couple of Object
Pascal techniques. The first thing to notice is that we destroy the previous object
before assigning a new one. The assignment operation, in fact, replaces the refer-
ence, leaving the object in memory (even if no pointer is referring to it). When you
assign an object to another object, Delphi simply copies the reference to the object
in memory to the new object/reference.

If you really want to change the data inside an existing object, copy each field, or
provide a specific method to copy the internal data. Some classes of the VCL have an
Assign method, which does this deep-copying. To be more precise, all the VCL
classes inheriting from TPersistent have the Assign method, but most of those

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

86 - Chapter 2: Object-Oriented Programming in Delphi

inheriting from TComponent don’t implement it, raising an exception when it is
called.

Inheriting from Existing Types

We often need to use a slightly different version of an existing class that we have
written or that someone has given to us. For example, you might need to add a new
method or slightly change an existing one. You can do this easily by modifying the
original code, unless you want to be able to use the two different versions of the
class in different circumstances. Also, if the class was originally written by someone
else (including Borland), you might want to keep your changes separate.

A typical alternative is to make a copy of the original type definition, change its code
to support the new features, and give a new name to the resulting class. This might
work, but it also might create problems: in duplicating the code you also duplicate
the bugs; and if you want to add a new feature, you’ll need to add it two or more
times, depending on the number of copies of the original code you’ve made. This
approach results in two completely different data types, so the compiler cannot help
you take advantage of the similarities between the two types.

To solve these kinds of problems in expressing similarities between classes, Object
Pascal allows you to define a new class directly from an existing one. This technique
is known as inheritance (or subclassing, or derivation) and is one of the fundamen-
tal elements of object-oriented programming languages. To inherit from an existing
class, you only need to indicate that class at the beginning of the declaration of the
subclass. For example, Delphi does this automatically each time you create a new
form:

type
 TForm1 = class(TForm)
 end;

This simple definition indicates that the TForm1 class inherits all the methods,
fields, properties, and events of the TForm class. You can apply any public method of
the TForm class to an object of the TForm1 type. TForm, in turn, inherits some of its
methods from another class, and so on, up to the TObject class.

As a simple example of inheritance, we can change the ViewDate program slightly,
deriving a new class from TDate and modifying one of its functions, GetText. You
can find this code in the DATES.PAS file of the ViewD2 example.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 87

type
 TNewDate = class (TDate)
 public
 function GetText: string;
 end;

In this example, TNewDate is derived from TDate. It is common to say that TDate is
an ancestor class or parent class of TNewDate and that TNewDate is a subclass,
descendant class, or child class of TDate.

To implement the new version of the GetText function, I used the FormatDateTime
function, which uses (among other features) the predefined month names available
in Windows; these names depend on the user’s regional and language settings.
Many of these regional settings are actually copied by Delphi into constants defined
in the library, such as LongMonthNames, ShortMonthNames, and many others you can
find under the Currency and date/time formatting variables topic in the Delphi
Help file. Here is the GetText method, where ‘dddddd’ stands for the long data for-
mat:

function TNewDate.GetText: string;
begin
 GetText := FormatDateTime (‘dddddd’, fDate);
end;

note Using regional information, the ViewD2 program automatically adapts itself to different Windows
user settings. If you run this same program on a computer with regional settings referring to a
language other than English, it will automatically show month names in that language. To test
this behavior, you just need to change the regional settings; you don’t need a new version of Win-
dows. Notice that regional-setting changes immediately affect the running programs.

Once we have defined the new class, we need to use this new data type in the code of
the form of the ViewD2 example. Simply define the TheDay object of type TNewDate,
and call its constructor in the FormCreate method:

type
 TDateForm = class(TForm)
 ...
 private
 TheDay: TNewDate; // updated declaration
 end;

procedure TDateForm.FormCreate(Sender: TObject);
begin
 TheDay := TNewDate.Create (1998, 12, 25); // updated
 DateLabel.Caption := TheDay.GetText;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

88 - Chapter 2: Object-Oriented Programming in Delphi

Without any other changes, the new ViewD2 example will work properly. The
TNewDate class inherits the methods to increase the date, add a number of days, and
so on. In addition, the older code calling these methods still works. Actually, to call
the new version of the GetText method, we don’t need to change the source code!
The Delphi compiler will automatically bind that call to a new method. The source
code of all the other event handlers remains exactly the same, although its meaning
changes considerably, as the new output demonstrates (see Figure 2.3).

Figure 2.3:
The output of the
ViewD2 program, with
the name of the month
and of the day
depending on Windows
regional settings.
Images captured now
and in the original
book.

Protected Fields and Encapsulation

The code of the GetText method of the TNewDate class compiles only if it is written
in the same unit as the TDate class. In fact, it accesses the fDate private field of the
ancestor class. If we want to place the descendant class in a new unit, we must
either declare the fDate field as protected or add a simple, possibly protected,
method in the ancestor class to read the value of the private field.

Many developers believe that the first solution is always the best, because declaring
most of the fields as protected will make a class more extensible and will make it
easier to write subclasses. However, this violates the idea of encapsulation. In a
large hierarchy of classes, changing the definition of some protected fields of the
base classes becomes as difficult as changing some global data structures. If ten
derived classes are accessing this data, changing its definition means potentially
modifying the code in each of the ten classes.

In other words, flexibility, extension, and encapsulation often become conflicting
objectives. When this happens, you should try to favor encapsulation. If you can do
so without sacrificing flexibility, that will be even better. Often this intermediate

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 89

solution can be obtained by using a virtual method, a topic I’ll discuss in detail
below in the section “Late Binding and Polymorphism.” If you choose not to use
encapsulation in order to obtain faster coding of the subclasses, then your design
might not follow the object-oriented principles.

Accessing Protected Data of Other Classes

If you are new to Delphi and to OOP, this is a rather advanced section you
might want to skip the first time you are reading this book, as it might be
confusing.

We’ve seen that in Delphi, the private and protected data of a class is accessible to
any functions or methods that appear in the same unit as the class. For example,
consider this simple class (part of the Protection example):

type
 TTest = class
 protected
 ProtectedData: Integer;
 public
 PublicData: Integer;
 function GetValue: string;
 end;

The GetValue method simply returns a string with the two integer values:

function TTest.GetValue: string;
begin
 Result := Format (‘Public: %d, Protected: %d’,
 [PublicData, ProtectedData]);
end;

Once you place this class in its own unit, you won’t be able to access its protected
portion from other units directly. Accordingly, if you write the following code,

procedure TForm1.Button1Click(Sender: TObject);
var
 Obj: TTest;
begin
 Obj := TTest.Create;
 Obj.PublicData := 10;
 Obj.ProtectedData := 20; // won’t compile
 ShowMessage (Obj.GetValue);
 Obj.Free;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

90 - Chapter 2: Object-Oriented Programming in Delphi

the compiler will issue an error message, Undeclared identifier: “ProtectedData.”
At this point, you might think there is no way to access the protected data of a class
defined in a different unit. (This is what Delphi manuals and most Delphi books
say.) However, there is a way around it. Consider what happens if you create an
apparently useless derived class, such as

type
 TFake = class (TTest);

Now, if you make a direct cast of the object to the new class and access the protected
data through it, this is how the code will look:

procedure TForm1.Button2Click(Sender: TObject);
var
 Obj: TTest;
begin
 Obj := TTest.Create;
 Obj.PublicData := 10;
 TFake (Obj).ProtectedData := 20; // compiles!
 ShowMessage (Obj.GetValue);
 Obj.Free;
end;

This code compiles and works properly, as you can see by running the Protection
program. How is it possible for this approach to work? Well, if you think about it,
the TFake class automatically inherits the protected fields of the TTest base class,
and because the TFake class is in the same unit as the code that tries to access the
data in the inherited fields, the protected data is accessible. As you would expect, if
you move the declaration of the TFake class to a secondary unit, the program won’t
compile any more.

Now that I’ve shown you how to do this, I must warn you that violating the class-
protection mechanism this way is likely to cause errors in your program (from
accessing data that you really shouldn’t), and it runs counter to good OOP tech-
nique. However, there are times when using this technique is the best solution, as
you’ll see by looking at the VCL source code and the code of many Delphi compo-
nents. Two simple examples that come to mind are accessing the Text property of
the Tcontrol class and the Row and Col positions of the DBGrid control. These two
ideas are demonstrated by the TextProp and DBGridCol examples respectively.
(These examples are quite advanced, so I suggest that only programmers with a
good background of Delphi programming read them at this point in the text—other
readers might come back later.)

Although the first example shows a reasonable example of using the typecast
cracker, the DBGrid example of Row and Col is actually a counter example, one that
illustrates the risks of accessing bits that the class writer chose not to expose. The

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 91

row and column of a DBGrid do not mean the same thing as they do in a DrawGrid or
StringGrid (the base classes). First, DBGrid does not count the fixed cells as actual
cells (it distinguishes data cells from decoration), so your row and column indexes
will have to be adjusted by whatever decorations are currently in effect on the grid
(and those can change on the fly). Second, the DBGrid is a virtual view of the data.
When you scroll up in a DBGrid, the data may move underneath it, but the currently
selected row might not change.

This technique is often described as a hack, and it should be avoided whenever pos-
sible. The problem is not accessing protected data of a class in the same unit but
declaring a class for the sole purpose of accessing protected data of an existing
object of a different class! The danger of this technique is in the hard-coded typecast
of an object from a class to a different one.

Inheritance and Type Compatibility

Pascal is a strictly typed language. This means that you cannot, for example, assign
an integer value to a Boolean variable, at least not without an explicit typecast. The
rule is that two values are type-compatible only if they are of the same data type, or
(to be more precise) if their data type has the same name and their definition comes
from the same unit.

There is an important exception to this rule in the case of class types. If you declare
a class, such as TAnimal, and derive from it a new class, say TDog, you can then
assign an object of type TDog to a variable of type TAnimal. That is because a dog is
an animal! So, although this might surprise you, the following constructor calls are
both legal:

var
 MyAnimal1, MyAnimal2: TAnimal;
begin
 MyAnimal1 := TAnimal.Create;
 MyAnimal2 := TDog.Create;

As a general rule, you can use an object of a descendant class any time an object of
an ancestor class is expected. However, the reverse is not legal; you cannot use an
object of an ancestor class when an object of a descendant class is expected. To sim-
plify the explanation, here it is again in code terms:

MyAnimal := MyDog; // This is OK
MyDog := MyAnimal; // This is an error!!!

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

92 - Chapter 2: Object-Oriented Programming in Delphi

Before we look at the implications of this important feature of the language, you can
try out the Animals1 example, which defines the two simple TAnimal and TDog
classes:

type
 TAnimal = class
 public
 constructor Create;
 function GetKind: string;
 private
 Kind: string;
 end;

 TDog = class (TAnimal)
 public
 constructor Create;
 end;

The two Create methods simply set the value of Kind, which is returned by the
GetKind function. The form displayed by this example, shown in Figure 2.4, has a
private field of type TAnimal. An instance of this class is created and initialized when
the form is created and each time one of the radio buttons is selected.

procedure TFormAnimals.FormCreate(Sender: TObject);
begin
 MyAnimal := TAnimal.Create;
end;

procedure TFormAnimals.RbtnDogClick(Sender: TObject);
begin
 MyAnimal.Free;
 MyAnimal := TDog.Create;
end;

Figure 2.4:
The form of the
Animals1 example (in
Delphi 5)

Finally, the Kind button calls the GetKind method for the current animal and dis-
plays the result in the label:

procedure TFormAnimals.BtnKindClick(Sender: TObject);

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 93

begin
 KindLabel.Caption := MyAnimal.GetKind;
end;

Late Binding and Polymorphism

Pascal functions and procedures are usually based on static binding, which is also
called early binding. This means that a method call is resolved by the compiler or
the linker, which replaces the request with a call to the specific memory location
where the function or procedure resides. (This is known as the address of the func-
tion.) Object-oriented programming languages allow the use of another form of
binding, known as dynamic binding, or late binding. In this case, the actual address
of the method to be called is determined at run time based on the type of the
instance used to make the call.

The advantage of this technique is known as polymorphism. Polymorphism means
you can write a call to a method, applying it to a variable, but which method Delphi
actually calls depends on the type of the object the variable relates to. Delphi cannot
determine until run time the actual class of the object the variable refers to, simply
because of the type-compatibility rule discussed in the previous section.

note The term polymorphism is quite a mouthful. A glance at the dictionary tells us that in a general
sense it refers to something having more than one form. In the OOP sense, then, it refers to the
fact that there may be several versions of a given method and that a single method call can refer to
any of these versions.

For example, suppose that a class and its subclass (let’s say TAnimal and TDog) both
define a method, and this method has late binding. Now you can apply this method
to a generic variable, such as MyAnimal, which at run time can refer either to an
object of class TAnimal or to an object of class TDog. The actual method to call is
determined at run time, depending on the class of the current object.

The Animals2 example extends the Animals1 program to demonstrate this tech-
nique. In the new version, the TAnimal and the TDog classes have a new method:
Voice, which means to output the sound made by the selected animal, both as text
and as sound. This method is defined as virtual in the TAnimal class and is later
overridden when we define the TDog class, by the use of the virtual and override
keywords:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

94 - Chapter 2: Object-Oriented Programming in Delphi

type
 TAnimal = class
 public
 function Voice: string; virtual;

 TDog = class (TAnimal)
 public
 function Voice: string; override;

Of course, the two methods also need to be implemented. Here is a simple
approach:

uses
 MMSystem;

function TAnimal.Voice: string;
begin
 Voice := ‘Voice of the animal’;
 PlaySound (‘Anim.wav’, 0, snd_Async);
end;

function TDog.Voice: string;
begin
 Voice := ‘Arf Arf’;
 PlaySound (‘dog.wav’, 0, snd_Async);
end;

note This example uses a call to the PlaySound API function, defined in the MMSystem unit. The first
parameter of this function is the name of the WAV sound file or the system sound you want to
execute. The second parameter indicates an optional resource file containing the sound. The third
parameter indicates (among other options) whether the call should be synchronous or asynchro-
nous; that is, whether the program should wait for the sound to finish before continuing with the
following statements.

Now what is the effect of the call MyAnimal.Voice? It depends. If the MyAnimal vari-
able currently refers to an object of the TAnimal class, it will call the method
TAnimal.Voice. If it refers to an object of the TDog class, it will call the method
TDog.Voice instead. This happens only because the function is virtual.

The call to MyAnimal.Voice will work for an object that is an instance of any descen-
dant of the TAnimal class, even classes that are defined after this method call or
outside its scope. The compiler doesn’t need to know about all the descendants in
order to make the call compatible with them; only the ancestor class is needed. In
other words, this call to MyAnimal.Voice is compatible with all future TAnimal sub-
classes.

This is the key technical reason why object-oriented programming languages favor
reusability. You can write code that uses classes within a hierarchy without any

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 95

knowledge of the specific classes that are part of that hierarchy. In other words, the
hierarchy—and the program—is still extensible, even when you’ve written thou-
sands of lines of code using it. Of course, there is one condition—the ancestor
classes of the hierarchy need to be designed very carefully.

The Animals2 program demonstrates the use of these new classes and has a form
similar to that of the previous example. This code is executed by clicking on the but-
ton:

procedure TFormAnimals.BtnVerseClick(Sender: TObject);
begin
 LabelVoice.Caption := MyAnimal.Voice;
end;

In Figure 2.5, you can see an example of the output of this program. By running it,
you’ll also hear the corresponding sounds produced by the PlaySound API call.

Figure 2.5:
The output of the
Animals2 example.
Image from the
original book.

Overriding, Redefining, and Reintroducing
Methods

As we have just seen, to override a late-bound method in a descendant class, you
need to use the override keyword. Note that this can take place only if the method
was defined as virtual in the ancestor class. Otherwise, if it was a static method,
there is no way to activate late binding, other than by changing the code of the
ancestor class.

The rules are simple: A method defined as static remains static in every subclass,
unless you hide it with a new virtual method having the same name. A method
defined as virtual remains late-bound in every subclass. There is no way to change
this, because of the way the compiler generates different code for late-bound meth-
ods.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

96 - Chapter 2: Object-Oriented Programming in Delphi

To redefine a static method, you simply add a method to a subclass having the same
parameters or different parameters than the original one, without any further speci-
fications. To override a virtual method, you must specify the same parameters and
use the override keyword:

type
 MyClass = class
 procedure One; virtual;
 procedure Two; {static method}
 end;

 MySubClass = class (MyClass)
 procedure One; override;
 procedure Two;
 end;

There are typically two ways to override a method. One is to replace the method of
the ancestor class with a new version. The other is to add some more code to the
existing method. This can be accomplished by using the inherited keyword to call
the same method of the ancestor class. For example, you can write

procedure MySubClass.One;
begin
 // new code
 ...
 // call inherited procedure MyClass.One
 inherited One;
end;

You might wonder why you need to use the override keyword. In other languages,
when you redefine a method in a subclass, you automatically override the original
one. However, having a specific keyword allows the compiler to check the corre-
spondence between the names of the methods of the ancestor class and the subclass
(misspelling a redefined function is a common error in other OOP languages), check
that the method was virtual in the ancestor class, and so on.

Furthermore, if you define a static method in any class inherited by a class of the
library, there will be no problem, even if the library is updated with a new virtual
method having the same name as a method you’ve defined. Because your method is
not marked by the override keyword, it will be considered a separate method and
not a new version of the one added to the library (something that would probably
break your code).

The support for overloading introduced in Delphi 4 added some further complexity
to this picture. A subclass can provide a new version of a method using the overload
keyword. If the method has different parameters than the version in the base class,

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 97

it becomes effectively an overloaded method; otherwise it replaces the base class
method. Here is an example:

type
 TMyClass = class
 procedure One;
 end;

 TMySubClass = class (TMyClass)
 procedure One (S: string); overload;
 end;

Notice that the method doesn’t need to be marked as overload in the base class.
However, if the method in the base class is virtual, the compiler issues the warning
Method ‘One’ hides virtual method of base type ‘TMyClass.’ To avoid this message
from the compiler and to instruct the compiler more precisely on your intentions,
you can use the new reintroduce directive:

type
 TMyClass = class
 procedure One; virtual;
 end;

 TMySubClass = class (TMyClass)
 procedure One (S: string); reintroduce; overload;
 end;

You can find this code in the Reintr example and experiment with it further.

Virtual versus Dynamic Methods

In Delphi, there are two different ways to activate late binding. You can declare the
method as virtual, as we have seen before, or declare it as dynamic. The syntax of
these two keywords is exactly the same, and the result of their use is also the same.
What is different is the internal mechanism used by the compiler to implement late
binding.

Virtual methods are based on a virtual method table (VMT, also known as a vtable).
A virtual method table is an array of method addresses. For a call to a virtual
method, the compiler generates code to jump to an address stored in the nth slot in
the object’s virtual method table.

Virtual method tables allow fast execution of the method calls. Their main drawback
is that they require an entry for each virtual method for each descendant class, even
if the method is not overridden in the subclass. At times, this has the effect of prop-
agating virtual method table entries throughout a class hierarchy (even for methods

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

98 - Chapter 2: Object-Oriented Programming in Delphi

that aren’t redefined). This might require a lot of memory just to store the same
method address a number of times.

Dynamic method calls, on the other hand, are dispatched using a unique number
indicating the method. The search for the corresponding function is generally
slower than the simple one-step table lookup for virtual methods. The advantage is
that dynamic method entries only propagate in descendants when the descendants
override the method. For large or deep object hierarchies, using dynamic methods
instead of virtual methods can result in significant memory savings with only a min-
imal speed penalty.

From a programmer’s perspective, the difference between these two approaches lies
only in a different internal representation and slightly different speed or memory
usage. Apart from this, virtual and dynamic methods are the same.

Message Handlers

A late-bound method can be used to handle a Windows message, too, although the
technique is somewhat different. For this purpose Delphi provides yet another
directive, message, to define message-handling methods, which must be procedures
with a single var parameter. The message directive is followed by the number of the
Windows message the method wants to handle. For example, the following code
allows you to handle a user-defined message, with the numeric value indicated by
the wm_User Windows constant:

type
 TForm1 = class(TForm)
 ...
 procedure WmUser (var Msg: TMessage);
 message wm_User;
 end;

The name of the procedure and the actual type of the parameters are up to you,
although there are a number of predefined record types for the various Windows
messages. This technique can be extremely useful for veteran Windows program-
mers, who know all about Windows messages and API functions.

note The ability to handle Windows messages and call API functions as you do when you are program-
ming Windows with the C language may horrify some programmers and delight others. But in
Delphi, when writing Windows applications, you will seldom need to use message methods. Only
when you are writing complex components in Delphi will you have to deal with low-level mes-
sages and API calls.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 99

Abstract Methods

The abstract keyword is used to declare methods that will be defined only in sub-
classes of the current class113. The abstract directive fully defines the method; it is
not a forward declaration. If you try to provide a definition for the method, the com-
piler will complain. In Object Pascal, you can create instances of classes that have
abstract methods. However, when you try to do so, Delphi’s 32-bit compiler issues
the warning message: Constructing instance of <class name> containing abstract
methods. If you happen to call an abstract method at run time, Delphi will raise an
exception, as demonstrated by the following Animals3 example.

note C++ and Java use a more strict approach: in these languages, you cannot create instances of
abstract classes.

You might wonder why you would want to use abstract methods. The reason lies in
the use of polymorphism. If class TAnimal has the abstract method Voice, every
subclass can redefine it. The advantage is that you can now use the generic MyAnimal
object to refer to each animal defined by a subclass and invoke this method. If this
method was not present in the interface of the TAnimal class, the call would not have
been allowed by the compiler, which performs static type checking. Using a generic
MyAnimal object, you can call only the method defined by its own class, TAnimal.

You cannot call methods provided by subclasses, unless the parent class has at least
the declaration of this method—in the form of an abstract method. The next exam-
ple, Animals3, demonstrates the use of abstract methods and the abstract call
error. Here are the interfaces of the classes of this new example:

type
 TAnimal = class
 public
 constructor Create;
 function GetKind: string;
 function Voice: string; virtual; abstract;
 private
 Kind: string;
 end;

 TDog = class (TAnimal)
 public
 constructor Create;
 function Voice: string; override;

113 In recent versions of Delphi you can also use the abstract keyword to decorate a class as a
whole, a syntax originally introduced in the .NET version of the compiler.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

100 - Chapter 2: Object-Oriented Programming in Delphi

 function Eat: string; virtual;
 end;

 TCat = class (TAnimal)
 public
 constructor Create;
 function Voice: string; override;
 function Eat: string; virtual;
 end;

The most interesting portion is the definition of the class TAnimal, which includes a
virtual abstract method: Voice. It is also important to notice that each derived
class overrides this definition and adds a new virtual method, Eat. What are the
implications of these two different approaches? To call the Voice function, we can
simply write the same code as in the previous version of the program:

LabelVoice.Caption := MyAnimal.Voice;

How can we call the Eat method? We cannot apply it to an object of the TAnimal
class. The statement

LabelVoice.Caption := MyAnimal.Eat;

generates the compiler error Field identifier expected.

To solve this problem, you can use run-time type information (RTTI) to cast the
TAnimal object to a TCat or TDog object; but without the proper cast, the program
will raise an exception. You will see an example of this approach in the next section.
Adding the method definition to the TAnimal class is a typical solution to the prob-
lem, and the presence of the abstract keyword favors this choice.

Run-Time Type Information114

The Object Pascal type–compatibility rule for descendant classes allows you to use a
descendant class where an ancestor class is expected. As I mentioned earlier, the
reverse is not possible.

Now suppose that the TDog class has an Eat method, which is not present in the
TAnimal class. If the variable MyAnimal refers to a dog, it should be possible to call

114 The core form of RTTI, described in this section, is still available today. On top of it, there is
now in Delphi an extended RTTI and a specific unit with classes you can use to access a large
amount of type information at runtime.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 101

the function. But if you try, and the variable is referring to another class, the result
is an error. By making an explicit typecast, we could cause a nasty run-time error (or
worse, a subtle memory overwrite problem), because the compiler cannot deter-
mine whether the type of the object is correct and the methods we are calling
actually exist.

To solve the problem, we can use techniques based on run-time type information.
Essentially, because each object “knows” its type and its parent class, we can ask for
this information with the is operator or using some of the methods of the TObject
class (discussed in the next chapter). The parameters of the is operator are an
object and a class type, and the return value is a Boolean:

if MyAnimal is TDog then
 ...

The is expression evaluates as True only if the MyAnimal object is currently referring
to an object of class TDog or a type descendant from TDog. This means that if you test
whether a TDog object is of type TAnimal, the test will succeed. In other words, this
expression evaluates as True if you can safely assign the object (MyAnimal) to a vari-
able of the data type (TDog).

Now that you know for sure that the animal is a dog, you can make a safe typecast
(or type conversion). You can accomplish this direct cast by writing the following
code:

if MyAnimal is TDog then
begin
 MyDog := TDog (MyAnimal);
 Text := MyDog.Eat;
end;

This same operation can be accomplished directly by the second RTTI operator, as,
which converts the object only if the requested class is compatible with the actual
one. The parameters of the as operator are an object and a class type, and the result
is an object converted to the new class type. We can write the following snippet:

MyDog := MyAnimal as TDog;
Text := MyDog.Eat;

If we only want to call the Eat function, we might also use an even shorter notation:

(MyAnimal as TDog).Eat;

The result of this expression is an object of the TDog class data type, so you can apply
to it any method of that class. The difference between the traditional cast and the
use of the as cast is that the second one raises an exception if the type of the object

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

102 - Chapter 2: Object-Oriented Programming in Delphi

is not compatible with the type you are trying to cast it to. The exception raised is
EInvalidCast (exceptions are described at the end of this chapter).

To avoid this exception, use the is operator and, if it succeeds, make a plain type-
cast (in fact there is no reason to use is and as in sequence, doing the type check
twice):

if MyAnimal is TDog then
 TDog(MyAnimal).Eat;

Both RTTI operators are very useful in Delphi because you often want to write
generic code that can be used with a number of components of the same type or
even of different types. When a component is passed as a parameter to an event-
response method, a generic data type is used (TObject), so you often need to cast it
back to the original component type:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if Sender is TButton then
 ...
end;

This is a common technique in Delphi, and I’ll use it in a number of examples
throughout the book. In Chapter 4, we’ll discuss the is and as operators again,
while focusing on some alternative RTTI techniques based on methods of the
TObject class. The two RTTI operators, is and as, are extremely powerful, and you
might be tempted to consider them as standard programming constructs. Although
they are indeed powerful, you should probably limit their use to special cases. When
you need to solve a complex problem involving several classes, try using polymor-
phism first. Only in special cases, where polymorphism alone cannot be applied,
should you try using the RTTI operators to complement it. Do not use RTTI instead
of polymorphism. This is bad programming practice, and it results in slower pro-
grams. RTTI, in fact, has a negative impact on performance, because it must walk
the hierarchy of classes to see whether the typecast is correct. As we have seen, vir-
tual method calls require just a memory lookup, which is much faster.

Visual Form Inheritance

To better understand derivation among classes, you can use visual form inheritance.
In short, you can simply inherit a form from an existing one, adding new compo-

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 103

nents or altering the properties of the existing ones. But what is the real advantage
of visual form inheritance?

Well, this mostly depends on the kind of application you are building. If it has a
number of forms, some of which are very similar to each other or simply include
common elements, then you can place the common components and the common
event handlers in the base form and add the specific behavior and components to
the sub-classes. For example, if you prepare a standard parent form with a toolbar, a
logo, default sizing and closing code, and the handlers of some Windows messages,
you can then use it as the parent class for each of the forms of an application.

You can also use visual form inheritance to customize an application for different
clients, without duplicating any source code or form definition code; just inherit the
specific versions for a client from the standard forms. Remember that the main
advantage of visual inheritance is that you can later change the original form and
automatically update all the derived forms. This is a well-known advantage of inher-
itance in object-oriented programming languages. But there is a beneficial side
effect: polymorphism. You can add a virtual method in a base form and override it
in a subclassed form. Then you can refer to both forms and call this method for each
of them.

note Delphi 5 includes a new feature, called Frames, which resembles visual form inheritance. In both
cases you can work at design time on two versions of a form. However, in visual form inheritance,
you are defining two different classes (parent and derived), whereas with frames, you work on a
class and an instance. Frames will be discussed in detail in Chapter 4.

Inheriting from a Base Form

The rules governing visual form inheritance are quite simple, once you have a clear
idea of what inheritance is. Basically, a subclass form has the same components as
the parent form as well as some new components. You cannot remove a component
of the base class, although (if it is a visual control) you can make it invisible. What’s
important is that you can easily change properties of the components you inherit.

Notice that if you change a property of a component in the inherited form, any mod-
ification of the same property in the parent form will have no effect. Changing other
properties of the component will affect the inherited versions, as well. You can re-
synchronize the two property values by using the Revert to Inherited local menu
command of the Object Inspector. The same thing is accomplished by setting the
two properties to the same value and recompiling the code. After modifying multi-

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

104 - Chapter 2: Object-Oriented Programming in Delphi

ple properties, you can re-synchronize them all to the base version by applying the
Revert to Inherited command of the component’s local menu.

An alternative technique is to open the textual description of the inherited form and
remove the line that changes the value of the property. (We will look at the structure
of this file in a second.) Besides inheriting components, the new form inherits all
the methods of the base form, including the event handlers. You can add new han-
dlers in the inherited form and also override existing handlers.

To describe how visual form inheritance works, I’ve built a very simple example,
called VFI. I’ll describe step-by-step how to build it. First, start a new project, and
add four buttons to its main form. Then select File New115, and choose the page
with the name of the project in the New Items dialog box (see Figure 2.6). Here you
can choose the form from which you want to inherit. The new form has the same
four buttons. Here is the initial textual description of the new form:

inherited Form2: TForm2
 Caption = ‘Form2’
end

And here is its initial class declaration, where you can see that the base class is not
the usual TForm but the actual base class form:

type
 TForm2 = class(TForm1)
 private
 { Private declarations }
 public
 { Public declarations }
 end;

Notice the presence of the inherited keyword in the textual description; also notice
that the form indeed has some components, although they are defined in the base
class form. If you move the form and add the caption of one of the buttons, the tex-
tual description will change accordingly:

115 File | New | Other in recent versions of Delphi. The category is “Inheritable items”, rather than
the name of the project.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 105

Figure 2.6:
The New Items dialog
box allows you to
create an inherited
form. Images captured
in Delphi 5 and Delphi
12.

inherited Form2: TForm2
 Left = 313
 Top = 202
 Caption = ‘Form2’
 inherited Button2: TButton
 Caption = ‘Beep...’
 end
end

Only the properties with a different value are listed (and by removing these proper-
ties from the textual description of the inherited form, you can reset them to the
value of the base form, as I mentioned before). I’ve actually changed the captions of
most buttons, as you can see in Figure 2.7.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

106 - Chapter 2: Object-Oriented Programming in Delphi

Figure 2.7:
The two forms of the
VFI example at run
time. Image from the
original book.

Each of the buttons of the first form has an OnClick handler, with simple code. The
first button shows the inherited form calling its Show method; the second and the
third buttons call the Beep procedure; and the last button displays a simple message
calling ShowMessage (‘Hi’).

What happens in the inherited form? First we should remove the Show button
because the secondary form is already visible. However, we cannot delete a compo-
nent from an inherited form. An alternative solution is to leave the component there
but set its Visible property to False. The button will still be there but not visible (as
you can guess from Figure 2.7). The other three buttons will be visible but with dif-
ferent handlers. This is simple to accomplish. If you select the OnClick event of a
button in the inherited form (by double-clicking it), you’ll get an empty method
slightly different from the default one:

procedure TForm2.Button2Click(Sender: TObject);
begin
 inherited;
end;

The inherited keyword stands for a call to the corresponding event handler of the
base form. This keyword is always added by Delphi, even if the handler is not
defined in the parent class (and this is reasonable, because it might be defined later)
or if the component is not present in the parent class (which doesn’t seem like a
great idea to me). It is very simple to execute the code of the base form and perform
some other operations:

procedure TForm2.Button2Click(Sender: TObject);
begin
 inherited;
 ShowMessage (‘Hi’);
end;

This is not the only choice. An alternative approach is to write a brand-new event
handler and not execute the code of the base class, as I’ve done for the third button
of the VFI example:

procedure TForm2.Button3Click(Sender: TObject);

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 107

begin
 ShowMessage (‘Hi’);
end;

Still another choice includes calling a base-class method after some custom code has
been executed, calling it when a condition is met, or calling the handler of a differ-
ent event of the base class, as I’ve done for the fourth button:

procedure TForm2.Button4Click(Sender: TObject);
begin
 inherited Button3Click (Sender);
 inherited;
end;

You probably won’t do this very often, but you must be aware that you can. Of
course, you can consider each method of the base form as a method of your form,
and call it freely. This example allows you to explore some features of visual form
inheritance, but to see its true power you’ll need to look at real-world examples
more complex than this book has room to explore. There is something else I want to
show you here: visual form polymorphism.

Polymorphic Forms

The problem is simple. If you add an event handler to a form and then change it in
an inherited form, there is no way to refer to the two methods using a common vari-
able of the base class, because the event handlers use static binding by default.

Confusing? Here is an example, which is intended for experienced Delphi program-
mers. Suppose you want to build a bitmap viewer form and a text viewer form in the
same program. The two forms have similar elements, a similar toolbar, a similar
menu, an OpenDialog component, and different components for viewing the data.
So you decide to build a base-class form containing the common elements and
inherit the two forms from it. You can see the three forms at design time in Figure
2.8.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

108 - Chapter 2: Object-Oriented Programming in Delphi

Figure 2.8:
The base-class form
and the two inherited
forms of the PoliForm
example at design time
(in Delphi 5)

Here is the textual description of the main form:

object ViewerForm: TViewerForm
 Caption = ‘Generic Viewer’
 Menu = MainMenu1
 object Panel1: TPanel
 Align = alBottom
 object ButtonLoad: TButton…
 object CloseButton: TButton…
 end
 object MainMenu1: TMainMenu
 object File1: TMenuItem...
 object Load1: TMenuItem...
 object N1: TMenuItem...
 object Close1: TMenuItem...
 object Help1: TMenuItem...
 object AboutPoliform1: TMenuItem...
 end
 object OpenDialog1: TOpenDialog...
end

The two inherited forms have only minor differences, but they feature a new compo-
nent, either an image viewer (TImage) or a text viewer (TMemo):

inherited ImageViewerForm: TImageViewerForm
 Caption = ‘Image Viewer’
 object Image1: TImage [0]
 Align = alClient
 end
 inherited OpenDialog1: TOpenDialog
 Filter = ‘Bitmap file|*.bmp|Any file|*.*’
 end
end
inherited TextViewerForm: TTextViewerForm

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 109

 Caption = ‘Text Viewer’
 object Memo1: TMemo [1]
 Align = alClient
 end
 inherited OpenDialog1: TOpenDialog
 Filter = ‘Text files|*.txt|Any file|*.*’
 end
end

The main form includes some common code. The Close button and the File Close
command call the Close method of the form. The Help About command shows a
simple message box. The Load button of the base form has the follow-ing code:

procedure TViewerForm.ButtonLoadClick(Sender: TObject);
begin
 ShowMessage (‘Error: File loading code missing’);
end;

The File Load command, instead, calls another method:

procedure TViewerForm.Load1Click(Sender: TObject);
begin
 LoadFile;
end;

This method is defined in the TViewerForm class as

public
 procedure LoadFile; virtual; abstract;

Because this is an abstract method, we will need to redefine it (and override it) in
the inherited forms:

type
 TImageViewerForm = class(TViewerForm)
 Image1: TImage;
 procedure ButtonLoadClick(Sender: TObject);
 public
 procedure LoadFile; override;
 end;

The code of this LoadFile method simply uses the OpenDialog1 component to ask
the user to select an input file and loads it into the image component:

procedure TImageViewerForm.LoadFile;
begin
 if OpenDialog1.Execute then
 Image1.Picture.LoadFromFile (
 OpenDialog1.Filename);
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

110 - Chapter 2: Object-Oriented Programming in Delphi

The other inherited class has similar code, loading the text into the memo compo-
nent. The project has one more form, a main form with two buttons, used to reload
the files in each of the viewer forms. The main form is the only form created by the
project when it starts. The generic viewer form is never created: it is only a generic
base class, containing common code and components of the two sub-classes. The
forms of the two subclasses are created in the OnCreate event handler of the main
form:

procedure TMainForm.FormCreate(Sender: TObject);
var
 I: Integer;
begin
 FormList [1] := TTextViewerForm.Create (Application);
 FormList [2] := TImageViewerForm.Create (Application);
 for I := 1 to 2 do
 FormList[I].Show;
end;

See Figure 2.9 for the resulting forms (with text and image already loaded in the
viewers). FormList is a polymorphic array of forms, declared in the TMainForm class
as:

private
 FormList: array [1..2] of TviewerForm;

Figure 2.9:
The PoliForm example
at run time. Image
from the original book.

Note that to make this declaration in the class, you need to add the Viewer unit (but
not the specific forms) in the uses clause of the interface portion of the main form.
The array of forms is used to load a new file in each viewer form when one of the
two buttons is pressed. The handlers of the two buttons’ OnClick events use differ-
ent approaches:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 2: Object-Oriented Programming in Delphi - 111

procedure TMainForm.ReloadButton1Click(Sender: TObject);
var
 I: Integer;
begin
 for I := 1 to 2 do
 FormList [I].ButtonLoadClick (self);
end;

procedure TMainForm.ReloadButton2Click(Sender: TObject);
var
 I: Integer;
begin
 for I := 1 to 2 do
 FormList [I].LoadFile;
end;

The second button simply calls a virtual method, and it will work without any prob-
lem. The first button calls an event handler and will always reach the generic
TFormView class (displaying the error message of its ButtonLoadClick method). This
happens because the method is static, not virtual.

Is there a way to make this approach work? Sure. Declare the ButtonLoadClick
method of the TFormView class as virtual, and declare it as overridden in each of the
inherited form classes, as we do for any other virtual method:

type
 TViewerForm = class(TForm)
 // components and plain methods...
 procedure ButtonLoadClick(Sender: TObject); virtual;
 public
 procedure LoadFile; virtual; abstract;
 end;
...
type
 TImageViewerForm = class(TViewerForm)
 Image1: TImage;
 procedure ButtonLoadClick(Sender: TObject); override;
 public
 procedure LoadFile; override;
 end;

Simple, isn’t it? This trick really works, although it is never mentioned in the Delphi
documentation. This ability to use virtual event handlers is what I actually mean by
visual form polymorphism.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

112 - Chapter 2: Object-Oriented Programming in Delphi

What’s Next?

In this chapter, we have discussed the foundations of object-oriented programming
in Object Pascal. We have considered the definition of classes, the use of methods,
encapsulation, inheritance, polymorphism, and run-time type information. This is
certainly a lot of information if you are a newcomer, but if you are fluent in another
OOP language or if you’ve already used past versions of Delphi, you should be able
to apply the topics covered in this chapter to your programming.

The next chapter continues our discussion of how Delphi implements OOP. It cov-
ers other language features, such as method pointers, class references, properties,
events, and exceptions, which are particularly important to support Delphi’s visual
development style. Chapter 3 also shows how to define your own components.
Chapter 4 then focuses on the structure of the VCL (Visual Component Library) and
discusses a few important classes.

Understanding the secrets of Object Pascal and the structure of the VCL is vital for
becoming an expert Delphi programmer. These topics form the foundation of work-
ing with the VCL; after exploring them in the next two chapters, we’ll finally go on
in Part II of the book to explore the development of real applications using all the
various components provided by Delphi.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 113

Chapter 3:

Advanced Object

Pascal

In the last chapter you’ve seen the foundations of the Object Pascal language used
by Delphi: classes, objects, methods, constructors, inheritance, late binding, and
run-time type information. Now we need to move one step further, by looking at
some more advanced features of the language116. Some of the extensions discussed
in this chapter, particularly the published keyword, properties, and events, are

116 Since the time this book was published, the Delphi language has been largely extended with
significant improvements to classes (with strict access specifiers, nested types, class data, class
properties, class constructors, and more), to the core language (inline routines, for-in loops,
records with methods and operators overloading), and later with features opening up for dif-
ferent programming models, like generics, anonymous methods, and extended RTTI. All of
these features build on top of the core capabilities of Delphi discussed in this book, which re-
main relevant.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

114 - Chapter 3: Advanced Object Pascal

strictly related to Delphi’s visual programming model. In fact, while discussing
these topics, I’ll show you how to build a simple custom component.

Some other elements of Object Pascal, such as exceptions and interfaces, are not so
closely related with the visual elements of Delphi. Still, it’s important to know them,
as well as a few other elements discussed in this chapter, to write correct code in
your Delphi applications.

Class Methods and Class Data

When you define a field in a class, you actually specify that the field should be added
to each object instance of that class. Each instance has its own independent repre-
sentation (referred to by the Self pointer). In some cases, however, it might be
useful to have a field that is shared by all the objects of a class.

Other object-oriented programming languages have formal constructs to express
this, such as static in C++. But in Object Pascal, we can simulate this feature using
the encapsulation provided at the unit level117. You can simply add a variable in the
implementation portion of a unit, to obtain a class variable—a single memory loca-
tion shared by all of the objects of a class.

If you need to access this value from outside the unit, you might use a method of the
class. However, this forces you to apply this method to one of the instances of the
class. An alternative solution is to declare a class method. A class method cannot
access the data of any single object but can be applied to a class as a whole rather
than to a particular instance. A class method is related to the class, not to its objects
or instances (like a static member function in C++ or Java118).

To declare a class method in Object Pascal, you simply add the class keyword in
front of it:

type
 MyClass = class

117 The lack of a formal declaration for class data has been filled with the “class var” construct,
which let's you define true class data and works properly in case on inheritance and for generic
classes, two areas in which the technique proposed in Mastering Delphi 5 falls short.

118 Another addition to the language, since the days this book was written, is the availability of
“static” class methods, which are very similar to their C++, Java, or C# counterparts. The dif-
ference with the standard class methods in Delphi is that these have a hidden self parameter
referring to the class, unlike static class methods which are for all purposes identical to global
functions (to the point that they can be used as Windows callback functions).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 115

 class function ClassMeanValue: Integer;

The use of class methods is not very common in Object Pascal, because you can
obtain the same effect by adding a procedure or function to a unit declaring a class.
Object-oriented purists, however, will definitely prefer the use of a class method
over a routine unrelated to a class. And actually the VCL uses class methods quite
often, although there are also many global subroutines. Notice that in Delphi, class
methods can also be virtual119, so they can be overridden and used to obtain poly-
morphism.

A Class with an Object Counter

When unit data is used to maintain general information related to the class (such as
the number of objects created or a list of these objects), you can use class methods
to access that data. That is exactly what the next example does.

The CountObj program is an extension of the CreateC example from the last chap-
ter. The form is still quite bare, but I’ve added some new code. In particular I’ve
added a brand-new class, which inherits from the TButton class of the VCL and adds
a new feature, namely object counting. Here is the declaration of the new class:

type
 TCountButton = class (TButton)
 constructor Create (AOwner: TComponent); override;
 destructor Destroy; override;
 class function GetTotal: Integer;
 end;

note What you see here is a perfectly working custom component. In this case, we won’t register it and
won’t add it to Delphi’s Components palette, even if this is not a particularly difficult operation.
Customizing existing components can be really that simple! We’ll cover this topic a little further
in this chapter and in much more detail in Chapter 13.

Every time an object is created, the program increments the counter before calling
the constructor of the base class. Every time an object is destroyed, the counter is
decreased:

constructor TCountButton.Create (AOwner: TComponent);
begin
 inherited Create (AOwner);

119 This is a unique feature across programming languages, which combines nicely with another
uncommon Delphi feature, class references.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

116 - Chapter 3: Advanced Object Pascal

 Inc (TotBtns);
end;

destructor TCountButton.Destroy;
begin
 Dec (TotBtns);
 inherited Destroy;
end;

The counter is a variable declared in the implementation portion of the unit and so
is not accessible outside the unit. Only the class method allows us to read its current
value. You can directly initialize this variable when it is defined:

implementation

var
 TotBtns: Integer = 0;

class function TCountButton.GetTotal: Integer;
begin
 Result := TotBtns;
end;

Now we can create objects of this new type by changing the code of the
FormMouseDown method slightly:

begin
 with TCountButton.Create (Self) do
 begin
 Parent := Self;
 // same code as before...

Every time a TCountButton object is created, the current number of objects is displayed
at the beginning of its caption. We can call the GetTotal class method for the newly cre-
ated object (notice that we are inside a with statement), just as we call any plain method.
However, we can call the same method without a valid object instance. This is what we
do when the interval of a timer I’ve added to the form elapses:

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 Caption := Format (‘CountObj: %d custom buttons’,
 [TCountButton.GetTotal]);
end;

The Caption property in this code refers to the caption of the form. You can see the
effect of this call in Figure 3.1. The drawback of this example is that we can only cre-
ate objects and never destroy them, so we see the total number of live objects always
increasing and never reducing its value.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 117

To see that the number of objects in existence goes down to zero, we can try to check
the number of objects after the form has been destroyed, along with the
TCountButton objects it owns. This is the code I’ve added at the end of the unit:

finalization
 MessageBox (0, PChar (Format (
 ‘There are %d CountButton objects’,
 [TCountButton.GetTotal])),
 ‘Finalization’, mb_OK);
end.

Figure 3.1:
The output the
CountObj example
after a couple of
TCountButton objects
have been created.
Image from the
original book.

note In the finalization code above I had to use a Windows API function (MessageBox) instead of
a Delphi procedure (such as ShowMessage). The reason is that the finalization code of the
unit is executed after some of the Delphi global objects have been destroyed, so it is better not to
rely on them.

The program simply displays a Windows message box indicating the number of
objects in existence, a value obtained by calling the GetTotal class method. If you
run the program, the number in the output is zero, although I have to say that this is
not guaranteed but is due to the order in which objects are destroyed. The compiler
uses a specific order for units initialization and finalization: starting with the project
source code, the units referred to are initialized before and finalized after the units
that refer to them. Typically, the project will initialize the Forms unit, which in turn
initializes other VCL units, and then it initializes your form unit, which will first ini-
tialize the units describing the components you use (that is, those in the uses
statement).

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

118 - Chapter 3: Advanced Object Pascal

However, at first sight, it is not simply to determine when in this sequence the main
form of the application and the components it owns are going to be destroyed. To
test that everything actually works, I’ve added the same MessageBox call code in the
handler of the OnDestroy event of the form, triggered before the form is destroyed.

If you run the program, you’ll see that when the FormDestroy method is executed,
all of the objects you’ve created still exist; but right after that, the objects are
destroyed and the count decreases to zero. We’ll see a more complete example, in
which we’ll destroy the buttons at run time, after we discuss method pointers in the
following section “The Updated Counter Example.”

Method Pointers

Another Delphi addition to the Object Pascal language is the concept of method
pointers. A method pointer type is like a procedural type, but one that refers to a
method120. Technically, a method pointer type is a procedural type that has an
implicit Self parameter. In other words, a method pointer stores two addresses: the
address of the method code and the address of an object instance (data). The
address of the object instance will show up as Self inside the method body when
the method code is called using this method pointer. This explains the definition of
Delphi’s generic TMethod type, a record with a Code field and a Data field.

The declaration of a method pointer type is similar to that of a procedural type,
except that it has the keywords of object at the end of the declaration:

type
 IntProceduralType = procedure (Num: Integer);
 IntMethodPointerType = procedure (Num: Integer) of object;

When you have declared a method pointer, such as the one above, you can declare a
variable of this type and assign to it a compatible method of another object. What’s a
compatible method? One that has the same parameters as those requested by the
method pointer type, such as a single Integer parameter in the example above.

At first glance, the goal of this technique may not be clear, but this is one of the cor-
nerstones of Delphi component technology. The secret is in the word delegation. If
someone has built an object that has some method pointers, you are free to change
the object’s behavior simply by assigning new methods to the pointers. Does this
sound familiar? It should.

120 The language now offers a different, related feature: anonymous methods. Methods pointers
remain the foundation for event handlers.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 119

When you add an OnClick event handler for a button, Delphi does exactly that. The
button has a method pointer, named OnClick, and you can directly or indirectly
assign a method of the form to it. When a user clicks the button, this method is exe-
cuted, even if you have defined it inside another class (typically, in the form).

What follows is a listing that sketches the code actually used by Delphi to define the
event handler of a button component and the related method of a form:

type
 TNotifyEvent = procedure (Sender: TObject) of object;

 MyButton = class
 OnClick: TNotifyEvent;
 end;

 TForm1 = class (TForm)
 procedure Button1Click (Sender: TObject);
 Button1: MyButton;
 end;

var
 Form1: TForm1;

Now inside a procedure, you can write

MyButton.OnClick := Form1.Button1Click;

The only real difference between this code fragment and the code of the VCL is that
OnClick is a property name, and the actual data it refers to is called FOnClick. An
event that shows up in the Events page of the Object Inspector, in fact, is nothing
more than a property of a method pointer type.

This means, for example, that you can dynamically modify the event handler
attached to a component at design time or even build a new component at run time
and assign an event handler to it. For example, we could add to the form of the
Counter example the following method:

procedure TForm1.ButtonClick (Sender: TObject);
begin
 ShowMessage (‘Button pressed’);
end;

and then write for each newly created button the following code:

with TCountButton.Create (Self) do
begin
 OnClick := ButtonClick;

With this code each of the buttons will react to a click of the mouse by showing a
common message, because all components share the same handler. However, we

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

120 - Chapter 3: Advanced Object Pascal

can use the Sender parameter of the event to customize it for each button. This is
what I’ll do in the example discussed in the sidebar “The Updated Counter Exam-
ple,” which is an even more complete extension of the Counter program.

The Updated Counter Example

Now that we know how to use method pointers, we can update the CountObj exam-
ple by using them. The name of the new example is CountOb2. Its purpose is to add
a handler for the OnKeyPress event of the new objects a user creates dynamically.
Add the following code in the form class declaration:

procedure ButtonKeyPress(Sender: TObject; var Key: Char);

The parameters are those required for an event of this kind. If you select the
OnKeyPress event for a component of a form and press the F1 key to invoke the Help
file, you’ll find the following declaration:

TKeyPressEvent = procedure (Sender: TObject; var Key: Char) of object;
property OnKeyPress: TKeyPressEvent;

As you can see in this last line, the event is based on the TKeyPressEvent method
pointer type, listed in the line before. Therefore, we need to write a method that
complies with this method pointer type, like the one presented in the previous sec-
tion.

To connect this method with the OnKeyPress event of the buttons we create dynami-
cally, we need just one line of code in the FormMouseDown method:

with TCountButton.Create (Self) do
begin
 ...
 // set the event handler
 OnKeyPress := ButtonKeyPress;
 // grab the input focus
 SetFocus;
end;

The second line of code moves the input focus to the newly created button, so that
subsequent keyboard input will be directed to it.

Now we can write the code of the ButtonKeyPress method. Press the Ctrl+Shift+C
key combination to activate Delphi’s Code Completion, and then fill the method
declaration with some actual code. In this example, we should destroy the button
when the user presses the Backspace key. Because keyboard input is sent to the con-
trol that has the input focus, you can simply click a button or use the Tab key to
select the button you want to destroy; then press the Backspace key.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 121

The first approach I tried in developing this application was simply to destroy the
object passed as Sender parameter, which is the object that received the event:

procedure TForm1.ButtonKeyPress(Sender: TObject;
 var Key: Char);
begin
 if Key = #8 then
 Sender.Free
end;

This code generates an exception. We cannot destroy an object while we are pro-
cessing one of its events. Instead, we must delay the object destruction. There are
basically two approaches. We can save the object we want to destroy in a private
field of the form class and later destroy it, inside some code periodically activated by
a timer. You can find this code in the CountOld example. Notice that the use of the
timer causes a little flaw in the program: if two backspace keys are processed before
the timer fires, only one button is going to be destroyed.

The second approach, implemented in the CountOb2 example, is to send a custom
Windows message (such as wm_User) to the form using the PostMessage API func-
tion. This introduces a delay, because the message has to reach the window and will
be retrieved and elaborated after the current event handler has completed its execu-
tion. To follow this second approach, we can write the following handler for the
OnKeyPress event of each new button:

procedure TForm1.ButtonKeyPress(Sender: TObject;
 var Key: Char);
begin
 // if user pressed backspace
 if Key = #8 then
 begin
 // set this as the object to destroy
 ToDestroy := Sender as TButton;
 // post message to perform destruction
 PostMessage (Handle, wm_User, 0, 0);
 end;
end;

In this code ToDestroy is a private field of the form of the TButton data type. This
field is automatically set to nil (no object to destroy) when the form is first created
(this is the default initialization for class fields). When the user presses the
Backspace key, the current button object (the Sender of the ButtonKeyPress
method) is stored in the ToDestroy field. At this point, the PostMessage Windows
API call sends a message to the current window (identified by the value of its Handle
property). The handler of this message is defined in the form class as follows:

type

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

122 - Chapter 3: Advanced Object Pascal

 TForm1 = class(TForm)
 ...
 private
 ToDestroy: TButton;
 public
 procedure WmUser (var Msg: TMessage); message wm_User;

Now we can look at the code of this method, in which the program can double-check
whether there is a button to destroy before destroying it and setting it to nil:

procedure TForm1.WmUser (var Msg: TMessage);
begin
 // if there is an object to destroy
 if Assigned (ToDestroy) then
 begin
 // moves the input focus to the next control
 SelectNext (ToDestroy, True, True);
 // destroy the object and set the reference to nil
 FreeAndNil (ToDestroy);
 end;
 // update the form caption
 Caption := Format (‘CountObj: %d custom buttons’,
 [TCountButton.GetTotal]);
end;

To make the program behave a little better before destroying an object, I moved the
input focus to the next control by calling the SelectNext method. Then the program
calls the FreeAndNil procedure, which calls the Free method of the object, which in
turn invokes the destructor Destroy. Because the destructor is virtual, the program
invokes the overridden destructor of the TCountButton class, which decrements the
object counter. For this reason I’ve placed the code that destroys the object before
the code that updates the form caption. Before calling Free, FreeAndNil sets the
ToDestroy reference to nil.

More about freeing objects and memory management is in the section “Objects and
Memory,” later in this chapter.

Class References

Having looked at several topics related to methods, we can now move on to the topic
of class references and extend our example of dynamically creating components
even further. The first point to keep in mind is that a class reference isn’t a class, it
isn’t an object, and it isn’t a reference to an object; it is simply a reference to a class
type.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 123

A class reference type determines the type of a class reference variable. Sounds con-
fusing? A few lines of code might make this a little clearer. Suppose you have
defined the class TMyClass. You can now define a new class reference type, related
to that class:

type
 TMyClassRef = class of TMyClass;

Now you can declare variables of both types. The first variable refers to an object,
the second to a class:

var
 AClassRef: TMyClassRef;
 AnObject: TMyClass;
begin
 AClassRef := TMyClass;
 AnObject := TMyClass.Create;

You may wonder what class references are used for. In general, class references
allow you to manipulate a class data type at run time. You can use a class reference
in any expression where the use of a data type is legal. Actually, there are not many
such expressions, but the few cases are interesting. The simplest case is the creation
of an object. We can rewrite the two lines above as follows:

AClassRef := TMyClass;
AnObject := AClassRef.Create;

This time I’ve applied the Create constructor to the class reference instead of to an
actual class; I’ve used a class reference to create an object of that class.

note Class references remind us of the concept of metaclass available in other OOP languages. In
Object Pascal, however, a class reference is not itself a class but only a type pointer. Therefore, the
analogy with metaclasses (classes describing other classes) is a little misleading. Actually,
TMetaclass is also the term used in C++Builder.

Class reference types wouldn’t be as useful if they didn’t support the same type-
compatibility rule that applies to class types. When you declare a class reference
variable, such as MyClassRef above, you can then assign to it that specific class and
any subclass. So if MyNewClass is a subclass of my class, you can also write

AClassRef := MyNewClass;

Delphi declares a lot of class references in the run-time library and the VCL, includ-
ing the following:

TClass = class of TObject;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

124 - Chapter 3: Advanced Object Pascal

ExceptClass = class of Exception;
TComponentClass = class of TComponent;
TControlClass = class of TControl;
TFormClass = class of TForm;

In particular, the TClass class reference type can be used to store a reference to any
class you write in Delphi, because every class is ultimately derived from TObject.
The TFormClass reference, instead, is used in the source code of most Delphi
projects. The CreateForm method of the Application object, in fact, requires as
parameter the class of the form to create:

Application.CreateForm(TForm1, Form1);

The first parameter is a class reference, the second is a variable that stores a refer-
ence to the created object instance.

Finally, when you have a class reference you can apply to it the class methods of the
related class. Considering that each class inherits from TObject, you can apply to
each class reference some of the methods of TObject, including InstanceSize,
ClassName, ParentClass, and InheritsFrom. I’ll discuss these class methods and
other methods of TObject class in the next chapter.

Creating Components Using Class References

What is the practical use of class references in Delphi? Being able to manipulate a
data type at run time is a fundamental element of the Delphi environment. When
you add a new component to a form by selecting it from the Component Palette, you
select a data type and create an object of that data type. (Actually, that is what Del-
phi does for you behind the scenes.)

To give you a better idea of how class references work, I’ve built an example named
ClassRef. The form displayed by this example is quite simple. It has three radio but-
tons, placed inside a panel in the upper portion of the form. When you select one of
these radio buttons and click the form, you’ll be able to create new components of
the three types indicated by the button labels: radio buttons, push buttons, and edit
boxes.

To make this program run properly, you need to change the names of the three com-
ponents. The form must also have a class reference field:

private
 ClassRef: TControlClass;
 Counter: Integer;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 125

The first field stores a new data type every time the user clicks one of the three radio
buttons. Here is one of the three methods:

procedure TForm1.RadioButtonRadioClick(Sender: TObject);
begin
 ClassRef := TRadioButton;
end;

The other two radio buttons have OnClick event handlers similar to this one, assign-
ing the value TEdit or TButton to the ClassRef field. A similar assignment is also
present in the handler of the OnCreate event of the form, used as an initialization
method.

The interesting part of the code is executed when the user clicks the form. Again,
I’ve chosen the OnMouseDown event of the form to hold the position of the mouse
click:

procedure TForm1.FormMouseDown(
 Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
var
 NewCtrl: TControl;
 MyName: String;
begin
 // create the control
 NewCtrl := ClassRef.Create (Self);
 // hide it temporarily, to avoid flickering
 NewCtrl.Visible := False;
 // set parent and position
 NewCtrl.Parent := Self;
 NewCtrl.Left := X;
 NewCtrl.Top := Y;
 // compute the unique name (and caption)
 Inc (Counter);
 MyName := ClassRef.ClassName + IntToStr (Counter);
 Delete (MyName, 1, 1);
 NewCtrl.Name := MyName;
 // now show it
 NewCtrl.Visible := True;
end;

The first line of the code for this method is the key. It creates a new object of the
class data type stored in the ClassRef field. We accomplish this simply by applying
the Create constructor to the class reference. Now you can set the value of the
Parent property, set the position of the new component, give it a name (which is
automatically used also as Caption or Text), and make it visible.

Notice in particular the code used to build the name; to mimic Delphi’s default
naming convention, I’ve taken the name of the class with the expression
ClassRef.ClassName, using a class method of the TObject class. Then I’ve added a

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

126 - Chapter 3: Advanced Object Pascal

number at the end of the name and removed the initial letter of the string. For the
first radio button, the basic string is TRadioButton, plus the 1 at the end, and minus
the T at the beginning of the class name—RadioButton1. Sounds familiar?

You can see two examples of the output of this program in Figure 3.2. Notice that
the naming is not exactly the same as used by Delphi. Delphi uses a separate
counter for each type of control; I’ve used a single counter for all of the components.
If you place a radio button, a push button, and an edit box in a form of the ClassRef
example, their names will be RadioButton1, Button2, and Edit3.

Figure 3.2:
Two examples of the
output of the ClassRef
example, in two
different windows

Objects and Memory

Memory management in Delphi is subject to two simple rules: You must destroy
every object you create, and you must destroy each object only once. Delphi sup-
ports three types of memory management for dynamic elements (that is, elements
not in the stack and the global memory area):

· Every time you create an object, you should also free it. If you fail to do so, the
memory used by that object won’t be released for other objects, until the pro-
gram terminates.

· When you create a component, you can specify an owner component, passing the
owner to the component constructor. The owner component (often a form)

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 127

becomes responsible for destroying all the objects it owns. In other words, when
you free the form, it frees all the components it owns. So, if you create a compo-
nent and give it an owner, you don’t have to remember to destroy it.

· When you allocate memory for strings, dynamic arrays, and objects referenced
by interface variables (discussed at the end of this chapter), Delphi automatically
frees the memory when the reference goes out of scope. You don’t need to free a
string: when it becomes unreachable, its memory is released.

We’ll see how the issue of memory management affects actual examples when dis-
cussing applications with multiple forms in Part II of the book.

Destroying Objects Only Once

Another problem is that if you call the destructor of an object twice, you get an
error. A destructor is a method that de-allocates an object’s memory. We can write
code for a destructor, generally overriding the default Destroy destructor, to let the
object execute some code before it is destroyed. In your code, of course, you don’t
have to handle memory de-allocation—this is something Delphi does for you.

Destroy is simply a virtual destructor of the TObject class. Most of the classes that
require custom clean-up code when the objects are destroyed override this virtual
method. The reason you should never define a new destructor is that objects are
usually destroyed by calling the Free method, and this method calls the Destroy vir-
tual destructor (possibly the overridden version) for you.

As I’ve just mentioned, Free is simply a method of the TObject class, inherited by all
other classes. The Free method basically checks whether the current object (Self) is
not nil before calling the Destroy virtual destructor.

note You might wonder why you can safely call Free if the object reference is nil, but you can’t call
Destroy. The reason is that Free is a known method at a given memory location, whereas the
virtual function Destroy is determined at run time by looking at the type of the object, a very
dangerous operation if the object doesn’t exist any more.

Here is its pseudo-code (the actual code in the RTL source code files is written in
assembler):

procedure TObject.Free;
begin
 if Self <> nil then
 Destroy;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

128 - Chapter 3: Advanced Object Pascal

end;

Next, we can turn our attention to the Assigned function. When we pass a pointer to
this function, it simply tests whether the pointer is nil. So the following two state-
ments (from the CountOb2 example) are equivalent, at least in most cases:

if Assigned (ToDestroy) then ...
if ToDestroy <> nil then ...

Notice that these statements test only whether the pointer is not nil; they do not
check whether it is a valid pointer. If you write the following code

ToDestroy.Free;
if ToDestroy <> nil then
 ToDestroy.DoSomething;

the test will be satisfied, and you’ll get an error on the line with the call to the
method of the object. It is important to realize that calling Free doesn’t set the
object to nil.

Automatically setting an object to nil is not possible. You might have several refer-
ences to the same object, and Delphi doesn’t track them. At the same time, within a
method (such as Free) we can operate on the object, but we know nothing about the
object reference—the memory address of the variable we’ve used to call the method.
In other words, inside the Free method or any other method of a class, we know the
memory address of the object (Self), but we don’t know the memory location of the
variable referring to the object, such as ToDestroy. Therefore, the Free method can-
not affect the ToDestroy variable.

However, when we call an external procedure, such as FreeAndNil in Delphi 5, the
procedure knows about the object reference, passed as a parameter, and can act on
it. Here is Delphi code for FreeAndNil121:

procedure FreeAndNil(var Obj);
var
 P: TObject;
begin
 P := TObject(Obj);
 // clear the reference before destroying the object
 TObject(Obj) := nil;
 P.Free;
end;

To sum things up, here are a couple of guidelines:

121 The code today is slightly different, as it assigns the nil value before freeing the object, to be
safe in multi-threaded applications.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 129

· Always call Free to destroy objects, instead of calling the Destroy destructor.

· Use FreeAndNil, or set object references to nil after calling Free, unless the ref-
erence is going out of scope immediately afterward.

Passing and Copying Objects

Another important element to discuss is passing objects as parameters or assigning
an object to another one. If you write

var
 Button2: TButton;
begin
 Button2 := Button1;

you don’t create a new object but rather a new reference to the same object in mem-
ory. There is only one object in memory, and both the Button1 and Button2
variables refer to it. The same happens if you pass an object as parameter to a func-
tion: you don’t create a new object, but you refer to the same one in two different
places of the code.

For example, by writing this procedure and calling it as follows, you’ll modify the
caption of Button1, or Button if you prefer:

procedure ChangeCaption (Button: TButton; Text: string);
begin
 Button.Caption := Text;
end;

// call...
ChangeCaption (Button1, ‘Hello’)

What if you need to create a new object, instead? You’ll basically have to create it
and then copy each of the relevant properties. Some classes, notably some VCL
classes derived from TPersistent, define an Assign method to copy the data of an
object. For example, you can write

ListBox1.Items.Assign (Memo1.Lines);

Even if you assign those properties directly, Delphi will execute a similar code for
you. In fact, the SetItems method connected with the items property of the list box
calls the Assign method of the TStringList class representing the actual items of
the listbox.

You can use complex techniques based on streaming to clone a component in mem-
ory, but most of the time, creating a new object of the same type as the current one

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

130 - Chapter 3: Advanced Object Pascal

and assigning a few properties to it might do the trick. To do this, you can ask the
component its class and then use the class reference to create a new object of that
type. Here is the code (extracted from the ObjClone example), which clones the
Sender object:

procedure TForm1.ClickComp(Sender: TObject);
var
 ControlText: string;
begin
 with TControlClass (Sender.ClassType).Create (Self) do
 begin
 Parent := (Sender as TControl).Parent;
 Left := (Sender as TControl).Left + 10;
 Top := (Sender as TControl).Top + 10;
 SetLength (ControlText, 50);
 (Sender as TControl).GetTextBuf(
 PChar(ControlText), 50);
 ControlText := PChar(ControlText) + ‘ *’;
 SetTextBuf (PChar (ControlText));
 end;
end;

This method takes the class of the Sender object, the component clicked by the user,
and calls the Create constructor. To call the Create constructor of the TControl
class instead of calling that of the TObject class, the program has to cast the class
reference to the proper type. When we cast to TControlClass and then call Create,
the result is an object of class TControl. This object is used inside the with state-
ment, and the program sets its Parent, Left, and Top properties using information
extracted from the Sender control.

At the end of the with statement, the program extracts the text of the Sender object,
using the GetTextBuf method, which is available for every control. In fact, the Text
and Caption properties aren’t defined inside the TControl class. After adding an
asterisk to the string, the program uses the string as the new text of the control,
again calling the SetTextBuf method of the TControl class.

You can see the effect of cloning on some of the controls in Figure 3.3. The ObjClone
program is also capable of cloning an entire form, using a similar technique.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 131

Figure 3.3:
The ObjClone example.
Image from the
original book.

Handling Exceptions

The last interesting feature of Object Pascal we will cover in this chapter is excep-
tion handling. The idea of exceptions is to make programs more robust by adding
the capability of handling software or hardware errors in a simple and uniform way.
A program can survive such errors or terminate gracefully, allowing the user to save
data before exiting. Exceptions allow you to separate the error handling code from
your normal code, instead of intertwining the two. You end up writing code that is
more compact and less cluttered by maintenance chores unrelated to the actual pro-
gramming objective.

Another benefit is that exceptions define a uniform and universal error-reporting
mechanism, which is also used by Delphi components. At run time, Delphi raises
exceptions when something goes wrong. If your code has been written properly, it
can acknowledge the problem and try to solve it; otherwise, the exception is passed
to its calling code, and so on. Ultimately, if no part of your code handles the excep-
tion, Delphi handles it, by displaying a standard error message and trying to
continue the program.

The whole mechanism is based on four keywords:

· try delimits the beginning of a protected block of code.

· except delimits the end of a protected block of code and introduces the excep-
tion-handling statements, with this syntax form:

on exception-type do statement

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

132 - Chapter 3: Advanced Object Pascal

· finally is used to specify blocks of code that must always be executed, even
when exceptions occur.

· raise is the statement used to generate an exception. Most exceptions you’ll
encounter in your Delphi programming will be generated by the system, but you
can also raise exceptions in your own code when it discovers invalid or inconsis-
tent data at run time. The raise keyword can also be used inside a handler to re-
raise an exception; that is, to propagate it to the next handler.

Here is an example of a simple protected block:

function DivideTwicePlusOne (A, B: Integer): Integer;
begin
 try
 // error if B equals 0
 Result := A div B;
 // do something else... skip if exception is raised
 Result := Result div B;
 Result := Result + 1;
 except
 on EDivByZero do
 Result := 0;
 end;
end;

In the exception-handling statement, we catch the EDivByZero exception, which is
defined by Delphi. There are a number of these exceptions referring to run-time
problems (such as a division by zero or a wrong dynamic cast), to Windows resource
problems (such as out-of-memory errors), or to component errors (such as a wrong
index). Programmers can also define their own exceptions; simply create a new sub-
class of the default exception class or one of its sub-classes:

type
 EArrayFull = class (Exception);

When you add a new element to an array that is already full (probably because of an
error in the logic of the program), you can raise the corresponding exception by cre-
ating an object of this class:

if MyArray.Full then
 raise EArrayFull.Create (‘Array full’);

This Create method (inherited from the Exception class) has a string parameter to
describe the exception to the user. You don’t need to worry about destroying the
object you have created for the exception, because it will be deleted automatically by
the exception-handler mechanism.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 133

The code presented in the previous excerpts is part of a sample program, called
Except. Some of the routines have actually been slightly modified, as in the follow-
ing DivideTwicePlusOne function:

function DivideTwicePlusOne (A, B: Integer): Integer;
begin
 try
 // error if B equals 0
 Result := A div B;
 // do something else... skip if exception is raised
 Result := Result div B;
 Result := Result + 1;
 except
 on EDivByZero do
 begin
 Result := 0;
 MessageDlg (‘Divide by zero corrected’,
 mtError, [mbOK], 0);
 end;
 on E: Exception do
 begin
 Result := 0;
 MessageDlg (E.Message,
 mtError, [mbOK], 0);
 end;
 end; // end except
end;

note When you run a program in the debugger, the debugger will stop the program by default when an
exception is encountered. This is normally what you want, of course, because you’ll know where
the exception took place and can see the call of the handler step-by-step. In the case of the Except
test program, however, this behavior will confuse the program’s execution. In fact, even if the
code is prepared to properly handle the exception, the debugger will stop the program execution
at the source code line closest to where the exception was raised. Then, moving step-by-step
through the code, you can see how it is handled. If you just want to let the program run when the
exception is properly handled, run the program with the “Run without debugging” menu com-
mand.

In this code there are two different exception handlers after the same try block. You
can have any number of these handlers, which are evaluated in sequence. For this
reason, you need to place the broader handlers (the handlers of the ancestor
Exception classes) at the end.

In fact, using a hierarchy of exceptions, a handler is also called for the subclasses of
the type it refers to, as any procedure will do. This is polymorphism in action again.
But keep in mind that using a handler for every exception, such as the one above, is
not usually a good choice. It is better to leave unknown exceptions to Delphi. The
default exception handler in the VCL displays the error message of the exception

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

134 - Chapter 3: Advanced Object Pascal

class in a message box, and then resumes normal operation of the program. You can
actually modify the normal exception handler with the Application.OnException
event, as demonstrated in the ErrorLog example later in this chapter.

Another important element of the code above is the use of the exception object in
the handler (see on E: Exception do). The object E of class Exception receives the
value of the exception object passed by the raise statement. When you work with
exceptions, remember this rule: You raise an exception by creating an object and
handle it by indicating its type. This has an important benefit, because as we have
seen, when you handle a type of exception, you are really handling exceptions of the
type you specify as well as each descendant type.

Delphi defines a hierarchy of exceptions, and you can choose to handle each specific
type of exception in a different way or handle groups of them together. You can find
a list of the Delphi exception classes on www.marcocantu.com/d5ref122.

Exceptions and the Stack

When the program raises an exception and the current routine doesn’t handle it,
what happens to your function call stack? The program starts searching for a han-
dler among the functions already on the stack. This means that the program exits
from existing functions and does not execute the remaining statements. To under-
stand how this works, you can either use the debugger or add a number of simple
message boxes to the code, to be informed when a certain source code statement is
executed. In the next example, Except2, I’ve followed this second approach.

For example, when you press the Raise2 button in the form of the Except2 example,
an exception is raised and not handled, so that the final part of the code will never
be executed:

procedure TForm1.ButtonRaise2Click(Sender: TObject);
begin
 // unguarded call
 AddToArray (24);
 ShowMessage (‘Program never gets here’);
end;

Notice that this method calls the AddToArray procedure, which invariably raises the
exception. When the exception is handled, the flow starts again after the handler
and not after the code that raises the exception. Consider this modified method:

122 That page and that list don’t exists any more.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

http://www.marcocantu.com/d5ref.%5Bcheck

Chapter 3: Advanced Object Pascal - 135

procedure TForm1.ButtonRaise1Click(Sender: TObject);
begin
 try
 // this procedure raises an exception
 AddToArray (24);
 ShowMessage (‘Program never gets here’);
 except
 on EArrayFull do
 ShowMessage (‘Handle the exception’);
 end;
 ShowMessage (‘ButtonRaise1Click call completed’);
end;

The last ShowMessage call will be executed right after the second one, while the first
is always ignored. I suggest that you run the program, change its code, and experi-
ment with it to fully understand the program flow when an exception is raised.

The Finally Block

There is a fourth keyword for exception handling that I’ve mentioned but haven’t
used so far, finally. A finally block is used to perform some actions (usually
cleanup operations) that should always be executed. In fact, the statements in the
finally block are processed whether or not an exception takes place. The plain code
following a try block, instead, is executed only if an exception was not raised or if it
was raised and handled. In other words, the code in the finally block is always exe-
cuted after the code of the try block, even if an exception has been raised.

Consider this method (part of the Except3 example), which performs some time-
consuming operations and uses the hourglass cursor to show the user that it’s doing
something:

procedure TForm1.BtnWrongClick(Sender: TObject);
var
 I, J: Integer;
begin
 Screen.Cursor := crHourglass;
 J := 0;
 // long (and wrong) computation...
 for I := 1000 downto 0 do
 J := J + J div I;
 MessageDlg (‘Total: ‘ + IntToStr (J),
 mtInformation, [mbOK], 0);
 Screen.Cursor := crDefault;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

136 - Chapter 3: Advanced Object Pascal

Because there is an error in the algorithm (as the variable I can reach a value of 0
and is also used in a division), the program will break, but it won’t reset the default
cursor. This is what a try-finally block is for:

procedure TForm1.BtnTryFinallyClick(Sender: TObject);
var
 I, J: Integer;
begin
 Screen.Cursor := crHourglass;
 J := 0;
 try
 // long (and wrong) computation...
 for I := 1000 downto 0 do
 J := J + J div I;
 MessageDlg (‘Total: ‘ + IntToStr (J),
 mtInformation, [mbOK], 0);
 finally
 Screen.Cursor := crDefault;
 end;
end;

When the program executes this function, it always resets the cursor, whether an
exception (of any sort) occurs or not. The drawback to this version of the function is
that it doesn’t handle the exception. Strangely enough, this is not possible. A try
block can be followed by either an except or a finally statement but not both of
them at the same time. The typical solution is to use two nested try blocks, associat-
ing the internal one with a finally statement and the external one with an except
statement or vice versa, as the situation requires. Here is the code of this third but-
ton of the Except3 example:

procedure TForm1.BtnTryTryClick(Sender: TObject);
var
 I, J: Integer;
begin
 Screen.Cursor := crHourglass;
 J := 0;
 try try
 // long (and wrong) computation...
 for I := 1000 downto 0 do
 J := J + J div I;
 MessageDlg (‘Total: ‘ + IntToStr (J),
 mtInformation, [mbOK], 0);
 finally
 Screen.Cursor := crDefault;
 end;
 except
 on E: EDivByZero do
 begin
 // re-raise the exception with a new message
 raise Exception.Create (‘Error in Algorithm’);

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 137

 end;
 end;
end;

You should always protect blocks with the finally statement, to avoid resource or
memory leaks in case an exception is raised. Handling the exception is probably less
important, since Delphi can survive most of them.

Logging Errors

Most of the time, you don’t know which operation is going to raise an exception,
and you cannot (and should not) wrap each and every piece of code in a try-except
block. An alternative approach is to let Delphi handle all the exceptions and pass
them all to you, by handling the OnException event of the global Application
object. In early versions of Delphi you could handle this event by writing a proper
method and connecting in the code. Now Delphi provides the ApplicationEvents
component we can use to build this example. (More on the global Application
object and the ApplicationEvents component in Chapter 6).

In the ErrorLog example, I’ve added to the main form a copy of the Application-
Events component, and added a handler for its OnException event:

procedure TFormLog.LogException(Sender: TObject; E: Exception);
var
 Filename: string;
 LogFile: TextFile;
begin
 // prepares log file
 Filename := ChangeFileExt (Application.Exename, ‘.log’);
 AssignFile (LogFile, Filename);
 if FileExists (FileName) then
 Append (LogFile) // open existing file
 else
 Rewrite (LogFile); // create a new one

 // write to the file and show error
 Writeln (LogFile, DateTimeToStr (Now) + ‘:’ + E.Message);
 if not CheckBoxSilent.Checked then
 Application.ShowException (E);

 // close the file
 CloseFile (LogFile);
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

138 - Chapter 3: Advanced Object Pascal

note The ErrorLog example uses the simple text file support provided by the traditional Turbo Pascal
TextFile data type. You can assign a text file variable to an actual file and then simply read or
write it. You can find more on TextFile operations in the book Essential Pascal (available on
www.marcocantu.com/epascal).123

In the global exceptions handler, you can write to the log, for example, the date and
time of the event, and also decide whether to show the exception as Delphi usually
does (executing the ShowException method of the TApplication class). In fact, Del-
phi by default executes ShowException only if there is no OnException handler
installed.

Finally, remember to close the file, flushing the buffers, every time the exception is
handled or when the program terminates. I’ve chosen the first approach to avoid
keeping the log file open for the lifetime of the application, potentially making it dif-
ficult to work on it. You can accomplish this in the OnDestroy event handler of the
form:

procedure TFormLog.FormDestroy(Sender: TObject);
begin
 CloseFile (LogFile);
end;

The form of the program includes a check box to determine its behavior and two
buttons generating simple exceptions. In Figure 3.4, you can see the ErrorLog pro-
gram running and a sample exceptions log open in Notepad.

Figure 3.4:
The ErrorLog example
and the log it produces.
Image from the
original book.

123 Using the very old TextFile type is not recommended at all, however the code does work today
in Delphi 12.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 139

The published Access Specifier

Along with the public, protected, and private access directives, you can use a
fourth one, called published. A published field or method is available not only at
run time but also at design time. In fact, every component in the Delphi Compo-
nents Palette has a published interface that is used by some Delphi tools, in
particular the Object Inspector. A regular use of published fields is important when
you write components. Usually, the published part of a component contains no
fields or methods but has a new element of the language: properties.

When Delphi generates a form, it places the definitions of its components and
methods in the first portion of its definition, before the public and private key-
words. These fields and methods of the initial portion of the class are published.
The default is published when no special keyword is added before an element of a
component class.

note To be more precise, published is the default keyword only if the class was compiled with the
$M+ compiler directive or is descended from a class compiled with $M+. As this directive is used in
the TPersistent class, most classes of the VCL and all of the component classes default to
published. However, non-component classes in Delphi (such as TStream and TList) are com-
piled with $M- and default to public visibility.

The methods assigned to any event should be published methods, and the fields
corresponding to your components in the form should be published to be automati-
cally connected with the objects described in the DFM file and created along with
the form. Only the components and methods in the initial published part of your
form declaration can show up in the Object Inspector (in the list of components of
the form or in the list of the available methods displayed when you select the drop-
down list for an event).

Defining Properties

Now that we have looked at the published keyword, we can start focusing on other
extensions of the Object Pascal language specifically tailored for visual, component-
based programming. This section covers properties; later on, we’ll look at events
and build a first simple component.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

140 - Chapter 3: Advanced Object Pascal

Properties are attributes that determine the status and behavior of an object. A
property is basically a name that is mapped to some read and write methods or that
accesses some data directly. In other words, every time you read the value of a prop-
erty or change it, you might be accessing a field (even a private one) or calling a
method. For example, here is the definition of a property for a date object:

property Month: Integer
 read FMonth write SetMonth;

To access the value of the Month property, this code has to read the value of the pri-
vate field FMonth, while to change the value it calls the method SetMonth. Different
combinations are possible (for example, we could also use a method to read the
value or directly change a field in the write directive), but the use of a method to
change the value of a property is very common. Here are some alternatives:

property Month: Integer read GetMonth write SetMonth;
property Month: Integer read FMonth write Fmonth;

note When you write code that accesses a property, it is important to realize that a method might be
called. The issue is that some of these methods take some time to execute; they can also produce a
number of side effects, often including a (slow) repainting of the component on the screen.
Although side effects of properties are seldom documented, you should be aware that they exist,
particularly when you are trying to optimize your code.

The write directive of a property can also be omitted, making it a read-only prop-
erty. Technically you can also omit the read directive and define a write-only
property, but that doesn’t make much sense. Another distinction is between design-
time properties and run-time only properties. Design-time properties are declared
in a published section of the class declaration. Anything that is declared in the
public section is not available at design time—it is run-time only. All the read-only
properties must be defined in the public section (or in the protected or private
sections) because published properties must be read-write.

To see the value of a published property at design time or to change it, you can use
the Object Inspector. This is the tool that Delphi’s visual programming environment
provides to give access to properties. At run time, you can access any public or
published property by reading or writing its value.

note Remember that the Object Inspector lists only the design-time properties of a component, omit-
ting the run-time only properties. Also, in Delphi 5 some properties can be hidden, if their
category has been filtered out. For a complete list of the properties of a component, refer to the
Delphi help files, not to the Object Inspector.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 141

To summarize, along with the properties listed in the Object Inspector (design-
time), there are other properties (run-time only), some of which can only be read
(read-only). Note that you can usually assign a value to a property or read it, and
you can even use properties in expressions, but you cannot always pass a property
as a parameter to a procedure or method. This is because a property is not a mem-
ory location, so it cannot be used as a var parameter; it cannot be passed by
reference.

Not all of the VCL classes have properties. Properties are present in components
and in other subclasses of the TPersistent class, because properties usually can be
streamed and saved to a file. A DFM file, in fact, is nothing but a collection of pub-
lished properties of the components on the form. Delphi has extensive support for
saving this kind of information, an advanced topic discussed in Delphi Developers’
Handbook (Sybex, 1998)124.

Adding Properties to Forms

Properties are a very sound OOP mechanism, a very well thought out application of
the idea of encapsulation. Essentially, you have a name that hides the implementa-
tion of how to access the information of a class (either accessing the data directly or
calling a method). In fact, using properties you end up with an interface that is
unlikely to change. At the same time, if you only want to allow users access to some
fields of your class, you can easily wrap those fields into properties instead of mak-
ing them public. You have no further code to write (coding simple Get and Set
methods is terribly boring), and you are still able to change the implementation of
your class. Even if you replace the direct data access with method-based access, you
won’t have to change the source code that uses these properties at all. You’ll only
need to recompile it. Think of this as the concept of encapsulation raised to the max-
imum power!

Also keep in mind that using properties is very simple thanks to Code Completion.
For this reason, every time you want to make some information of a form available
to other forms, you should really use a property. Simply write in the form class dec-
laration the property name and type:

property Clicks: Integer;

124 That book is now hard to find, given it was published over 25 years ago. The content of that
book is still applicable today and th book is focused on Delphi RTL internals and writing com-
ponents.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

142 - Chapter 3: Advanced Object Pascal

Then press Ctrl+Shift+C to activate Code Completion. You’ll see the following
effect:

type
 TForm1 = class(TForm)
 private
 FClicks: Integer;
 procedure SetClicks(const Value: Integer);
 public
 property Clicks: Integer
 read FClicks write SetClicks;
 end;

implementation

procedure TForm1.SetClicks(const Value: Integer);
begin
 FClicks := Value;
end;

This saves you a lot of typing, compared to the previous versions of Delphi, and it
should make the use of properties the standard technique for accessing form data.

In my opinion, properties should also be used in the form classes to encapsulate the
access to the components of a form. For example, if you have a main form with a
status bar used to display some information (and with the SimplePanel property set
to True), and you want to modify the text from a secondary form, you might be
tempted to write:

Form1.StatusBar1.SimpleText := ‘new text’;

This is a standard practice in Delphi, but it’s not a good one, because it doesn’t pro-
vide any encapsulation of the form structure or components. If you have similar
code in many places throughout an application, and you later decide to modify the
user interface of the form (replacing StatusBar with another control or activating
multiple panels), you’ll have to fix the code in many places.

The alternative is to use a method or, even better, a property, to hide the specific
control. Simply type

property StatusText: string
 read GetText write SetText;

and press the Ctrl+Shift+C combination again, to let Delphi add the definition of
both methods for reading and writing the property:

function TForm1.GetText: string;
begin
 Result := StatusBar1.SimpleText;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 143

end;

procedure TForm1.SetText(const Value: string);
begin
 StatusBar1.SimpleText := Value;
end;

In the other forms of the program, you can simply refer to the StatusText property
of the form, and if the user interface changes, only the Set and Get methods of the
property are affected.

Adding Properties to the TDate Class

In the previous chapter we developed the TDate class. Now we can extend it by using
properties. This new example, DateProp, is basically an extension of the ViewD2
example from Chapter 2. Here is the new declaration of the class. It has some new
methods (used to set and get the values of the properties) and four properties:

type
 TDate = class
 private
 fDate: TDateTime;
 function GetYear: Integer;
 function GetDay: Integer;
 function GetMonth: Integer;
 procedure SetDay (const Value: Integer);
 procedure SetMonth (const Value: Integer);
 procedure SetYear (const Value: Integer);
 public
 constructor Create; overload;
 constructor Create (y, m, d: Integer); overload;
 procedure SetValue (y, m, d: Integer); overload;
 procedure SetValue (NewDate: TDateTime); overload;
 function LeapYear: Boolean;
 procedure Increase (NumberOfDays: Integer = 1);
 procedure Decrease (NumberOfDays: Integer = 1);
 function GetText: string; virtual;
 property Day: Integer read GetDay write SetDay;
 property Month: Integer read GetMonth write SetMonth;
 property Year: Integer read GetYear write SetYear;
 property Text: string read GetText;
 end;

The Year, Day, and Month properties read and write their values using corresponding
methods. Here are the two related to the Month property:

function TDate.GetMonth: Integer;
var

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

144 - Chapter 3: Advanced Object Pascal

 y, m, d: Word;
begin
 DecodeDate (fDate, y, m, d);
 Result := m;
end;

procedure TDate.SetMonth(const Value: Integer);
begin
 if (Value < 1) or (Value > 12) then
 raise EDateOutOfRange.Create (‘Invalid month’);
 SetValue (Year, Value, Day);
end;

The call to SetValue performs the actual encoding of the date, raising an exception
in case of an error. I’ve defined a custom exception class, which is raised every time
a value is out of range:

type
 EDateOutOfRange = class (Exception);

The fourth property, Text, maps only to a read method. This function is declared as
virtual, because it is replaced by the TNewDate subclass. There is no reason the Get
or Set method of a property should not use late binding.

note What is important to acknowledge in this example is that the properties do not map directly to
data. They are simply computed.

Having updated the class with the new properties, we can now update the example
to use properties when appropriate. For example, we can use the Text property
directly, and we can use some edit boxes to let the user read or write the values of
the three main properties (as you can see in Figure 3.5). This happens when the
Read button is pressed:

procedure TDateForm.BtnReadClick(Sender: TObject);
begin
 EditYear.Text := IntToStr (TheDay.Year);
 EditMonth.Text := IntToStr (TheDay.Month);
 EditDay.Text := IntToStr (TheDay.Day);
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 145

Figure 3.5:
The updated form of
the DateProp example
at run time. Image
from the original book.

The Write button does the reverse operation. You can write the code in either of the
two following ways:

// direct use of properties
TheDay.Year := StrToInt (EditYear.Text);
TheDay.Month := StrToInt (EditMonth.Text);
TheDay.Day := StrToInt (EditDay.Text);

// update all values at once
TheDay.SetValue (StrToInt (EditMonth.Text),
 StrToInt (EditDay.Text),
 StrToInt (EditYear.Text));

The difference between the two approaches relates to what happens when the input
doesn’t correspond to a valid date. When we set each value separately, the program
might change the year and then raise an exception and skip executing the rest of the
code, so that the date is only partially modified. When we set all the values at once,
either they are correct and are all set, or one is invalid and the date object retains
the original value.

note The SetValue method of this class and the three properties have the same relationship as the
SetBounds method of the TControl classes has with the Left, Top, Width, and Height prop-
erties. Actually, in some special circumstances the same problem described above arises with
these positional properties of controls.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

146 - Chapter 3: Advanced Object Pascal

Events in Delphi

When a user does something with a component, such as clicking it, the component
generates an event. Other events are generated by the system, in response to a
method call or a change to one of that component’s properties (or even a different
component’s). For example, if you set the focus on a component, the component
currently having the focus loses it, triggering the corresponding event.

Technically, most Delphi events are triggered when a corresponding Windows mes-
sage is received, although the events do not match the messages on a one-to-one
basis. Delphi events tend to be higher-level than Windows messages, and Delphi
provides a number of extra intercomponent messages.

From a theoretical point of view, an event is the result of a message sent to a win-
dow, and this window (or the corresponding component) can respond to the
message. Following this approach, to handle the click event of a button, we would
need to subclass the TButton class and add the new event handler.

In practice, creating a new class is too complex to be a reasonable solution. In Del-
phi, the event handler of a component usually is a method of the form that holds the
component, not of the component itself. In other words, the component relies on its
owner, the form, to handle its events. This technique is called delegation, and it is
fundamental to the Delphi component-based model.

Events Are Properties

Another important concept is that events are properties. This means that to handle
an event of a component, you assign a method to the corresponding event property,
as we did in the CountOb2 example earlier in this chapter. When you double-click
an event in the Object Inspector, a new method is added to the owner form and
assigned to the proper event property of the component.

This is why it is possible for several events to share the same event handler or
change an event handler at run time. To use this feature, you don’t need much
knowledge of the language. In fact, when you select an event in the Object Inspec-
tor, you can press the arrow button on the right of the event name to see a drop-
down list of “compatible” methods—a list of methods having the same method
pointer type. Using the Object Inspector, it is easy to select the same method for the
same event of different components or for different, compatible events of the same
component.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 147

Adding an Event to the TDate Class

As we’ve added some properties to the TDate class, we can add one event. The event
is going to be very simple. It will be called OnChange, and it can be used to warn the
user of the component that the value of the date has changed. To define an event,
we simply define a property corresponding to it, and we add some data to store the
actual method pointer the event refers to. These are the new definitions added to
the class:

type
 TDate = class
 private
 FOnChange: TNotifyEvent;
 ...
 protected
 procedure DoChange; dynamic;
 ...
 public
 property OnChange: TNotifyEvent
 read FonChange write FOnChange;
 ...
 end;

The property definition is actually very simple. A user of this class can assign a new
value to the property and, hence, to the FOnChange private field. The class doesn’t
assign a value to this FOnChange field. It is the user of the component who does the
assignment. The TDate class simply calls the method stored in the FOnChange field
when the value of the date changes. Of course, the call takes place only if the event
property has been assigned. The DoChange method (declared as a dynamic method
as it is traditional with event firing methods) makes the test and the method call:

procedure TDate.DoChange;
begin
 if Assigned (FOnChange) then
 FOnChange (Self);
end;

The DoChange method in turn is called every time one of the values changes, as in
the following method:

procedure TDate.SetValue (y, m, d: Integer);
begin
 fDate := EncodeDate (y, m, d);
 // fire the event
 DoChange;

Now if we look at the program that uses this class, we can simplify its code consider-
ably. First, we add a new custom method to the form class:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

148 - Chapter 3: Advanced Object Pascal

type
 TDateForm = class(TForm)
 ...
 procedure DateChange(Sender: TObject);

The code of this method simply updates the label with the current value of the Text
property of the TDate object:

procedure TDateForm.DateChange;
begin
 LabelDate.Caption := TheDay.Text;
end;

This event handler is then installed in the FormCreate method:

procedure TDateForm.FormCreate(Sender: TObject);
begin
 TheDay := TDate.Init (7, 4, 1997);
 LabelDate.Caption := TheDay.Text;
 // assign the event handler for future changes
 TheDay.OnChange := DateChange;
end;

Well, this seems like a lot of work. Was I lying when I told you that the event han-
dler would save us some coding? No. Now, after we’ve added some code, we can
completely forget about updating the label when we change some of the data of the
object. Here, as an example, is the handler of the OnClick event of one of the but-
tons:

procedure TDateForm.BtnIncreaseClick(Sender: TObject);
begin
 TheDay.Increase;
end;

The same simplified code is present in many other event handlers. Once we have
installed the event handler, we don’t have to remember to update the label continu-
ally. That eliminates a significant potential source of errors in the program. Also
note that we had to write some code at the beginning because this is not a compo-
nent installed in Delphi but simply a class. With a component, you simply select the
event handler in the Object Inspector and write a single line of code to update the
label. That’s all. How difficult is it to write a new component in Delphi? It’s actually
so simple I’m going to show you how to do it in the next section.

note This is meant to be just a short introduction to the role of properties and events and to writing
components. A basic understanding of these features is important for every Delphi programmer.
If your aim is to write complex new components, you’ll find a lot more information on all of these
topics in Chapter 13.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 149

Creating a TDate Component

The next step, actually a very simple one, is to turn our TDate class into a compo-
nent. First, we have to inherit our class from the TComponent class, instead of the
default TObject class. Here is the code:

type
 TDate = class (TComponent)
 ...
 public
 constructor Create (AOwner: TComponent); overload; override;
 constructor Create (y, m, d: Integer); reintroduce; overload;

As you can see, the second step was to add a new constructor to the class, overriding
the default constructor for components to provide a suitable initial value. Because
there is an overloaded version, we also need to use the reintroduce directive for it,
to avoid a warning message from the compiler. The code of the new constructor
simply sets the date to today’s date, after calling the base class constructor:

constructor TDate.Create (AOwner: TComponent);
var
 Y, D, M: Word;
begin
 inherited Create (AOwner);
 // today...
 fDate := Date;

Having done this, we need to add to the unit that defines our class (the file
DATES.PAS in the DATECOMP directory) a Register procedure. (Make sure this identi-
fier start with an uppercase R, otherwise it won’t be recognized.) This is required in
order to add the component to Delphi’s Components Palette. Simply declare the
procedure, which requires no parameters, in the interface portion of the unit, and
then write this code in the implementation section:

procedure Register;
begin
 RegisterComponents (‘Md’, [TDate]);
end;

This code adds the new component to the Md page of the Components Palette125,
creating the page if necessary. By the way, this is the same page I’ll use for all the
components built in the book.

125 Nowadays, the Palette pane hosts the components. The behavior described here remains the
same.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

150 - Chapter 3: Advanced Object Pascal

The last step is to install the component. For this simple example we won’t create a
new package. Instead, we can install the component in the default Borland User’s
Components package (a file named DCLUSR50.DPK and stored in the LIB directory of
Delphi). We’ll see how to build new packages in Chapter 13.

To make the component available, select the Component Install Component
menu item, choose the Into existing package page (this should be the default),
select the DCLUSR50.DPK package filename126 (again the default if you’ve never
installed components), and enter the unit filename of the component, DATES.PAS.
Now simply click OK and Delphi will update the package, compile it, and ask you to
install it in Delphi (if you haven’t already done so).

If you now move to the Components Palette, it should have a new Md page with the
new component. This will be shown using the default icon for Delphi components.
At this point you can place the component on the form of a new application and
start manipulating its properties in the Object Inspector, as you can see in Figure
3.6. You can also handle the OnChange event in a much easier way than in the last
example.

Besides trying to build your own sample application using this component (some-
thing I really suggest you do), you can now open the DateComp example, which is
an updated version of the component we’ve built step-by-step over the last few sec-
tions of this chapter. This is basically a simplified version of the DateEvt example,
because now the event handler is directly available in the Object Inspector.

Figure 3.6:
The properties of our
new TDate component
in the Object Inspector.
Image from the
original book.

126 The package is still called “dclusr.dpk” today. It’s description, oddly enough, is “CodeGear
User Components”. Notice that in the first page of the dialog box you need to select the com-
ponents source code file, while in the second you can pick the package you want to install it
into.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 151

note If you open the DateComp example before installing the new component, Delphi won’t recognize
the component as it opens the form and will give you an error message. You won’t be able to com-
pile the program or make it work until you install the new component.

Using Interfaces

Contrary to what happens in C++, the Delphi inheritance model doesn’t support
multiple inheritance. This means that each class can have only a single base class.
The usefulness of multiple inheritance is a topic of heated debate. The absence of
this construct in Delphi can be considered both a disadvantage (because you lose
some of the power of C++) and an advantage (because you get a simpler language
and fewer problems). My point is that Delphi’s interfaces provide the flexibility and
power of declaring support for multiple interfaces implemented on a class, while
avoiding the problems of inheriting multiple implementations. Rather than get
bogged down in this debate, I’ll simply assume that it is useful to treat a single
object from multiple “perspectives,” to consider it a generic object of different base
classes. But before I build an example following this principle, we have to introduce
the role of interfaces in Object Pascal.

note The techniques covered in this section are used also to implement COM objects, and I’ll cover
them in more detail in Chapter 15. For the moment, let’s consider them simply as language ele-
ments.

Declaring an Interface

Besides declaring abstract classes (classes with abstract methods), in Delphi you can
also write a purely abstract class; that is, a sort of class with only virtual abstract
methods. This is accomplished using a specific keyword, interface. For this reason
we refer to these classes as interfaces. Technically, in fact, an interface is not a class,
although it may resemble one. Interfaces are not classes, because they are consid-
ered a totally separate element, with its own common base interface, IUnknown127,
which has the same role as TObject for classes.

127 More recently the IUnknown interface has been renamed IInterface, to underline the fact you
can use interface in Delphi even outside of the COM realm. The actual behavior of IInterface,
though, is still identical to the previous one of IUnknown.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

152 - Chapter 3: Advanced Object Pascal

Borland introduced interfaces in Delphi 3 along with the support COM program-
ming. If the interface language syntax may have been created to support COM,
interfaces do not require COM. You can use interfaces to implement abstraction lay-
ers within your applications, without building COM server objects. For example, the
Delphi IDE uses interfaces extensively in its internal architecture. In general, inter-
faces also have some distinctive advantages that can be useful for different types of
programming:

· A class can inherit from a single base class, but it can also implement multiple
interfaces. The drawback is that when a class implements an interface, it must
provide the implementation for each of the methods of the interface.

· Interface type objects are reference-counted and automatically destroyed when
there are no more references to the object. This mechanism is similar to how
Delphi manages long strings and makes memory management almost automatic.

· The VCL already provides a few base classes to implement the basic behavior
required by the IUnknown interface. The simplest one is the TInterfacedObject
class.

note From a more general point of view, interfaces support a slightly different object-oriented pro-
gramming model than classes. Objects implementing interfaces are subject to polymorphism for
each of the interfaces they support. Indeed, the interface-based model is powerful. But having
said that, I’m not interested in trying to assess which approach is better in each case. Certainly,
interfaces favor encapsulation and provide a more loose connection between classes than inheri-
tance.

Here is the syntax of the declaration of an interface (which, by convention, starts
with the letter I):

type
 ICanFly = interface
 [‘{10000000-0000-0000-0000-000000000000}’]
 function Fly: string;
 end;

note To function properly, each interface requires a numeric ID, like the one above. In theory these
should be unique GUIDs, generated in the Delphi editor by pressing Ctrl+Shift+G, but if you don’t
plan to export these objects, any number will do (more on GUIDs in Chapter 15). These GUIDs
are required even if you don’t plan exporting these classes, because they are used by the compiler
to type-check interface types instead of the plain interface and class names.128

128 The GUID in the code snippet above is not a real one. I’d recommend you replace it in the code
with an actual GUID, generated by pressing Ctrl+Shift+G, even if the code works anyway.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 153

Once you’ve declared an interface, you can define a class to implement it, as in:

type
 TAirplane = class (TInterfacedObject, ICanFly)
 function Fly: string; virtual;
 end;

As mentioned, this class can derive from TInterfacedObject to inherit the imple-
mentation of the IUnknown methods. Although it is not compulsory to implement
interface methods with virtual methods, this is a good approach to use if you want to
be able to modify these methods in further sub-classes. An alternative technique is
to re-declare the interface type in a derived class and rebind the interface methods
to static methods declared in that class.

Now that we have defined an implementation of the interface, we can write as usual

var
 Airplane1: TAirplane;
begin
 Airplane1 := TAirplane.Create;
 Airplane1.Fly;
 Airplane1.Free;
end;

But we can also use an interface-type variable:

var
 Flyer1: ICanFly;
begin
 Flyer1 := TAirplane.Create;
 Flyer1.Fly;
end;

As soon as you assign an object to an interface variable, Delphi automatically checks
to see whether the object implements that interface, using a special version of the as
operator. You can explicitly express this operation as follows:

Flyer1 := TAirplane.Create as ICanFly;

Whether we use the direct assignment or the as statement, Delphi does one extra
thing: it calls the _AddRef method of the object, increasing its reference count. At
the same time, as soon as the Flyer1 variable goes out of scope, Delphi calls the
_Release method, which decreases the reference count, checks whether the refer-
ence count is zero, and if necessary, destroys the object. For this reason in the listing
above, there is no code to free the object we’ve created129.

129 There are many other techniques you can use with interfaces these days, including weak inter-
faces and unsafe ones. This is an advanced concept I cannot really cover in a footnote.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

154 - Chapter 3: Advanced Object Pascal

In other words, in Delphi objects referenced by interface variables are reference-
counted, and they are automatically de-allocated when no interface variable refers
to them any more.

note When using interface-based objects, you should generally access them only with object variables
or only with interface variables. Mixing the two approaches breaks the reference counting scheme
provided by Delphi and can cause memory errors that are extremely difficult to track. In practice,
if you’ve decided to use interfaces, you should probably use exclusively interface-based variables.

Interface Properties, Delegation,
Redefinitions

To demonstrate a few technical elements related to interfaces, I’ve written the
IntfDemo example. This example is based on two different interfaces, IWalker and
IJumper, defined as follows:

IWalker = interface
 [‘{0876F200-AAD3-11D2-8551-CCA30C584521}’]
 function Walk: string;
 function Run: string;
 procedure SetPos (Value: Integer);
 function GetPos: Integer;

 property Position: Integer
 read GetPos write SetPos;
end;

IJumper = interface
 [‘{0876F201-AAD3-11D2-8551-CCA30C584521}’]
 function Jump: string;
 function Walk: string;
 procedure SetPos (Value: Integer);
 function GetPos: Integer;

 property Position: Integer
 read GetPos write SetPos;
end;

Notice that the first interface defines also a property. An interface property is just a
name mapped to a read and a write method. You cannot map an interface property
to a field, simply because an interface cannot have a field.

Here comes a sample implementation of the IWalker interface. Notice that you
don’t have to define the property, only its access methods:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 155

TRunner = class (TInterfacedObject, IWalker)
private
 Pos: Integer;
public
 function Walk: string;
 function Run: string;
 procedure SetPos (Value: Integer);
 function GetPos: Integer;
end;

The code is trivial, so I’m going to skip it (you can find it in the IntfDemo example).
In a similar way, I’ve defined a class implementing the IJumper interface:

TJumperImpl = class (TInterfacedObject, IJumper)
private
 Pos: Integer;
public
 function Jump: string;
 function Walk: string;
 procedure SetPos (Value: Integer);
 function GetPos: Integer;
end;

Although this class isn’t different from the other one, I’m going to use it in a differ-
ent way. In the following class, TMyJumper, I don’t want to repeat the
implementation of the IJumper interface with similar methods. Instead, I want to
delegate the implementation of that interface to a class already implementing it.
This cannot be done through inheritance (we cannot have two base classes); instead,
you can use specific features of the language interface delegation:

TMyJumper = class (TInterfacedObject, IJumper)
private
 fJumpImpl: IJumper;
public
 constructor Create;
 property Jumper: IJumper
 read fJumpImpl implements IJumper;
end;

This declaration indicates that the IJumper interface is implemented for the
TMyJumper class by the fJumpImpl field. This field, of course, must actually imple-
ment all the methods of the interface. To make this work, you need to create a
proper object for the field when a TMyJumper object is created:

constructor TMyJumper.Create;
begin
 fJumpImpl := TJumperImpl.Create;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

156 - Chapter 3: Advanced Object Pascal

This example is simple, but in general, things get more complex as you start to mod-
ify some of the methods or add other methods that still operate on the data of the
internal fJumpImpl object. This final step is demonstrated, along with other fea-
tures, by the TAthlete class, which implements both the IWalker and IJumper
interfaces:

TAthlete = class (TInterfacedObject, IWalker, IJumper)
private
 fJumpImpl: TJumperImpl;
public
 constructor Create;
 function Run: string; virtual;
 function Walk1: string; virtual;
 function IWalker.Walk = Walk1;
 procedure SetPos (Value: Integer);
 function GetPos: Integer;

 property Jumper: TJumperImpl
 read fJumpImpl implements IJumper;
end;

One of the interfaces is implemented directly, whereas the other is delegated to the
internal fJumpImpl object. Notice also that by implementing two interfaces, which
have a method in common, we end up with a name clash. The solution is to rename
one of the methods, with the statement

function IWalker.Walk = Walk1;

This declaration indicates that the class implements the Walk method of the IWalker
interface with a method called Walk1 (instead of with a method having the same
name). Finally, in the implementation of all of the methods of this class, we need to
refer to the Position property of the fJumpImpl internal object. By declaring a new
implementation for the Position property, we’ll end up with two positions for a sin-
gle athlete, a rather odd situation. Here are a couple of examples:

function TAthlete.GetPos: Integer;
begin
 Result := fJumpImpl.Position;
end;

function TAthlete.Run:string;
begin
 fJumpImpl.Position := fJumpImpl.Position + 2;
 Result := IntToStr (fJumpImpl.Position) + ‘: Run’;
end;

You can further experiment with the IntfDemo example, which has a simple form
with buttons to create and call methods of the various objects. Nothing fancy,

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 157

though, as you can see in Figure 3.7. Simply keep in mind that each call returns the
position after the requested movement and a description of the movement itself.

Figure 3.7:
The IntfDemo example

An Example of Multiple Inheritance

After this example, let me move to a more complex series of interfaces. Suppose you
have a hierarchy of classes related to animals. You can base the hierarchy on the
standard taxonomic classifications (with categories such as mammals, birds,
insects, and so on), or you can categorize them by capability (flying animals,
quadrupeds or bipeds, meat eaters, and so on).

There is no easy way to express such a complex structure with single inheritance.
You can use multiple inheritance if the language you are using supports this feature,
or you can use interfaces. This is what I’ve done in my example, which represents a
rather common study case for multiple inheritance. This program, named MultInh,
has both a hierarchy of classes (representing the standard zoological classifications)
and a hierarchy of interfaces (expressing the capabilities).

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

158 - Chapter 3: Advanced Object Pascal

Both the hierarchy of classes and the hierarchy of interfaces actually use single
inheritance. It is only when you look at how classes implement the various inter-
faces that the two hierarchies actually merge, as represented in Figure 3.8.

Figure 3.8:
The complex
relationships among
the classes and
interfaces of the
MultInh example.
Image from the
original book, captured
with a picture, as the
original version got
lost.

The declarations of these interfaces and their methods are quite long, so I’ve
decided to skip them. Each of them has a specific GUID and defines one or more
functions returning strings. The actual classes implement one or more of these
interfaces, as depicted in Figure 3.8. Here are a couple of declarations:

type
 TBird = class (TAnimal, IBird)
 function LayEggs: string; virtual;
 end;

 TEagle = class (TBird, ICanFly)
 function Kind: string; override;
 function Fly: string; virtual;
 end;

 TPenguin = class (TBird, ICanWalk, ICanSwim)
 function Kind: string; override;
 function Walk: string; virtual;
 function Swim: string; virtual;

Now that we have designed this infrastructure, how can we use it? How do we create
objects of these classes, and how can we use polymorphism in classes that imple-
ment multiple interfaces?

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 159

Interface Polymorphism

To use polymorphism with interfaces, I’ve declared and filled an array inside the
form of the program:

private
 AnimIntf: array [1..5] of IAnimal;

The program extracts the IAnimal interface from newly created objects to initialize
this array. This is done automatically by Delphi when you write

AnimIntf[1] := TEagle.Create;

which corresponds to writing

AnimIntf[1] := TEagle.Create as IAnimal;

Calling the methods described in the IAnimal interface is straightforward:

for I := 1 to 5 do
 Memo1.Lines.Add (AnimIntf[I].Kind);

This code is actually executed when you press the first button of the main form of
the MultInh example, as you can see in Figure 3.9.

To operate on the methods provided by the other interface, we must first check to
see whether any given object supports it. Because there is no is operator for inter-
faces130, we can accomplish it by calling the QueryInterface method:

var
 Fly1: ICanFly;
begin
 AnimIntf[i].QueryInterface (ICanFly, Fly1);
 if Assigned (Fly1) then
 Memo1.Lines.Add (Fly1.Fly);

130 The is operators for interfaces has later been added to the language.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

160 - Chapter 3: Advanced Object Pascal

Figure 3.9:
The simple user
interface of the
MultInh example.
Image from the
original book.

QueryInterface requires as parameters a variable for the return value and the type
of interface to check for. Because it returns also an error code, we can also check
this, as I’ve done in another case:

var
 Swim1: ICanSwim;
begin
 if AnimIntf[i].QueryInterface (
 ICanSwim, Swim1) <> E_NoInterface then
 Memo1.Lines.Add (Swim1.Swim);

We can also use the as statement using a try-except block, but this is not a solution
I really like. (It is in the source code of the program for you to check, anyway.)

Is This Multiple Inheritance?

The last two code fragments combined indicate that we can use an object and cast it
to the multiple interfaces it supports. In other words, we can consider a duck to be a
swimming animal or a flying animal and call methods of both interfaces for a single
object. We can cast an object to two different base types, so this really is like multi-
ple inheritance.

What we don’t get is the inheritance of the actual implementation of the methods;
there is no code in the ICanFly interface, and if there were any code shared by all
the “flying” objects, it would need to be reimplemented in each class that supports
this interface. However, we already know that it is possible to define a single imple-

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 3: Advanced Object Pascal - 161

mentation class and delegate to it the implementation of an interface in many other
classes, as I did in the previous example.

As I mentioned earlier, Borland added interfaces to Delphi to support Microsoft’s
COM, but they can really be used as an extra language feature. The biggest draw-
back is that interfaces must have an ID even for internal objects, because the type
checking of interfaces depends on this number. The other minor problem is that
there isn’t an is operator to check whether an object supports a given interface, but
we’ve seen it is very simple to mimic this behavior by calling QueryInterface with a
single method call.

Summing up, does it really make sense to use interface types and variables in a pro-
gram that doesn’t need to support COM? If the program is designed around a
complex hierarchy that might benefit from multiple inheritance, then the answer is
yes. Considering the extra complexity of this design, however, you might disagree.

What’s Next?

By reading this chapter, you might have had the impression that I’ve covered a
number of unrelated topics. This was only partially the case. Class references,
method pointers, properties, events, the published keyword, and exceptions are all
language features upon which Delphi’s Visual Component Library is built. Other
topics, such as as class method or interfaces, are important additions to the lan-
guage every Delphi developer should at least be familiar with.

Having covered the basics of OOP in the last chapter and all these language exten-
sions in the current one, we can now focus on the structure of the VCL in the next
chapter.

There is actually one extra step we’ve done in this chapter: we’ve built a first simple
component, and we’ve installed it in the Delphi environment. This already demon-
strates the fact that a component is actually an Object Pascal class that inherits from
a specific base class, TComponent. Delphi components are classes: this apparently
simple statement describes the nature of the Delphi programming model, underly-
ing its differences with tools as Visual C++ or Visual Basic. The only other language
coming close to Object Pascal in terms of components development is Java.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

162 - Chapter 4: VCL Programming Techniques

Chapter 4: VCL

Programming

Techniques

To simplify the work of programming, Delphi provides many powerful, ready-to-use
functions and classes. It includes, for example, a number of standard routines. (The
Help files no longer have a complete list of these routines, but you can find such a
list at my www.marcocantu.com Web site131.) Even larger and more important is Del-
phi’s set of classes. Some of them are component classes, which show up in the
Component Palette, while others are more general-purpose. This chapter focuses on
the structure of the Delphi class library—known as the Visual Component Library
(VCL), although it includes more than components—and gives an overview of some
general-purpose classes.

131 It’s not there any more, and I doubt I’ll be able to create an updated version

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 163

If you simply want to put the built-in components to work and don’t care about the
ins and outs of the VCL, you may want to skip this chapter for now and move on to
Part II, which focuses on the use of components and other classes related to Win-
dows, or to Part III, which covers database programming (including the standard
data-aware components). Remember to come back to this chapter when you are
ready to leverage your Delphi programming knowledge.

The TObject Class

At the heart of Delphi is a hierarchy of classes. Every class in the system is a sub-
class of the TObject class, so the whole hierarchy has a single root. This allows you
to use the TObject data type as a replacement for the data type of any class type in
the system.

For example, event handlers usually have a Sender parameter of type TObject. This
simply means that the Sender object can be of any class, since every class is ulti-
mately derived from TObject. The typical drawback of such an approach is that to
work on the object, you need to know its data type. In fact, when you have a variable
or a parameter of the TObject type you can apply to it only the methods and proper-
ties defined by TObject. If this variable or parameter happens to refer to an object of
the TButton type, for example, you cannot directly access its Caption property. The
solution to this problem lies in the fact that each object “knows” its actual class, and
you can access this information using the ClassType and ClassName methods. For
example, ClassName returns a string with the name of the class. Because it is a class
method, you can apply it both to an object and to a class. Suppose you have defined
a TButton class and a Button1 object of that class. Then the following statements
have the same effect:

Text := Button1.ClassName;
Text := TButton.ClassName;

There are occasions when you need to use the name of a class, but it can also be use-
ful to retrieve a class reference to the class itself or to its base class. The class
reference, in fact, allows you to operate on the class at run time (as we’ve seen in the
last chapter), while the class name is just a string. We can get these class references
with the ClassType and ClassParent methods. Once you have a class reference, you
can use it as if it were an object—for example, to call the ClassName method.

Another method that might be useful is InstanceSize, which returns the run-time
size of an object. (Although you might think that the SizeOf global function pro-

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

164 - Chapter 4: VCL Programming Techniques

vides this information, that function actually returns the size of an object reference
—a pointer, which is invariably four bytes—instead of the size of the object itself.)

There are other methods you can apply to any object (and also to any class or class
references). Here is a partial list132:

ClassName Returns a string with the name of the class.

ClassNameIs Checks the class name.

ClassParent Returns a class reference to the parent class.

ClassInfo Returns a pointer to the internal Run Time Type
Information (RTTI) of the class, discussed in
Delphi Developer’s Handbook.

ClassType Returns a reference to the object’s class (this cannot be
applied directly to a class, only to an object).

InheritsFrom Tests whether the class inherits (directly or indirectly)
from a given base class (similar to the is operator).

InstanceSize Returns the size of the object’s data.

These methods of TObject are available for objects of every class, since TObject is
the common ancestor class of every class. Here is how we can use these methods to
access class information:

procedure TSenderForm.ShowSender(Sender: TObject);
begin
 Memo1.Lines.Add (‘Class Name: ‘ +
 Sender.ClassName);

 if Sender.ClassParent <> nil then
 Memo1.Lines.Add (‘Parent Class: ‘ +
 Sender.ClassParent.ClassName);

 Memo1.Lines.Add (‘Instance Size: ‘ +
 IntToStr (Sender.InstanceSize));

The code checks to see whether the ClassParent is nil in case you are actually using
an instance of the TObject type, which has no base type. You can use other methods
to perform tests. For example, you can check whether the Sender object is of a spe-
cific type with the following code:

132 There have been several notable additions to the TObject class methods over the years, includ-
ing Equals, GetHashCode, QualifiedClassName, ToString, UnitName. Some of these are vir-
tual methods you can override in your derived classes. See docwiki.embarcadero.com/Li-
braries/en/System.TObject for more details.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://docwiki.embarcadero.com/Libraries/en/System.TObject
https://docwiki.embarcadero.com/Libraries/en/System.TObject

Chapter 4: VCL Programming Techniques - 165

if Sender.ClassType = TButton then ...

You can also check if the Sender parameter corresponds to a given object, with this
test:

if Sender = Button1 then...

All these code fragments are part of the IfSender example.

Instead of checking for a particular class or object, you’ll generally need to test the
type compatibility of an object with a given class; that is, you’ll need to check
whether the class of the object is a given class or one of its subclasses. This lets you
know whether you can operate on the object with the methods defined for the class.
This test can be accomplished using the InheritsFrom method, which is also called
when you use the is operator. The following two tests are equivalent:

if Sender.InheritsFrom (TButton) then ...
if Sender is TButton then ...

All these techniques are demonstrated by the IfSender example, which has a single
event handler, called ShowSender, connected with the OnClick event of several con-
trols: three buttons, a check box, and an edit box. One of the buttons is actually a
Bitmap button, an object of a TButton subclass. You can see an example of the out-
put of this program at run time in Figure 4.1.

Figure 4.1:
The output of the
IfSender example.
Image from the
original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

166 - Chapter 4: VCL Programming Techniques

Showing Class Information

The IfSender example can be extended to show a complete list of base classes. Once
you have a class reference, in fact, you can add all of its base classes to the
ListParent list box with the following code:

with ListParent.Items do
begin
 Clear;
 while MyClass.ClassParent <> nil do
 begin
 MyClass := MyClass.ClassParent;
 Add (MyClass.ClassName);
 end;
end;

You’ll notice that we use a class reference at the heart of the while loop, which tests
for the absence of a parent class (so that the current class is TObject). Alternatively,
we could have written the while statement in either of the following ways:

while not MyClass.ClassNameIs (‘TObject’) do...
while MyClass <> TObject do...

The code in the with statement referring to the ListParent list box is part of the
ClassInfo example, which displays the list of parent classes and some other informa-
tion about a few components of the VCL, basically those on the Standard page of the
Component Palette. These components are manually added to a dynamic array
holding classes and declared as:

private
 ClassArray: array of TClass;

When the program starts the array is used to show all the class names in a list box.
Selecting an item of the list box triggers the visualization of its base classes, as you
can see in the output of the program, in Figure 4.2.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 167

Figure 4.2:
The output of the
ClassInfo example.
Image from the
original book.

note As a further extension to this example, we might show all the base classes of the various compo-
nents in a hierarchy. To do that, I’ve created the VclHierarchy Wizard, which you can find on my
Web site.133

The VCL Hierarchy

The VCL defines a number of subclasses of TObject. Many of these classes are actu-
ally subclasses of other subclasses, forming a very complex hierarchy. Unless you
are interested in developing new components, you’ll usually use only the terminal
classes of this hierarchy—the leaf nodes of the hierarchy tree. This is not really a
precise description, as some of the leaf nodes can be further extended by deriving
new components, and some of the classes in higher-level nodes can be instantiated
directly.

note Delphi’s documentation includes a large poster of the VCL class hierarchy. Although its size
makes it a little cumbersome, this can be a precious reference for understanding the VCL class
hierarchy. Again, you can also find a VCL class hierarchy on my Web site.134

We can divide the VCL hierarchy into three main areas: components, generic
objects, and exceptions. Components can be modified visually in the Delphi IDE,
typically using the Form Designer, while the other types of classes are referenced

133 While I have similar code available and in active use, this specific code is no longer on my site.

134 The poster was a great tool in the early days of the product. As the library kept growing and
the printed documentation started reducing, it was removed. With the switch to digital distri-
bution, there was later no point in considering it.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

168 - Chapter 4: VCL Programming Techniques

only in the source code. As a detailed description would take too much space, this
chapter includes some general notes, mainly on components but also on some other
important classes of the VCL.

Components

Components are the central elements of Delphi applications. When you write a pro-
gram, you basically choose a number of components and define their interactions.
That’s all there is to Delphi visual programming.

There are different kinds of components in Delphi. Most components are included
in the Component Palette, but some of them (including TForm and TApplication)
are not. Technically, components are sub-classes of the TComponent class. As such,
they can be streamed in a DFM file (since they inherit from the TPersistent class,
which provides the information needed for streaming) and they may have published
properties and events you can manipulate visually. We saw a simple example (Date-
Comp) of building a component in the last chapter.

The part of the VCL hierarchy related to components is generally divided into three
areas, as you can see in Figure 4.3135. These groups indicate components with a simi-
lar internal structure:

· Controls or visual components are all the classes that descend from TControl.
Controls have a position and a size on the screen and show up in the form at
design time in the same position they’ll have at run time. Controls have two dif-
ferent specifications, window-based or graphical:

· Window-based controls (also called windowed controls) are vis-
ual components based on an operating system window. From a
technical point of view, this means that these controls have a
window handle and descend from TWinControl. From a user
perspective, windowed controls can receive the input focus and
some of them can contain other controls. This is the biggest
group of components in the Delphi VCL. We can further divide
windowed controls in two groups: wrappers of Windows con-
trols and custom controls.

· Graphical controls (also called nonwindowed controls) are vis-
ual components that are not based on a window. Therefore, they
have no handle, cannot receive the focus, and cannot contain

135 This division in terms of component groups and their role is still 100% applicable today.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 169

other controls. These controls inherit from TGraphicControl and
are painted by their parent form, which sends them mouse-
related and other events. Examples of non-windowed controls
are the Label and the SpeedButton components. There are just a
few controls in this group, but they are critical to minimizing the
use of system resources, particularly for components used often
and in number, such as labels or toolbar buttons.

· Non-visual components are all the components that are not controls—all the
classes that descend from TComponent but not from TControl. At design time, a
non-visual component appears on the form as an icon (optionally with a caption
below it). At run time, some of these components may be visible at times (for
example, the standard dialog boxes), and others are always invisible (for exam-
ple, the database table component). In other words, non-visual components are
not visible themselves at run time, although they may manage something that is
visual, such as a dialog box.

note You can simply move the mouse cursor over a control or component in the Form Designer to see a
hint with its name and its class type. You can also use an environment option, Show Component
Captions, to see the name of a non-visual component right under its icon.

Figure 4.3: A
graphical
representation of the
groups of components.
Image based on a
picture of the original
printed book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

170 - Chapter 4: VCL Programming Techniques

Windows Components

You might have asked yourself where the idea of using components for Windows
programming came from. The answer is simple: Windows itself has some compo-
nents, usually called controls. A control is technically a predefined window that has
a specific behavior and some styles and is capable of responding to specific mes-
sages. These controls were the first step in the direction of component development.
The second step was probably Visual Basic controls, and the third step is Delphi
components.

note Actually, Microsoft’s third step is its ActiveX, the designated successor of VBX controls. In Delphi
you can use both ActiveX and native components, but if you look at the technology, Delphi com-
ponents are really ahead of the ActiveX controls. Delphi components use OOP to its full extent,
while ActiveX controls do not fully implement the concept of inheritance. I’ll focus on the details
of using and writing ActiveX controls in Chapter 16.

Windows 3.1 had six kinds of predefined controls, which were generally used in dia-
log boxes. Still used in Win32, they are buttons (push buttons, check boxes, and
radio buttons), static labels, edit fields, list boxes, combo boxes, and scroll bars.
Win32 adds a number of new predefined components, such as the list view, the sta-
tus bar, the spin button, the progress bar, the tab control, and many others. Win32
developers can use the standard common controls provided by the system, and Del-
phi developers have the further advantage of having corresponding easy-to-use
components.

The standard system controls are the basic components of each Windows applica-
tion, regardless of the programming language used to write it, and are very well
known by every Windows user. Delphi literally wraps these Windows predefined
controls in some of its basic components. A Delphi wrapper class, for example
TEdit, simply surfaces the capabilities of the underlying Windows control, making it
easier to use. However, Delphi adds nothing to the capabilities of this control. In
Windows 95/98 an edit or a memo control has a physical limit of 32KB of text, and
this limit is retained by the Delphi component.

Why hasn’t Borland overcome this limit? Why can’t we change the color of a but-
ton136? Simply because by replacing a Windows control with a custom version, we
would lose the close connection with the operating system. Suppose Microsoft

136 This isn’t true any more, as now the VCL library now offers support for styling. The concept of
relying on platform controls still applies, but styles offer a higher degree of visual customiza-
tion for any platform control.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 171

improves some of the controls in the next version of Windows. If we use our own
version of the component, the application we build won’t have the new features.

By using controls that are based on the operating system capabilities, instead, our
programs can easily migrate through different versions of the OS and retain all the
features provided by the specific version.

Of course, if you need a control that does something really different from the exist-
ing ones, you’ll need to write your own custom controls, something the VCL itself
does in the classes inheriting from TCustomControl. For example, a Delphi grid isn’t
related to any Windows control. All the classes in that portion of the VCL tree aren’t
directly related to Windows standard controls or Win32 common controls.

Note that wrapping an existing Windows is an effective way of reusing code and also
helps reduce the size of your compiled code. Implementing yet another button con-
trol from scratch requires custom code in your application, while a wrapper around
the OS-supplied button control requires less code and makes use of system code
shared by all Windows applications.

Objects

Although the VCL is basically a collection of components, there are other classes
that do not fit in this category, because they do not descend from TComponent. All
the noncomponent classes are often identified (by the Delphi Help files and docu-
mentation, among others sources) as objects, although this is not a precise
definition. There are two main uses for these classes. Generally, noncomponent
classes define the data type of component properties, such as the Picture property
of an image component (which is a TGraphic object) or the Items property of a list
box (which is a TStrings object). These classes generally inherit from TPersistent,
so they are streamable, and they can have sub-properties and even events.

The second use of noncomponent classes is a direct use. In the Delphi code you
write, you can allocate and manipulate objects of these classes. You might do this for
a number of purposes, including to store a copy of the value of a property in mem-
ory and modify it without changing the original component, to store a list of values,
to write complex algorithms, and so on. You’ll see several examples in this book that
show how to use non-component classes directly.

There are several groups of non-component classes in the VCL137:

137 The list has been significantly extended over the years, but the core classes listed here are still
available and relevant today.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

172 - Chapter 4: VCL Programming Techniques

· Graphic-related objects include TBitmap, TBrush, TCanvas, TFont, TGraphic,
TGraphicsObject, TIcon, TMetafile, TPen, and TPicture.

· Stream/file-related objects include TBlobStream, TFileStream, THandleStream,
TIniFile, TMemoryStream, TFiler, TReader, and TWriter.

· Lists and collections include TList, TStrings, TStringList, TCollection,
TCollectionItem and the new container classes introduced by Delphi 5. We will
focus on these classes in a later section of this chapter.

· COM-related classes: This is an important area of Delphi programming. COM-
related classes are covered in Chapter 15.

· Exception classes: These are inherited from the Exception class. We discussed
exception handling in Chapter 3, so I won’t repeat the details here.

Common VCL Properties

Although each component has its own set of properties, you may have already
noticed that some properties are common to all of them. Table 4.1 lists some of the
common properties along with very short descriptions138.

Table 4.1: Some Properties Available in Most Components

PROPERTY AVAILABLE FOR DESCRIPTION

Action Some controls Identifies the Action object connected to the control (see
Chapter 5 for details).

Align Some controls Determines how the control is aligned in its parent control
area.

Anchors Most controls Indicates the side of the form the component is connected
with (see Chapter 7 for an example).

AutoSize Some controls Indicates whether the control can determine its own size
depending on its content.

BiDiMode All controls Provides support for languages written right to left (stands

138 This is still a very good list of the most relevant common properties.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 173

for BiDirectional Mode).

BorderWidth Windowed controls The width of the border.

BoundsRect All controls Defines the bounding rectangle of the control (run-time
only).

Caption Most controls The caption of the control.

ComponentCount All components The number of components owned by the current one
(run-time only and read-only).

ComponentIndex All components The position of the component in its owner’s list of
components (run-time only).

Components All components An array of the components owned by the current one
(run-time only and read-only).

Constraints All controls Determines the maximum and minimum size of a control
(or a form) during resizing operations.

ControlCount All controls The number of child controls of the current one (run-time
only and read-only).

Controls All controls An array of the child controls of the current one (run-time
only and read-only).

Color Most controls Indicates the color of the surface or the background.

Ctrl3D139 Most components Determines whether the control has a three-dimensional
look.

Cursor All controls The cursor used when the mouse pointer is over the
control.

DockSite Most windowed
controls

Indicates whether the windowed control is a docking site.
There are other properties related to this, including
DockClientCount, DockClients,
UseDockManager, and DockManager. Docking is
discussed in Chapters 7 and 8.

139 This property is now obsolete.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

174 - Chapter 4: VCL Programming Techniques

DragCursor Most controls The cursor used to indicate that the control accepts
dragging.

DragKind Most controls Lets you choose between dragging and docking, if the drag
mode is automatic.

DragMode Most controls Determines whether the drag-and-drop behavior (allowing
either dragging or docking, as specified in the DragKind
property) will be activated automatically.

Enabled All controls and
some non-visual
components

Determines whether the control is active or inactive
(grayed).

Font All controls Determines the font of the text displayed inside the
component.

Handle All windowed
controls

The handle of the system window used by the control
(run-time only and read-only).

Height All controls The vertical size of the control.

HelpContext All controls and the
dialog components

A context number used to invoke the context-sensitive
Help automatically.

Hint All controls The string used to display fly-by hints for the control.

Left All controls The horizontal coordinate of the upper-left corner of the
component.

Name All components The unique name of an instance of the component, which
can generally be used in the source code.

Owner All components Indicates the owner component (run-time only and read-
only).

Parent All controls Indicates the parent control (run-time only).

ParentColor Most controls Determines if the component uses the same Color as the
parent.

ParentCtl3D140 Most components Determines whether the component uses the same
Ctrl3D as the parent.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 175

ParentFont All controls Determines whether the component uses the same Font
as the parent.

ParentShowHint All controls Determines whether the component uses the same
ShowHint as the parent.

PopupMenu All controls The pop-up menu used when the user right-clicks on the
control.

ShowHint All controls Determines whether hints are enabled.

Showing All controls Determines whether the control is currently showing on
the screen; that is, if all the controls in the parent chain
have the Visible property set. In other words a control
is Showing if it is Visible, its parent control is
Visible, any parent control of the parent control is
Visible, and so forth. (Run-time only and read-only.)

TabOrder All windowed
controls

Determines the control’s tab order in its parent control.

TabStop All windowed
controls

Determines whether the user can move the control with
the Tab key.

Tag All components A long integer available to store custom undefined data.

Top All controls The vertical coordinate of the upper-left corner of the
component.

UndockHeight Most controls The height of the control when it is undocked.

UndockWidth Most controls The width of the control when it is undocked.

Visible All controls Determines whether the control is visible (provided its
parent is also visible, as described in the Showing
property).

Width All controls The horizontal size of the control.

Since there is inheritance among components, it is interesting to see in which ances-
tor classes the most common properties are introduced. You can look at Figure 4.4
for an overview of the properties introduced by the topmost classes of the VCL hier-

140 This is also irrelevant today

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

176 - Chapter 4: VCL Programming Techniques

archy. The following sections provide basic descriptions of some of these common
properties.

Figure 4.4:
The properties
introduced by the
topmost classes of the
VCL hierarchy and
available in all of the
subclasses. Image
based on a picture of
the original printed
book.

The Name Property

Every component in Delphi should have a name. The name must be unique within
the owner component, which is generally the form into which you place the compo-
nent. This means that an application can have two different forms, each with a
component with the same name, although you might want to avoid this practice to

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 177

prevent confusion. It is generally better to keep component names unique through-
out an application.

Setting a proper value for the Name property is very important: If it’s too long, you’ll
need to type a lot of code to use the object; if it’s too short, you may confuse differ-
ent objects. Usually the name of a component has a prefix with the component type;
this makes the code more readable and allows Delphi to group components in the
combo box of the Object Inspector, where they are sorted by name. There are three
important elements related to the Name property of the components:

· First, the value of the Name property is used to define the name of the object in
the declaration of the form class. This is the name you’re generally going to use
in the code to refer to the object. For this reason, the value of the name property
must be a legal Pascal identifier.

· Second, if you set the Name property of a control before changing its Caption
property, the new name is copied to the caption. That is, if the name and the cap-
tion are identical, then changing the name will also change the caption.

· Third, Delphi uses the name of the component to create the default name of the
methods related to its events. If you have a Button1 component, its default
OnClick event handler will be called Button1Click, unless you specify a different
name. If you later change the name of the component, Delphi will modify the
names of the related methods accordingly. For example, if you change the name
of the button to MyButton, the Button1Click method automatically becomes
MyButtonClick.

The Components Array

Besides accessing a component by name, you can use the Components property of its
owner, usually a form. Here is an example of the code you can use to add to a list
box the names of all the components of a form (this code is actually part of the
ChangeOwner example, presented in the next section):

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 ListBox1.Items.Clear;
 for I := 0 to ComponentCount - 1 do141

 ListBox1.Items.Add (Components [I].Name);

141 These days, you can also navigate the components owned by a component using a for..in loop.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

178 - Chapter 4: VCL Programming Techniques

end;

This code uses the ComponentCount property, which holds the total number of com-
ponents owned by the current form, and the Components property, which is actually
the list of the owned components. When you access a value from this list you get a
value of the TComponent type. For this reason you can directly use only the proper-
ties common to all components, such as the Name property. To use properties
specific to particular components, you have to use the proper type-downcast (as).

In Delphi, there are some components that are also component containers: the
GroupBox, the Panel, the PageControl, and, of course, the Form component. When
you use these controls, you can add other components inside them. In this case, the
container is the parent of the components (as indicated by the Parent property),
while the form is their owner (as indicated by the Owner property). You can use the
Controls property of a form or group box to navigate the child controls, and you can
use the Components property of the form to navigate all the owned components,
regardless of their parent.

Using the Components property, we can always access each component of a form. If
you need access to a specific component, however, instead of comparing each name
with the name of the component you are looking for, you can let Delphi do this
work, by using the FindComponent method of the form. This method simply scans
the Components array looking for a name match.

The Owner Property

Every component usually has an owner. When a component is created at design
time (or from the resulting DFM file) its owner will invariably be its form. When
you create a component at run time, the owner is passed as a parameter to the
Create constructor.

The owner is a read-only property, so you cannot change it. However, you can affect
its value by calling the InsertComponent and RemoveComponent methods of the
owner itself, passing the current component as parameter. Using these methods you
can change a component’s owner. However, you cannot apply them directly in an
event handler of a form, as we attempt to do here:

procedure TForm1.Button1Click(Sender: TObject);
begin
 RemoveComponent (Button1);
 Form2.InsertComponent (Button1);
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 179

This code produces a memory access violation, because when you call
RemoveComponent, Delphi disconnects the component from the form field (Button1),
setting it to nil. The solution is to write a procedure like this:

procedure ChangeOwner (Component, NewOwner: TComponent);
begin
 Component.Owner.RemoveComponent (Component);
 NewOwner.InsertComponent (Component);
end;

This method (extracted from the ChangeOwner example) changes the owner of the
component. It is called along with the simpler code used to change the parent com-
ponent; the two commands combined move the button completely to another form,
changing its owner:

procedure TForm1.ButtonChangeClick(Sender: TObject);
begin
 if Assigned (Button1) then
 begin
 // change parent
 Button1.Parent := Form2;
 // change owner
 ChangeOwner (Button1, Form2);
 end;
end;

The method checks whether the Button1 field still refers to the control, because
while moving the component, Delphi will set Button1 to nil. You can see the effect
of this code in Figure 4.5.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

180 - Chapter 4: VCL Programming Techniques

Figure 4.5:
In the ChangeOwner
example, pressing the
Change button moves
the Button1 component
to the second form.
Image from the
original book.

To demonstrate that the Owner of the Button1 component actually changes, I’ve
added another feature to both forms. The List button fills the list box with the
names of the components each form owns, using the procedure shown in the previ-
ous section. Press the two List buttons before and after moving the component, and
you’ll see what happens behind the scenes. As a final feature, the Button1 compo-
nent has a simple handler for its OnClick event, to display the caption of the owner
form:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ShowMessage (‘My owner is ‘ +
 ((Sender as TButton).Owner as TForm).Caption);
end;

Removing Form Fields

Every time you add a component to a form, Delphi adds its complete description,
including all of its properties, to the DFM file. To the Pascal file, Delphi adds the
corresponding field in the form class declaration. When the form is created, Delphi
loads the DFM file and uses it to re-create all the components and set their proper-
ties back. Then it hooks the new object with the form field corresponding to its Name
property.

For this reason, it is certainly possible to have a component without a name. If your
application will not manipulate the component or modify it at run time, you can

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 181

remove the component name from the Object Inspector. Examples are a static label
with fixed text, or a menu item, or even more obviously menu item separators. By
blanking out the name, you’ll remove the corresponding element from the form
class declaration. This reduces the size of the form object (by only four bytes, the
size of the object reference) and it reduces the DFM file by not including a useless
string (the component name). Reducing the DFM also implies reducing the final
EXE file size, even if only slightly.

note If you blank out component names, just make sure to leave at least one named component of each
class used on the form so that the smart linker will link in the required code. If, as an example,
you remove from a form all the fields referring to labels, the Delphi linker will remove the imple-
mentation of the TLabel class from the executable file. The effect is that when the system loads
the form at run time, it is unable to create an object of an unknown class and issues an error indi-
cating that the class is not available.

You can also keep the component name and manually remove the corresponding
field of the form class. Even if the component has no corresponding form field, it is
created anyway, although using it (through the FindComponent method of the form,
for example) will be a little more difficult.

Hiding Form Fields142

Many OOP purists complain that Delphi doesn’t really follow the encapsulation
rules, because all of the components of a form are mapped to public fields and can
be accessed from other forms and units. However, Delphi does that only as a default
to help beginners learn to use the Delphi visual development environment quickly.
A programmer can follow a different approach and use properties and methods to
operate on forms. The risk, however, is that another programmer of the same team
might inadvertently bypass this approach, directly accessing the components if they
are left in the published section. The solution, which many programmers don’t
know about, is to move the components to the private portion of the class declara-
tion.

As an example, I’ve taken a very simple form with an edit box, a button, and a list
box. When the edit box contains text and the user presses the button, the text is
added to the list box. When the edit box is empty, the button is disabled. This is the
simple code of the HideComp example:

142 This section is still very relevant today, given Delphi’s architecture in terms of the form class
structure hasn’t changed.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

182 - Chapter 4: VCL Programming Techniques

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items.Add (Edit1.Text);
end;

procedure TForm1.Edit1Change(Sender: TObject);
begin
 Button1.Enabled := Length (Edit1.Text) <> 0;
end;

I’ve listed these methods only to show you that in the code of a form we usually refer
to the available components, defining their interactions. For this reason it seems
impossible to get rid of the fields corresponding to the component. However, what
we can do is hide them, moving them from the default published section to the pri-
vate section of the form class declaration:

TForm1 = class(TForm)
 procedure Button1Click(Sender: TObject);
 procedure Edit1Change(Sender: TObject);
 procedure FormCreate(Sender: TObject);
private
 Button1: TButton;
 Edit1: TEdit;
 ListBox1: TListBox;
end;

Now if you run the program you’ll get in trouble: The form will load fine, but
because the private fields are not initialized, the events above will use nil object ref-
erences. Delphi usually initializes the published fields of the form using the
components created from the DFM file. What if we do it ourselves, with the follow-
ing code?

procedure TForm1.FormCreate(Sender: TObject);
begin
 Button1 := FindComponent (‘Button1’) as TButton;
 Edit1 := FindComponent (‘Edit1’) as TEdit;
 ListBox1 := FindComponent (‘ListBox1’) as TListBox;
end;

It will almost work, but it generates a system error, similar to the one we discussed
in the previous section. This time, the private declarations will cause the linker to
link in the implementations of those classes, but the problem is that the streaming
system needs to know the names of the classes in order to locate the class reference
needed to construct the components while loading the DFM file.

The final touch we need is some registration code to tell Delphi at run time about
the existence of the component classes we want to use. We should do this before the
form is created, so I generally place this code in the initialization section of the unit:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 183

initialization
 RegisterClasses ([TButton, TEdit, TListBox]);

Now the question is, is this really worth the effort? What we obtain is a higher
degree of encapsulation, protecting the components of a form from other forms
(and other programmers writing them). I have to say that replicating these steps for
each and every form can be tedious, and I’d really like to have a wizard generating
this code for me on the fly while I do the standard operations in Delphi. However,
for a large project built according to the principles of object-oriented programming,
I recommend you consider this or a similar technique143.

Properties Related to Control Size and
Position

Other important properties, common to all controls, are those related to size and
position. The position of a control is determined by its Left and Top properties; its
size by the Height and Width properties. Technically, all components have a posi-
tion, because when you reopen an existing form at design time, you want to be able
to see the icons for the non-visual components in exactly the position where you’ve
placed them. This position is visible in the DFM file.

An important feature of the position of a component is that, like any other coordi-
nate in Windows, it always relates to the client area of its parent component (which
is the component indicated by its Parent property). For a form, the client area is the
surface included within its borders (excluding the borders themselves). It would
have been messy to work in screen coordinates, although there are some ready-to-
use methods that convert the coordinates between the form and the screen and vice
versa.

Note, however, that the coordinates of a control are always relative to the parent
control, which is usually a form but can also be a panel or another container compo-
nent. If you place a panel in a form, and a button in a panel, the coordinates of the
button relate to the panel and not to the form containing the panel. In fact, in this
case, the parent component of the button is the panel.

143 I’ve later build a Delphi Form Wizard, which can automate these steps. It is still available as
part of my Cantools, see github.com/marcocantu/cantools.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://github.com/marcocantu/cantools

184 - Chapter 4: VCL Programming Techniques

Activation and Visibility Properties

There are two basic properties you can use to let the user activate or hide a compo-
nent. The simplest is the Enabled property. When a component is disabled (when
Enabled is set to False), there is usually some visual hint to specify this state to the
user. At design time, the “disabled” property does not always have an effect, but at
run time, disabled components are generally grayed.

For a more radical approach, you can completely hide a component, either by using
the corresponding Hide method or by setting its Visible property to False. Be
aware, however, that reading the status of the Visible property does not tell you if
the control is actually visible. In fact, if the container of a control is hidden, even if
the control is set to Visible, you cannot see it. For this reason, there is another
property, Showing, which is a run-time and read-only property. You can read the
value of Showing to know if the control is really visible to the user; that is, if it is visi-
ble, its parent control is visible, the parent control of the parent control is visible,
and so on.

The Customizable Tag Property

The Tag property is a strange one, because it has no effect at all. It is merely an extra
memory location, present in each component class, where you can store custom val-
ues. The kind of information stored and the way it is used are completely up to you.

It is often useful to have an extra memory location to attach information to a com-
ponent without needing to define your component class. Technically, the Tag
property stores a long integer144 so that, for example, you can store the entry number
of an array or list that corresponds to an object. Using typecasting, you can store in
the Tag property a pointer, an object, or anything else that is four bytes wide. This
allows a programmer to associate virtually anything with a component using its tag.
We’ll see how to use this property in several examples in future chapters, including
the ODMenu examples in Chapter 5.

144 The property is now defined as NativeInt, so that its size with be different in a 32-bit or 64-bit
application, matching the pointer size on each platform.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 185

The User Interface: Color and Font

Two properties often used to customize the user interface of a component are Color
and Font. There are several properties related to the color. The Color property itself
usually refers to the background color of the component. Also, there is a Color prop-
erty for fonts and many other graphic elements. Many components also have a
ParentColor and a ParentFont property, indicating whether the control should use
the same font and color as its parent component, which is usually the form. You can
use these properties to change the font of each control on a form by setting only the
Font property of the form itself.

When you set a font, either by entering values for the attributes of the property in
the Object Inspector or by using the standard font selection dialog box, you can
choose one of the fonts installed in the system. The fact that Delphi allows you to
use all the fonts installed on your system has both advantages and drawbacks. The
main advantage is that if you have a number of nice fonts installed, your program
can use any of them. The drawback is that if you distribute your application, these
fonts might not be available on your users’ computers.

If your program uses a font that your user doesn’t have, Windows will select some
other font to use in its place. A program’s carefully formatted output can be ruined
by the font substitution. For this reason, you should probably rely only on standard
Windows fonts (such as MS Sans Serif, System, Arial, Times New Roman, and so
on). The alternative is to ship some fonts with your application, if the font’s user
license allows it.

There are a number of ways to set the value of a color. The type of this property is
TColor. For properties of this type, you can choose a value from a series of prede-
fined name constants or enter a value directly. The constants for colors include
clBlue, clSilver, clWhite, clGreen, clRed, and many others. As a better alterna-
tive, you can use one of the colors used by Windows for system elements, such as
the background of a window (clWindow), the color of the text of a highlighted menu
(clHightlightText), the active caption (clActiveCaption), and the ubiquitous but-
ton face color (clBtnFace). All the color constants mentioned here are listed in
Delphi’s Help under the TColor type topic.

Another option is to specify a TColor as a number (a four-byte hexadecimal value)
instead of using a predefined value. If you use this approach, you should know that
the low three bytes of this number represent RGB color intensities for blue, green,
and red, respectively. For example, the value $00FF0000 corresponds to a pure blue
color, the value $0000FF00 to green, the value $000000FF to red, the value $00000000

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

186 - Chapter 4: VCL Programming Techniques

to black, and the value $00FFFFFF to white. By specifying intermediate values, you
can obtain any of the 16 million possible colors.

Instead of specifying these hexadecimal values directly, you should use the RGB
function, which has three parameters, all ranging from 0 to 255. The first indicates
the amount of red, the second the amount of green, and the last the amount of blue.
Using the RGB function makes programs generally more readable than using a single
hexadecimal constant.

note RGB is almost a Windows API function. It is defined by the Windows-related units and not by
Delphi units, but a similar function does not exist in the Windows API. In C, there is a macro that
has the same name and effect, so this is a welcome addition to the Pascal interface to Windows.

The highest-order byte of the TColor type is used to indicate which palette should be
searched for the closest matching color, but palettes are too advanced a topic to dis-
cuss here. (Sophisticated imaging programs also use this byte to carry transparency
information for each display element on the screen.) Regarding palettes and color
matching, note that Windows sometimes replaces an arbitrary color with the closest
available solid color, at least in video modes that use a palette. This is always the
case with fonts, lines, and so on. At other times, Windows uses a dithering tech-
nique to mimic the requested color by drawing a tight pattern of pixels with the
available colors. In 16-color (VGA) adapters145 and at higher resolutions, you often
end up seeing strange patterns of pixels of different colors and not the color you had
in mind.

Common VCL Methods

Component methods are just like any other methods. There are procedures and
functions you can call to perform the corresponding action. As mentioned earlier,
you can often use methods to accomplish the same effect as reading or writing a
property. Usually, the code is easier to read and understand when you use proper-
ties. However, not all methods have corresponding properties. Most of them are
procedures, which execute an action instead of reading or writing a value. Again,
some methods are available in all of the components; other methods are shared only
by controls (visual components), and so on. Table 4.2 lists some common compo-

145 This tells you how old this book is, as this was current hardware back than!

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 187

nent methods. We’ll see examples of using most of these methods throughout the
book146.

Table 4.2: Some Methods Available for Most VCL Components

METHOD AVAILABLE FOR DESCRIPTION

BeginDrag All controls Starts manual dragging.

BringToFront All controls Puts the control in front of all others.

CanFocus All controls Determines whether the control will accept the keyboard
input focus.

ClientToScreen All controls Translates client coordinates into screen coordinates.

ContainsControl All controls Determines whether a certain control is contained by the
current one.

Create All components Creates a new instance (constructor).

Destroy All components Destroys the instance (destructor). You should actually call
Free.

Dragging All controls Indicates whether the controls are being dragged.

EndDrag All controls Manually terminates dragging.

ExecuteAction All components Activates the action connected with the component.

FindComponent All components Returns the component in the Components array
property having a given name (we’ve just used it in the
HideComp example).

FlipChildren All windowed
controls

Moves child controls from the left side to the right side and
vice versa. Used for supporting right-to-left languages
(such as Arabic or Hebrew), along with the
IsRightToLeft property.

Focused All windowed
controls

Determines whether the control has the focus.

146 These remains a fairly good list today, as well. Same for the list of events below.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

188 - Chapter 4: VCL Programming Techniques

Free All components Deletes the object from memory (forms should use the
Release method).

GetTextBuf All controls Retrieves the text (or caption) of the control.

GetTextLen All controls Returns the length of the text (or caption) of the control.

HandleAllocated All controls Returns True if a system handle has been allocated for
the control.

HandleNeeded All controls Allocates a corresponding system handle if one doesn’t
already exist.

Hide All controls Makes the control invisible (the same as setting the
Visible property to False).

InsertComponent All components Adds a new element to the list of owned components.

InsertControl All controls Adds a new element to the list of controls that are the
children of the current one.

Invalidate All controls Forces a repaint of the control.

ManualDock All controls Manually activates docking.

ManualFloat All controls Sets the docking control as a floating one.

RemoveComponent All components Removes a component from the Components list.

ScaleBy All controls Scales the control by a given percentage.

ScreenToClient All controls Translates screen coordinates into client coordinates.

ScrollBy All controls Scrolls the contents of the control.

SendToBack All controls Puts the control behind all the others.

SetBounds All controls Changes the position and size of the control (faster than
accessing the related properties one by one).

SetFocus All controls Gives the input focus to the control.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 189

SetTextBuf All controls Sets the text (or caption) of the control.

Show All controls Makes the control visible (the same as setting the
Visible property to True).

Update All controls Immediately repaints the control, if there are pending
painting requests.

Common VCL Events

Just as there is a set of properties common to all components, there are some events
that are available for all of them. Table 4.3 provides short descriptions of these
events. Again, this table is meant only as a starting point. You’ll see examples using
most of these events throughout the book.

Table 4.3: Some Events Available for Most Components

EVENT AVAILABLE FOR DESCRIPTION

OnCanResize Many controls Occurs when the control is resized and allows you to
stop the operation.

OnChange Many
components

Occurs when the object or its data change.

OnClick Most controls Occurs when the left mouse button is clicked over the
component.

OnContextPopupMen
u

All controls (new
in Delphi 5)

Occurs when the user right-clicks the control. It allows
you to do a different action than showing the attached
popup menu.

OnDblClick Many controls Occurs when the user double-clicks with the mouse over
the component.

OnDockDrop Windowed
controls

Occurs when the docking operation terminates over the
current control.

OnDockOver Windowed
controls

Occurs when the user drags the mouse over the
component during a docking operation.

OnDragDrop Most controls Occurs when a dragging operation terminates over the
component; it is sent by the component that received
the dragging operation.

OnDragOver Most controls Occurs when the user drags the mouse over the
component.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

190 - Chapter 4: VCL Programming Techniques

OnEndDock Most controls Occurs when the docking operation of the current
control terminates.

OnEndDrag Most controls Occurs when the dragging terminates; it is sent by the
component that started the dragging operation.

OnEnter All windowed
controls

Occurs when the component is activated; that is, the
component receives the focus.

OnExit All windowed
controls

Occurs when the component loses the focus.

OnGetSiteInfo Windowed
controls

Returns the control’s docking information.

OnKeyDown Some windowed
controls

Occurs when the user presses a key on the keyboard; it is
sent to the component with the input focus.

OnKeyPress Some windowed
controls

Occurs when the user presses a key; it is sent to the
component with the input focus.

OnKeyUp Some windowed
controls

Occurs when the user releases a key; it is sent to the
component with the input focus.

OnMouseDown Most controls Occurs when the user presses one of the mouse buttons;
it is sent to the component under the mouse cursor.

OnMouseMove Most controls Occurs when the user moves the mouse over a
component; it is sent to the component under the mouse
cursor.

OnMouseUp Most controls Occurs when the user releases one of the mouse buttons;
it is sent to the component under the mouse cursor.

OnMouseWheel,
OnMouseWheelDown,
OnMouseWheelUp

Windowed
controls

Occur when the user rotates the mouse wheel or clicks
on it as if it was a button.

OnResize Most controls Occurs when the resizing operation terminates.

OnStartDock Most controls Occurs when the user starts docking.

OnStartDrag Most controls Occurs when the user starts dragging; it is sent to the
component originating the dragging operation.

OnUnDock Windowed
controls

Occurs when another control is undocked from the
current one.

Understanding Frames

Chapter 1 introduced frames as one of the new features of Delphi 5. We’ve seen that
you can create a new frame, place some components in it, write some event han-
dlers for the components, and then add the frame to a form. In other words, a frame

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 191

is similar to a form, but it defines only a portion of a window, not a complete win-
dow. This is certainly not a feature worth a new construct. The totally new element
of frames is that you can create multiple instances of a frame at design time and you
can modify the class and the instance at the same time. This makes frames an effec-
tive tool for creating customizable composite controls at design time, something
close to a visual component-building tool.

You are probably familiar with the Delphi concept of visual form inheritance (dis-
cussed in Chapter 2). You can work on both a base form and a derived form at
design time, and any changes you make to the base form are propagated to the
derived one, unless this overrides some property or event. With frames, you work
on a class (as usual in Delphi), but the difference is that you can also customize one
or more instances of the class created at design time. When you work on a form, you
cannot change a property of the TForm1 class for the Form1 object at design time.
With frames, you can.

Once you realize you are working with a class and one or more of its instances at
design time, there is nothing more to understand about frames. In practice, frames
are useful when you want to use the same group of components in multiple forms
within an application. In this case, in fact, you can customize each of the instances
at design time. Wasn’t this already possible with component templates? It was, but
component templates were based on the concept of copying and pasting some com-
ponents and their code. There was no way to change the original definition of the
template and see the effect in every place it was used. That is what happens with
frames (and in a different way with visual form inheritance); changes to the original
version (the class) are reflected in the copies (the instances).

There are many other uses of frames, which will become more apparent as Delphi
programmers adopt this feature. Frames can be very useful when building multiple-
page forms, as I’ll demonstrate in Chapter 8.

Let’s discuss a few more elements of frames with an example, called Frames2. This
program has a frame with a list box, an edit box, and three buttons with simple code
operating on the components. The frame also has a bevel aligned to its client area,
because frames have no border. This is the definition of the frame in its own DFM
file:

object FrameList: TFrameList
 Left = 0
 Top = 0
 Width = 202
 Height = 306
 TabOrder = 0
 object Bevel: TBevel
 Align = alClient

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

192 - Chapter 4: VCL Programming Techniques

 Shape = bsFrame
 end
 object ListBox: TListBox...
 object Edit: TEdit
 Text = ‘Some text’
 end
 object btnAdd: TButton
 Caption = ‘&Add’
 OnClick = btnAddClick
 end
 object btnRemove: TButton
 Caption = ‘&Remove’
 OnClick = btnRemoveClick
 end
 object btnClear: TButton
 Caption = ‘&Clear’
 OnClick = btnClearClick
 end
end

Of course, the frame has also a corresponding class, which looks like a normal form
class:

type
 TFrameList = class(TFrame)
 ListBox: TListBox;
 Edit: TEdit;
 btnAdd: TButton;
 btnRemove: TButton;
 btnClear: TButton;
 Bevel: TBevel;
 procedure btnAddClick(Sender: TObject);
 procedure btnRemoveClick(Sender: TObject);
 procedure btnClearClick(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

What is different is that you can add the frame to a form. I’ve used two instances of
the frame in the example (as you can see in Figure 4.6) and modified the behavior
slightly. The first instance of the frame has the list box items sorted. When you
change a property of a component of a frame, the DFM file of the hosting form will
list the differences, as it does with visual form inheritance:

object FormFrames: TFormFrames
 Caption = ‘Frames2’
 inline FrameList1: TFrameList
 Left = 8
 Top = 8

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 193

 inherited ListBox: TListBox
 Sorted = True
 end
 end
 inline FrameList2: TFrameList
 Left = 232
 Top = 8
 inherited btnClear: TButton
 OnClick = FrameList2btnClearClick
 end
 end
end

Figure 4.6:
A frame and two
instances of it at design
time, in the Frames2
example. Image from
the original book.

As you can see from the listing, the DFM file for a form that has frames uses a new
DFM keyword, inline. The references to the modified components of the frame,
instead, use the inherited keyword, although this term is used with an extended
meaning. inherited here doesn’t refer to a base class we are inheriting from, but to
the class we are instancing (or inheriting) an object from. It was probably a good
idea, though, to use an existing feature of visual form inheritance and apply it to the
new context. The effect of this approach, in fact, is that you can use the Revert to
Inherited command of the Object Inspector or of the form to cancel the changes and
get back to the default value of properties.

Notice also that unmodified components of the frame class are not listed in the
DFM file of the form using the frame, and that the form has two frames with differ-
ent names, but the components on the two frames have the same name. In fact,
these components are not owned by the form, but are owned by the frame. This
implies that the form has to reference those components through the frame, as you
can see in the code for the buttons that copy items from one list box to the other:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

194 - Chapter 4: VCL Programming Techniques

procedure TFormFrames.btnLeftClick(Sender: TObject);
begin
 FrameList1.ListBox.Items.AddStrings (
 FrameList2.ListBox.Items);
end;

Finally, besides modifying properties of any instance of a frame, you can change the
code of any of its event handlers. If you double-click one of the buttons of a frame
while working on the form (not on the stand-alone frame), Delphi will generate this
code for you:

procedure TFormFrames.FrameList2btnClearClick(Sender: TObject);
begin
 FrameList2.btnClearClick(Sender);

end;

The line of code automatically added by Delphi corresponds to a call to the inherited
event handler of the base class in visual form inheritance. This time, however, to get
the default behavior of the frame we need to call an event handler and apply it to a
specific instance—the frame object itself. The current form, in fact, doesn’t include
this event handler and knows nothing about it.

Whether you leave this call in place or remove it depends on the effect you are look-
ing for. In the example I’ve decided to conditionally execute the default code,
depending on the user confirmation:

procedure TFormFrames.FrameList2btnClearClick(Sender: TObject);
begin
 if MessageDlg (‘OK to empty the list box?’,
 mtConfirmation, [mbYes, mbNo], 0) = idYes then
 // execute standard frame code
 FrameList2.btnClearClick(Sender);
end;

note By the way, note that because the event handler has some code, leaving it empty and saving the
form won’t remove it as usual: in fact, it isn’t empty! Instead, if you simply want to omit the
default code for an event, you need to add at least a comment to it, to avoid it being automatically
removed by the system!

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 195

Lists and Container Classes

It is often important to handle groups of components or objects. Besides using stan-
dard arrays and dynamic arrays, there are a few classes of the VCL that represent
lists of other objects. These classes can be divided into three groups: simple lists,
collections, and containers. The last group has been introduced in Delphi 5.

Lists are represented by the generic list of objects, TList, and by the two lists of
strings, TStrings and TStringList:

· TList defines a list of pointers, which can be used to store objects of any class147.
A TList is more flexible than a dynamic array, because it is expanded automati-
cally, simply by adding new items to it. The advantage of dynamic arrays over a
TList, instead, is that dynamic arrays allow you to indicate a specific type for
contained objects and perform the proper compile-time type checking.

· TStrings is an abstract class to represent all forms of string lists, regardless of
their storage implementations. This class defines an abstract list of strings. For
this reason, TStrings objects are used only as properties of components capable
of storing the strings themselves, such as a list box.

· TStringList, a subclass of TStrings, defines a list of strings with their own stor-
age. You can use this class to define a list of strings in a program.

The second group, collections, contains only two classes, TCollection and
TCollectionItem. TCollection defines a homogeneous list of objects, which are
owned by the collection class. The objects in the collection must be descendants of
the TCollectionItem class. If you need a collection storing specific objects, you have
to create both a subclass of TCollection and a subclass of TCollectionItem. Collec-
tions are invariably used to specify values of properties of components. It is very
unusual to work with collections directly inside programs. All these lists have a
number of methods and properties. You can operate on lists using the array nota-
tion (“[” and “]”) both to read and to change elements. There is a Count property, as
well as typical access methods, such as Add, Insert, Delete, Remove, and search
methods (for example, IndexOf).

TStringList and TStrings objects have both a list of strings and a list of objects
associated with the strings. This opens up a number of different uses for these

147 Along with the introduction of the support for Generic programming in the Delphi language,
the run-time library added a new TList<T> generic class, which can hold a list of objects of any
specific class (and its sub-classes). Using a generic TList<T> makes applications more type
safe and robust and it’s highly recommended.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

196 - Chapter 4: VCL Programming Techniques

classes. For example, you can use them for dictionaries of associated objects or to
store bitmaps or other elements to be used in a list box.

note The TListbox component actually uses a TStringList object when it needs to store strings
while its window handle is invalid; it uses a different descendant of TStrings object when it
finally associates with a Windows list box control, which stores its own strings.

The two classes of lists of strings also have ready-to-use methods to store or load
their contents to or from a text file, SaveToFile and LoadFromFile. To loop through
a list, you can use a simple for statement based on its index, as if the list were an
array.

Using Lists of Objects

We can write an example focusing on the use of the generic TList class. When you
need a list of any kind of data, you can generally declare a TList object, fill it with
the data, and then access the data while casting it to the proper type. The ListDemo
example demonstrates just this. It also shows the pitfalls of this approach148. Its
form has a private variable, holding a list of dates:

private
 ListDate: TList;

This list object is created when the form itself is created:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Randomize;
 ListDate := TList.Create;
end;

A button of the form adds a random date to the list (of course, I’ve included in the
project the unit containing the date component built in the previous chapter):

procedure TForm1.ButtonAddClick(Sender: TObject);
begin
 ListDate.Add (TDate.Create (1900 + Random (200),
 1 + Random (12), 1 + Random (30)));
end;

148 This pitfalls can be overcome using the generic TList<T>.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 197

When you extract the items from the list, you have to cast them back to the proper
type, as in the following method, which is connected to the List button (you can see
its effect in Figure 4.7):

procedure TForm1.ButtonListDateClick(Sender: TObject);
var
 I: Integer;
begin
 ListBox1.Clear;
 for I := 0 to ListDate.Count - 1 do
 Listbox1.Items.Add ((
 TObject(ListDate [I]) as TDate).Text);
end;

Figure 4.7:
The list of dates shown
by the ListDemo
example. Image from
the original book.

At the end of the code above, before we can do an as downcast, we first need to
hard-cast the pointer returned by the TList into a TObject reference. This kind of
expression can result in an invalid typecast exception, or it can generate a memory
error when the pointer is not a reference to an object149.

To demonstrate that things can indeed go wrong, I’ve added one more button,
which adds a TButton object to the list:

procedure TForm1.ButtonWrongClick(Sender: TObject);
begin
 // add a button to the list
 ListDate.Add (Sender);
end;

149 Again, this can be addressed by using the generic class TList<T> based on the specific type of
elements we want to add to the list.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

198 - Chapter 4: VCL Programming Techniques

If you click this button and then update one of the lists, you’ll get an error. Finally,
remember that when you destroy a list of objects, you should remember to destroy
all of the objects of the list first. The ListDemo program does this in the
FormDestroy method of the form:

procedure TForm1.FormDestroy(Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to ListDate.Count - 1 do
 TObject(ListDate [I]).Free;
 ListDate.Free;
end;

Delphi 5 Container Classes

Delphi 5 introduces a new series of container classes, defined in the Contnrs unit.
These classes extend the TList classes, by adding the idea of ownership and defin-
ing specific extraction rules (mimicking stacks and queues). The basic difference
between TList and the new TObjectList150 class is that the latter is defined as a list
of TObject objects, not a list of pointers. Even more important, however, is the fact
that if the object list has the OwnsObjects property set to True, it automatically
deletes an object when it is replaced by another one and deletes each object when
the list itself is destroyed. Here’s a list of all the new container classes:

· The TObjectList class I’ve already described represents a list of objects, eventu-
ally owned by the list itself.

· The inherited class TComponentList represents a list of components, with full
support for destruction notification (an important safety feature when two com-
ponents are connected using their properties; that is, when a component is the
value of a property of another component).

· The TClassList class is a list of class references. It inherits from TList and
requires no destruction.

· The classes TStack151 and TObjectStack represent lists of pointers and objects,
from which you can only extract elements starting from the last one you’ve
inserted. A stack follows the LIFO order (Last In, First Out). The typical methods

150 There is now also a generic version, TObjectList<T>, available in the System.Generics.Collec-
tions unit.

151 Or the better equivalent TStack<T> in the System.Generics.Collections unit.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 199

of a stack are Push for insertion, Pop for extraction, and Peek to preview the first
item without removing it. You can still use all the methods of the base class,
TList.

· The classes TQueue152 and TObjectQueue represent lists of pointers and objects,
from which you always remove the first item you’ve inserted (FIFO: First In,
First Out). The methods of these classes are the same as those of the stack classes
but behave differently.

note Unlike the TObjectList, the TObjectStack and the TObjectQueue do not own the inserted
objects and will not destroy those objects left in the data structure when it is destroyed. You can
simply Pop all the items, destroy them once you’re finished using them, and then destroy the con-
tainer.

To demonstrate the use of these classes, I’ve modified the earlier ListDate example
into the new Contain example. First, I changed the type of the ListDate variable to
TObjectList. In the FormCreate method, I’ve modified the list creation to the fol-
lowing code, which activates the list ownership:

ListDate := TObjectList.Create (True);

At this point, we can simplify the destruction code, as applying Free to the list will
automatically free the dates it holds.

I’ve also added to the program a stack and a queue object, filling each of them with
numbers. One of the form’s two buttons displays a list of the numbers in each con-
tainer, and the other removes the last item (displayed in a message box):

procedure TForm1.btnQueueClick(Sender: TObject);
var
 I: Integer;
begin
 ListBox1.Clear;
 for I := 0 to Stack.Count - 1 do
 begin
 ListBox1.Items.Add (IntToStr (Integer (Queue.Peek)));
 Queue.Push(Queue.Pop);
 end;
 ShowMessage (‘Removed: ‘ + IntToStr (Integer (Stack.Pop)));
end;

By pressing the two buttons, you can see that calling Pop for each container returns
the last item. The difference is that the TQueue class inserts elements at the begin-
ning, and the TStack class inserts them at the end.

152 Or the better equivalent TQueue<T> in the System.Generics.Collections unit.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

200 - Chapter 4: VCL Programming Techniques

Type-Safe Containers and Lists

Containers and lists have a problem: They are not type safe, as I’ve shown in both
examples by adding a button object to a list of dates. To ensure that the data in a list
is homogenous, you can check the type of the data you extract before you insert it,
but as an extra safety measure you might also want to check the type of the data
while extracting it. However, adding run-time type checking slows down a program
and is risky—a programmer might fail to check the type in some cases.

To solve both problems, you can create specific list classes for given data types and
fashion the code from the existing TList or TObjectList classes (or another con-
tainer class). There are two approaches to accomplish this153:

· Derive a new class from the list class and customize the Add method and the
access methods, which relate to the Items property. This is also the approach
used by Borland for the container classes, which all derive from TList.

· Create a brand-new class that contains a TList object, and map the methods of
the new class to the internal list using proper type checking. This approach
defines a wrapper class, a class that “wraps” around an existing one to provide a
different or limited access to its methods (in our case, to perform a type conver-
sion).

I’ve implemented both solutions in the DateList example, which defines lists of
TDate objects. In the listing below you’ll find the declaration of the two classes, the
inheritance-based TDateListI class and the wrapper class TDateListW.

type
// inheritance based
TDateListI = class (TObjectList)
protected
 procedure SetObject (Index: Integer; Item: TDate);
 function GetObject (Index: Integer): TDate;
public
 function Add (Obj: TDate): Integer;
 procedure Insert (Index: Integer; Obj: TDate);
 property Objects [Index: Integer]: TDate
 read GetObject write SetObject; default;
end;
// wrapper based
TDateListW = class(TObject)
private
 FList: TObjectList;

153 There is now a much better and easier approach, which is using the generic container classes
in the System.Generics.Collections unit.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 4: VCL Programming Techniques - 201

 function GetObject (Index: Integer): TDate;
 procedure SetObject (Index: Integer; Obj: TDate);
 function GetCount: Integer;
public
 constructor Create;
 destructor Destroy; override;
 function Add (Obj: TDate): Integer;
 function Remove (Obj: TDate): Integer;
 function IndexOf (Obj: TDate): Integer;
 property Count: Integer read GetCount;
 property Objects [Index: Integer]: TDate
 read GetObject write SetObject; default;
end;

Obviously, the first class is simpler to write—it has fewer methods, and they simply
call the inherited ones. The good thing is that a TDateListI object can be passed to
parameters expecting a TList. The problem is that the code that manipulates an
instance of this list via a generic TList variable will not be calling the specialized
methods, because they are not virtual and might end up adding to the list objects of
other data types.

Instead, if you decide not to use inheritance, you end up writing a lot of code,
because you need to reproduce each and every one of the original TList methods,
simply calling the methods of the internal FList object. The drawback is that the
TDateListW class is not type compatible with TList, which limits its usefulness. It
can’t be passed as parameter to methods expecting a TList.

Both of these approaches provide good type checking. After you’ve created an
instance of one of these list classes, you can add only objects of the appropriate type,
and the objects you extract will naturally be of the correct type. This is demon-
strated by the DateList example. This program has a few buttons, a combo box to let
a user choose which of the lists to show, and a list box to show the actual values of
the list. The program stretches the lists by trying to add a button to the list of TDate
objects. To add an object of a different type to the TDateListI list, we can simply
convert the list to its base class, TList. This might accidentally happen if you pass
the list as a parameter to a method that expects a base class object. In contrast, for
the TDateListW list to fail we must explicitly cast the object to TDate before inserting
it, something a programmer should never do:

procedure TForm1.ButtonAddButtonClick(Sender: TObject);
begin
 ListW.Add (TDate(TButton.Create (nil)));
 TList(ListI).Add (TButton.Create (nil));
 UpdateList;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

202 - Chapter 4: VCL Programming Techniques

The UpdateList call triggers an exception, displayed directly in the list box, because
I’ve used an as type cast in the custom list classes. A wise programmer should never
write the above code.

To summarize, writing a custom list for a specific type makes a program much more
robust. Writing a wrapper list instead of one that’s based on inheritance tends to be
a little safer, although it requires more coding.

note Instead of rewriting wrapper-style list classes for different types, you can use my List Template
Wizard, discussed in Delphi Developer’s Handbook and available on my Web site.154

What’s Next?

As we have seen in this chapter, Delphi includes a full-scale class library that is just
as complete as Microsoft’s MFC C++ class library. Delphi’s VCL, of course, is much
more component-oriented, and its classes offer a higher-level abstraction over the
Windows API than the C++ libraries usually do.

To use components, you only need a clear understanding of the terminal nodes of
the VCL hierarchy; that is, the components that show up in the Component Palette
plus a few others. You really don’t need a deeper knowledge of the VCL internals to
use components; this knowledge is only necessary when you write new components
or modify existing ones.

This chapter ends Part I of the book, which has covered the foundations of Delphi
programming. Part II is fully devoted to examples of the use of the various compo-
nents. We’ll start in Chapter 5 with the advanced use of traditional Windows
controls and menus, cover the TForm class in Chapter 6, and then examine toolbars,
status bars, dialog boxes, and MDI applications in later chapters.

154 This is not available any more, given it’s pretty much useless after the introduction of generics
to the Delphi language and of generic collections in the RTL.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 203

Chapter 5:

Advanced Use Of

The Standard

Components

Now that you’ve been introduced to the Delphi environment and have seen an over-
view of the Object Pascal language and the Visual Component Library, we are ready
to delve into the second part of the book: the use of components. This is really what
Delphi is about. Visual programming using components is the key feature of this
development environment.

Delphi comes with a number of ready-to-use components. I will not describe every
component in detail, examining each of its properties and methods. If you need this

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

204 - Chapter 5: Advanced Use of the Standard Components

information, you can find it easily in the Help system. The aim of Part II of this book
is to show you how to use some of the advanced features offered by the Delphi pre-
defined components to build applications.

I’ll start by trying to list all the various component alternatives you have, since
choosing the right component is often a way to get into a project faster. This chapter
presents the components in the Standard page of the Component Palette and some
of the Win32 controls.

Opening the Component Tool Box

So you want to write a Delphi application155. You open a new Delphi project and find
yourself faced with a large number of components. The problem is that for every
operation there are multiple alternatives. For example, you can show a list of values
using a list box, a combo box, a radio group, a string grid, a list view, or even a tree
view if there is a hierarchical order. Which one should you use? That is difficult to
say. There are many considerations, depending on what you want your application
to do. For this reason I’ve provided a highly condensed summary of alternative
options for a few common tasks.

note For some of the controls described in the following sections Delphi also includes a data-aware ver-
sion, usually indicated by the DB prefix. As you’ll see in Chapter 9, the DB version of a control
typically serves a role similar to that of its “standard” equivalent; but the properties and the ways
you use it are often quite different. For example, in an Edit control you use the Text property,
while in a DBEdit component you access the Value of the related field object.

The Text Input Component

Although a form or a component can handle keyboard input directly, using the
OnKeyPress event, this isn’t a common operation. Windows provides ready-to-use
controls you can use to get string input and even build a simple text editor. Delphi
has several slightly different components in this area.

155 At the time of this book, using VCL for the UI was the only option. These days you can choose
between VCL and FireMonkey, which has similar UI controls but is based on a completely dif-
ferent architecture. FireMonkey is not covered in this book, which is focused on VCL and Win-
dows programming, because that’s what was available in the Delphi 5 timeframe.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 205

The Edit Component

The Edit component allows the user to enter a single line of text156. (You can also
display a single line of text with a Label or a StaticText control, but these compo-
nents are generally used only for fixed text or program-generated output, not for
input.) The Edit component uses the Text property, whereas many other controls
use the Caption property to refer to the text they display. The only condition you can
impose on user input is the number of characters to accept. If you want to accept
only specific characters, you can handle the OnKeyPress event of the edit box. For
example, we can write a method that tests whether the character is a number or the
Backspace key (which has a numerical value of 8). If it’s not, we change the value of
the key to the null character (#0), so that it won’t be processed by the edit control
and will produce a warning beep:

procedure TForm1.Edit1KeyPress(
 Sender: TObject; var Key: Char);
begin
 // check if the key is a number or backspace
 if not (Key in [‘0’..’9’, #8]) then
 begin
 Key := #0;
 Beep;
 end;
end;

The MaskEdit Component

To customize the input of an edit box further, you can use the MaskEdit component,
which has an EditMask property. This is a string indicating for each character
whether it should be uppercase, lowercase, or a number, and other similar condi-
tions. You can see the editor of the EditMask property in Figure 5.1.

note You can display any property’s editor by selecting the property in the Object Inspector and click-
ing the ellipsis (…) button.

The Input Mask editor allows you to enter a mask, but it also asks you to indicate a
character to be used as a placeholder for the input and to decide whether to save the
literals present in the mask, together with the final string. For example, you can
choose to display the parentheses around the area code of a phone number only as

156 There is now also a NumberBox component, which is specific meant for the input of numeric
values, including integers, floating point numbers, and currency. It’s a much better solution
comapred to the code in the snippet below to make an edit accept only numeric characters.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

206 - Chapter 5: Advanced Use of the Standard Components

an input hint or to save them with the string holding the resulting number. These
two entries in the Input Mask editor correspond to the last two fields of the mask
(separated by semicolons).

Figure 5.1:
The MaskEdit
component’s EditMask
property editor. Images
captured in Delphi 5
and Delphi 12.

note Pressing the Masks button of the Mask Editor lets you choose predefined input masks for differ-
ent countries.

The Memo and RichEdit Components

Both of the controls discussed so far allow a single line of input. The Memo compo-
nent, by contrast, can host several lines of text but (on the Win95/98 platforms) still
retains the 16-bit Windows 32KB text limit and allows only a single font for the
entire text. You can work on the text of the memo line by line (using the Lines string
list) or access the entire text at once (using the Text property).

If you want to host a large amount of text or change fonts and paragraph align-
ments, you should use the RichEdit control, a Win32 common control based on the

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 207

RTF document format. You can find an example of a complete editor based on the
RichEdit component among the sample programs that ship with Delphi. (The exam-
ple is named RichEdit, too.)

The RichEdit component has a DefAttributes property indicating the default styles
and a SelAttributes property indicating the style of the current selection. These
two properties are not of the TFont type, but they are compatible with fonts, so we
can use the Assign method to copy the value, as in the following code fragment:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if RichEdit1.SelLength > 0 then
 begin
 FontDialog1.Font.Assign (RichEdit1.DefAttributes);
 if FontDialog1.Execute then
 RichEdit1.SelAttributes.Assign (FontDialog1.Font);
 end;
end;

Selecting Options

There are two standard Windows controls that allow the user to choose different
options, as well as controls for grouping sets of options.

The CheckBox and RadioButton Components

The first is the check box, which corresponds to an option that can be selected
regardless of the status of other check boxes. Setting the AllowGrayed property of
the check box allows you to display three different states (selected, not selected, and
grayed), which alternate as a user clicks on the check box.

The second type of control is the radio button, which corresponds to an exclusive
selection. Two radio buttons on the same form or inside the same radio group con-
tainer cannot be selected at the same time, and one of them should always be
selected (as programmer, you are responsible for selecting one of the radio buttons
at design time).

The GroupBox Components

To host several groups of radio buttons, you can use a GroupBox control to hold
them together, both functionally and visually. To build a group box with radio but-
tons, simply place the GroupBox component on a form and then add the radio
buttons to the group box.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

208 - Chapter 5: Advanced Use of the Standard Components

You can handle the radio buttons individually, but it’s easier to navigate through the
array of controls owned by the group box, as discussed in the previous chapter. Here
is a small code excerpt used to get the text of the selected radio button of a group:

var
 I: Integer;
 Text: string;
begin
 for I := 0 to GroupBox1.ControlCount - 1 do
 if (GroupBox1.Controls[I] as TRadioButton).Checked then
 Text := (GroupBox1.Controls[I] as TRadioButton).Caption;

The RadioGroup Component

Delphi has a similar component that can be used specifically for radio buttons, the
RadioGroup component. A RadioGroup is a group box with some radio button
clones painted inside it. The term clone in this context refers to the fact that the
RadioGroup component is a single control, a single window, with elements similar
to radio buttons painted on its surface.

Using the radio group is generally easier than using the group box, since the various
items are part of a list, as in a list box. This is how you can get the text of the selected
item:

Text := RadioGroup1.Items [RadioGroup1.ItemIndex];

Technically, a RadioGroup uses fewer resources and less memory, and it should be
faster to create and paint. Also, the RadioGroup component can automatically align
its radio buttons in one or more columns (as indicated by the Columns property),
and you can easily add new choices at run time, by adding strings to the Items string
list. By contrast, adding new radio buttons to a group box would be quite complex.

Lists

When you have many selections, radio buttons are not appropriate. The usual num-
ber of radio buttons is no more than five or six, to avoid cluttering the user
interface; when you have more choices, you can use a list box or one of the other
controls that display lists of items and allow the selection of one of them.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 209

The ListBox Component

The selection of an item in a list box uses the Items and ItemIndex properties as in
the code shown above for the RadioGroup control. If you need access to the text of
selected list box items often, you can write a small wrapper function like this:

function SelText (List: TListBox): string;
var
 nItem: Integer;
begin
 nItem := List.ItemIndex;
 if nItem >= 0 then
 Result := List.Items [nItem]
 else
 Result := ‘’;
end;

Another important feature is that by using the ListBox component, you can choose
between allowing only a single selection, as in a group of radio buttons, and allow-
ing multiple selections, as in a group of check boxes. You make this choice by
specifying the value of the MultiSelect property. There are two kinds of multiple
selections in Windows and in Delphi list boxes: multiple selection and extended
selection. In the first case a user selects multiple items simply by clicking on them,
while in the second case the user can use the Shift and Ctrl keys to select multiple
consecutive or nonconsecutive items. This second choice is determined by the
ExtendedSelect property.

For a multiple-selection list box, a program can retrieve information about the num-
ber of selected items by using the SelCount property, and it can determine which
items are selected by examining the Selected array. This array of Boolean values
has the same number of entries as the list box. For example, to concatenate all the
selected items into a string, you can scan the Selected array as follows:

var
 SelItems: string;
 nItem: Integer;
begin
 SelItems := '';
 for nItem := 0 to ListBox1.Items.Count - 1 do
 if ListBox1.Selected [nItem] then
 SelItems := SelItems + ListBox1.Items[nItem] + ' ';

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

210 - Chapter 5: Advanced Use of the Standard Components

The ComboBox Component

List boxes take up a lot of screen space, and they offer a fixed selection. That is, a
user can choose only among the items in the list box and cannot enter any choice
that the programmer did not specifically foresee.

You can solve both problems by using a ComboBox control, which combines an edit
box and a drop-down list. The behavior of a ComboBox component changes a lot
depending on the value of its Style property. The csDropDown style defines a typical
combo box, which allows direct editing and displays a list box on request, the
csDropDownList style defines a combo box that does not allow editing (but uses the
keystrokes to select an item), and the csSimple style defines a combo box that
always displays the list box below it.

Note also that accessing the text of the selected value of a ComboBox is easier than
doing the same operation for a list box, since you can simply use the Text property.
A useful and common trick for combo boxes is to add a new element to the list when
a user enters some text and presses the Enter key. The following method first tests
whether the user has pressed that key, by looking for the character with the numeric
(ASCII) value of 13. It then tests to make sure the text of the combo box is not empty
and is not already in the list—if its position in the list is less than zero. Here is the
code:

procedure TForm1.ComboBox1KeyPress(Sender: TObject; var Key: Char);
begin
 // if the user presses the Enter key
 if Key = Chr (13) then
 with ComboBox3 do
 if (Text <> '') and (Items.IndexOf (Text) < 0) then
 Items.Add (Text);
end;

The CheckListBox Component

Another extension of the list box control is represented by the CheckListBox compo-
nent, a list box with each item preceded by a check box (as you can see in Figure
5.2). A user can select a single item of the list, but can also click on the check boxes
to toggle their status. This makes the CheckListBox a very good component for mul-
tiple selections or for highlighting the status of a series of independent items (as in a
series of check boxes).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 211

Figure 5.2:
The user interface of
the CheckListBox
control, basically a list
of check boxes. Image
from the original book.

To check the current status of each item, you can use the Checked and the State
array properties (use the latter if the check boxes can be grayed). Delphi 5 intro-
duces the ItemEnabled array property, which you can use to enable or disable each
item of the list. We’ll use the CheckListBox in the DragList example, later on in this
chapter.

note Most of the list-based controls share a common and important feature. Each item of the list has
an associated 32-bit value, usually indicated by the TObject type. This value can be used as a tag
for each list item, and it’s very useful for storing additional information along with each item. This
approach is connected to a specific feature of the native Windows list box control, which offers
four bytes of extra storage for each list box item. We’ll use this feature in the ODList example later
on in this chapter.

The ListView and TreeView Components

If you want an even more sophisticated list, you can use the ListView Win32 com-
mon control, which will make the user interface of your application look very
modern. This component is slightly more complex to use, as described toward the
end of this chapter. Other alternatives for listing values are the TreeView common
control, which shows items in a hierarchical output, and the StringGrid control,
which shows multiple elements for each line. The string grid control is described in
Chapter 22, “Graphics in Delphi”.157

If you use the common controls in your application, users will already know how to
interact with them, and they will regard the user interface of your program as up to

157 This was originally a bonus chapter available as a separate download on the publisher web
site, but it’s now part of this ebook.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

212 - Chapter 5: Advanced Use of the Standard Components

date. TreeView and ListView are the two key components of Windows Explorer, and
you can assume that many users will be familiar with them, even more than with the
traditional Windows controls.

Ranges

Finally, there are a few components you can use to select values in a range. Ranges
can be used for numeric input and for selecting an element in a list.

The ScrollBar Component

The stand-alone ScrollBar control is the original component of this group, but it is
seldom used by itself. Scroll bars are usually associated with other components,
such as list boxes and memo fields, or are associated directly with forms. In all these
cases, the scroll bar can be considered part of the surface of the other components.
For example, a form with a scroll bar is actually a form that has an area resembling a
scroll bar painted on its border, a feature governed by a specific Windows style of
the form window. By resembling, I mean that it is not technically a separate window
of the ScrollBar component type. These “fake” scroll bars are usually controlled in
Delphi using specific properties of the form and the other components hosting
them.

The TrackBar and ProgressBar Components

Direct use of the ScrollBar component is quite rare, especially with the TrackBar
component introduced with Windows 95, which is used to let a user select a value in
a range. Among Win32 common controls there is the companion ProgressBar con-
trol, which allows the program to output a value in a range, showing the progress of
a lengthy operation.

The UpDown Component

Another related control is the UpDown component, which is usually connected to an
edit box so that the user can either type a number in it or increase and decrease the
number using the two small arrow buttons. To connect the two controls, you set the
Associate property of the UpDown component. Nothing prevents you from using
the UpDown component as a stand-alone control, displaying the current value in a
label or in some other way.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 213

The PageScroller Component

The Win32 PageScroller control is a container allowing you to scroll the internal
control. For example, if you place a toolbar in the page scroller and the toolbar is
larger than the available area, the PageScroller will display two small arrows on the
side. Pressing these arrows will scroll the internal area. This component can be used
as a scrollbar, but it also partially replaces the ScrollBox control.

The ScrollBox Component

The ScrollBox control represents a region of a form, which can scroll independently
from the rest of the surface. For this reason the ScrollBox has two scrollbars used to
move the embedded components. You can easily place other components inside a
ScrollBox, as you do with a panel. In fact, a ScrollBox is basically a panel with scroll
bars to move its internal surface, an interface element used in many Windows appli-
cations. When you have a form with many controls and a toolbar or status bar, you
might use a ScrollBox to cover the central area of the form, leaving its toolbars and
status bars outside of the scrolling region. By relying on the scrollbars of the form,
in fact, you might allow the user to move the toolbar or status bar out of view, a very
odd situation.

Dragging from One Component to Another

Now that you’ve been introduced to the standard controls, we’ll examine a couple of
general techniques: dragging and focus handling. Let me start with a simple exam-
ple of dragging, called DragList. The form of this example, shown in Figure 5.3 at
run time, contains a ListBox and a CheckListBox. You can drag items from one con-
trol to the other. It also has an edit box you can use to enter new items and drag
them to either list. If you run the program, you’ll see that there is also a rule: Lists
cannot have duplicated items. This means we have to check whether the item is
already in the list before inserting it.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

214 - Chapter 5: Advanced Use of the Standard Components

Figure 5.3:
The form of the
DragList example at
run time, during a
dragging operation.
Image from the
original book.

The two list boxes use the dmAutomatic value for the DragMode property (with the
DragKind property left to the default value dkDrag). For the edit box, by contrast, we
have to use manual dragging to let the edit box behave as usual when a user clicks
on it. For this reason, as a user presses the mouse button over the edit box, we must
initiate the dragging operation, delaying it as indicated by the first parameter of the
BeginDrag method:

procedure TDragForm.Edit1MouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 Edit1.BeginDrag (False, 10);
end;

The two lists share the same handler for the OnDragOver event, which is used to
determine whether the control accepts dragging from a given source. In this han-
dler, when the user is dragging from the edit box, the program checks to see
whether the text is already in the list and disallows the dragging operation if it is.
We can easily write a single event handler for both controls because they inherit
from the same base class, TCustomListBox:

procedure TDragForm.ListDragOver(Sender, Source: TObject;
 X, Y: Integer; State: TDragState; var Accept: Boolean);
begin
 Accept := True;
 // if the source is the edit and the items
 // is already in the destination list, reject it
 if (Source = Edit1) and
 ((Sender as TCustomListBox).Items.IndexOf (Edit1.Text) >= 0) then
 Accept := False;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 215

The handlers of the OnDragDrop events, however, are quite different, so I’ve decided
to separate them. The list box allows only a single item to be selected, while the list
check box can have multiple selected items; this makes the code quite different in
the two cases. What can be shared is the code to add an item to a list only if it is not
already there. I’ve added this shared code to a method of the form, which is called
by both event handlers:

function TDragForm.AddNotDup (List: TCustomListBox;
 Text: string): Boolean;
begin
 // return if the string was not already in the list
 Result := List.Items.IndexOf (Text) < 0;
 if Result then
 List.Items.Add (Text);
end;

The code for the two drag-drop methods is quite simple. For the check list box, the
program copies the text of the edit box or that of the selected list box item and
removes it from the source:

procedure TDragForm.CheckListBox1DragDrop(Sender,
 Source: TObject; X, Y: Integer);
var
 nItem: Integer;
begin
 if Source = Edit1 then
 // copy the text of the edit box
 CheckListBox1.Items.Add (Edit1.Text)
 else if Source = ListBox1 then
 begin
 // copy if not duplicate
 nItem := ListBox1.ItemIndex;
 if AddNotDup (CheckListBox1, ListBox1.Items [nItem]) then
 // remove source item
 ListBox1.Items.Delete (nItem);
 end;
end;

For the list box, we have to scan all the items of the check list box to see which one is
selected. Since we want to delete the items we copy, we must do this operation in
reverse order, because deleting an item changes the position of the items that follow
it:

procedure TDragForm.ListBox1DragDrop(Sender,
 Source: TObject; X, Y: Integer);
var
 I: Integer;
begin
 if Source = Edit1 then
 // copy the text of the edit box

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

216 - Chapter 5: Advanced Use of the Standard Components

 ListBox1.Items.Add (Edit1.Text)
 else if Source = CheckListBox1 then
 begin
 // copy all the selected items (unless duplicate)
 // and delete them (using reverse order!)
 for I := CheckListBox1.Items.Count - 1 downto 0 do
 if CheckListBox1.Checked [I] then
 begin
 if AddNotDup (ListBox1, CheckListBox1.Items [I]) then
 CheckListBox1.Items.Delete (I);
 end;
 end;
end;

note We’ll see an example of dragging operations within a TreeView control at the end of this chapter.

Handling the Input Focus

Using the TabStop and TabOrder properties available in most controls, you can spec-
ify the order in which controls will receive the input focus when the user presses the
Tab key. Instead of setting the tab order property of each component of a form man-
ually, you can use the shortcut menu of the Form Designer to activate the Edit Tab
Order dialog box, as shown in Figure 5.4.

Besides these basics settings, it is important to know that each time a component
receives or loses the input focus, it receives a corresponding OnEnter or OnExit
event. This allows you to fine-tune and customize the order of the user operations.
Some of these techniques are demonstrated by the InFocus example, which creates
a fairly typical password-login window. Its form has three edit boxes with labels
indicating their meaning, as shown in Figure 5.5. At the bottom of the window is a
status area with prompts guiding the user. Each item needs to be entered in
sequence.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 217

Figure 5.4:
The Edit Tab Order
dialog box. Images
captured in Delphi 5
and Delphi 12.

Figure 5.5:
The InFocus example
at run time. Image
from the original book.

For the output of the status information I’ve used the StatusBar component, with a
single output area (obtained by setting its SimplePanel property to True). Here is a
summary of the properties for this example. Notice the & character in the labels,
indicating a shortcut key, and the connection of these labels with corresponding edit
boxes (using the FocusControl property):

object FocusForm: TFocusForm
 ActiveControl = EditFirstName
 Caption = ‘InFocus’
 object Label1: TLabel
 Caption = ‘&First name’
 FocusControl = EditFirstName
 end
 object EditFirstName: TEdit
 OnEnter = GlobalEnter
 OnExit = EditFirstNameExit
 end
 object Label2: TLabel

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

218 - Chapter 5: Advanced Use of the Standard Components

 Caption = ‘&Last name’
 FocusControl = EditLastName
 end
 object EditLastName: TEdit
 OnEnter = GlobalEnter
 end
 object Label3: TLabel
 Caption = ‘&Password’
 FocusControl = EditPassword
 end
 object EditPassword: TEdit
 PasswordChar = ‘*’
 OnEnter = GlobalEnter
 end
 object StatusBar1: TStatusBar
 SimplePanel = True
 end
end

The program is very simple and does only two operations. The first is to identify, in
the status bar, the edit control that has the focus. It does this by handling the con-
trols’ OnEnter event, possibly using a single generic event handler to avoid repetitive
code. In the example, instead of storing some extra information for each edit box,
I’ve checked each control of the form to determine which label is connected to the
current edit box (indicated by the Sender parameter):

procedure TFocusForm.GlobalEnter(Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to ControlCount - 1 do
 // if the control is a label
 if (Controls [I] is TLabel) and
 // and the label is connected to the current edit box
 (TLabel(Controls[I]).FocusControl = Sender) then
 // copy the text leaving off the initial & character
 StatusBar1.SimpleText := ‘Enter ‘ +
 Copy (TLabel(Controls[I]).Caption, 2, 1000);
end;

The second event handler of the form relates to the OnExit event of the first edit
box. If the control is left empty, it refuses to release the input focus and sets it back
before showing a message to the user. The methods also look for a given input value,
automatically filling the second edit box and moving the focus directly to the third
one:

procedure TFocusForm.EditFirstNameExit(Sender: TObject);
begin
 if EditFirstName.Text = ‘’ then
 begin

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 219

 // don’t let the user get out
 EditFirstName.SetFocus;
 MessageDlg (‘First name is required’,
 mtError, [mbOK], 0);
 end
 else if EditFirstName.Text = ‘Admin’ then
 begin
 // fill the second edit and jump to the third
 EditLastName.Text := ‘Admin’;
 EditPassword.SetFocus;
 end;
end;

Working with Menus

Working with menus and menu items is generally quite simple. This section offers
only some very brief notes and a few more advanced examples. The first thing to
keep in mind about menu items is that they can serve different purposes:

· Commands are menu items used to execute an action.

· State-setters are menu items used to toggle an option on and off, to
change the state of a particular element. These commands usually have
a check mark on the left to indicate they are active.

· Radio items have a round check mark and are grouped to represent
alternative selections, like radio buttons. To obtain radio menu items,
simply set the RadioItem property to True and set the GroupIndex prop-
erty for the alternative menu items to the same value.

· Dialog menu items cause a dialog box to appear and are usually indi-
cated by an ellipsis (three dots) after the text.

As you enter new elements in the Menu Designer, Delphi creates a new component
for each menu item and lists it in the Object Inspector (although nothing is added to
the form). To name each component, Delphi uses the caption you enter and
appends a number (so that Open becomes Open1). Because Delphi removes spaces
and other special characters in the caption when it creates the name, and the menu
item separators are set up using a hyphen as caption, these items would have an
empty name. For this reason Delphi adds the letter N to the name, appending the
number and generating items called N1, N2, and so on.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

220 - Chapter 5: Advanced Use of the Standard Components

note Do not use the Break property, which is used to lay out a pull-down menu on multiple columns.
The mbMenuBarBreak value indicates that this item will be displayed in a second or subsequent
line, the mbMenuBreak value that this item will be added to a second or subsequent column of
the pull-down.

Accelerator Keys in Delphi 5

In Delphi 5 you don’t need to enter the & character in the Caption of a menu item; it
provides an automatic accelerator key if you omit one. The Delphi 5 automatic
accelerator key system can also figure out if you have entered conflicting accelerator
keys and fix them on the fly. This doesn’t mean you should stop adding custom
accelerator keys with the & character, because the automatic system simply uses the
first available letter, and it doesn’t follow the default standards. You might also find
better mnemonic keys than those chosen by the automatic system.

This new Delphi 5 feature is controlled by the AutoHotkeys property, which is avail-
able in the main menu component and in each of the pull-down menus and menu
items. In the main menu, this property defaults to maAutomatic, while in the pull-
downs and menu items it defaults to maParent, so that the value you set for the main
menu component will be used automatically by all the subitems, unless they have a
specific value of maAutomatic or maManual.

The engine behind this system is the RethinkHotkeys method of the TMenuItem
class, and the companion InternalRethinkHotkeys. There is also a RethinkLines
method, which checks whether a pull-down has two consecutive separators, or
begins or ends with a separator. In all these cases the separator is automatically
removed.

One of the reasons Delphi includes this new feature is the new ITE (Integrated
Translation Environment)158. When you need to translate the menu of an applica-
tion, it is convenient if you don’t have to deal with the accelerator keys, or at least if
you don’t have to worry about whether two items on the same menu conflict. Having
a system that can automatically resolve similar problems is definitely an advantage.
Another motivation was Delphi’s IDE itself. With all the dynamically loaded pack-
ages that install menu items in the IDE main menu or in pop-up menus, and with
different packages loaded in different versions of the product, it’s next to impossible

158 The VCL translation support has recently been removed as an official feature of the product
and is only available as an additional download in the GetIt Package Manager. The founda-
tions of the concepts remain valid and can be applicable to other, third-party, translation
tools.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 221

to get non-conflicting accelerator-key selections in each menu. That is why this
mechanism isn’t a wizard that does static analysis of your menus at design time; it
was created to deal with the real problem of managing menus created dynamically
at run time.

note This new feature is certainly very handy, but because it is active by default, it can break existing
code. I had to modify two of this chapter’s program examples from the previous edition of the
book, just to avoid run-time errors caused by this change. As we’ll see later, the problem is that I
use the caption in the code, and the extra & broke my code. The change was quite simple, though,
as all I had to do was to set the AutoHotkeys property of the main menu component to
maManual.

Pop-Up Menus and the OnContextPopup
Event

Besides the MainMenu component, you can use the similar PopupMenu compo-
nent. This is typically displayed when the user right-clicks a component that uses
the given pop-up menu as the value for its PopupMenu property.

However, besides connecting the pop-up menu to a component with the corre-
sponding property, you can call its Popup method, which requires the position of the
pop-up in screen coordinates. The proper values can be obtained by converting a
local point to a screen point with the ClientToScreen method of the local compo-
nent, in this code fragment a label:

procedure TForm1.Label3MouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
var
 ScreenPoint: TPoint;
begin
 // if some condition applies...
 if Button = mbRight then
 begin
 ScreenPoint := Label3.ClientToScreen (
 Point (X, Y));
 PopupMenu1.Popup (ScreenPoint.X, ScreenPoint.Y)
 end;
end;

An alternative approach provided by Delphi 5 is the use of the OnContextMenu event.
This brand-new event fires when a user right-clicks on a component, exactly what
we’ve traced above with the test if Button = mbRight. The advantage is that the
same event is also fired in response to a Shift+F10 key combination, as well as by
any other user input methods defined by Windows Accessibility options or hard-

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

222 - Chapter 5: Advanced Use of the Standard Components

ware (including the shortcut menu key of some Windows-compatible keyboards).
We can use this event to fire a pop-up menu with little code:

procedure TFormPopup.Label1ContextPopup(Sender: TObject;
 MousePos: TPoint; var Handled: Boolean);
var
 ScreenPoint: TPoint;
begin
 // add dynamic items
 PopupMenu2.Items.Add (NewLine);
 PopupMenu2.Items.Add (NewItem (TimeToStr (Now),
 0, False, True, nil, 0, ‘’));
 // show popup
 ScreenPoint := ClientToScreen (MousePos);
 PopupMenu2.Popup (ScreenPoint.X, ScreenPoint.Y);
 Handled := True;
 // remove dynamic items
 PopupMenu2.Items [4].Free;
 PopupMenu2.Items [3].Free;
end;

This example adds some dynamic behavior to the shortcut menu, adding a tempo-
rary item indicating when the pop-up menu is displayed. This is not particularly
useful, but I’ve done it to highlight that if you need to display a plain pop-up menu,
you can easily use the PopupMenu property of the control in question or one of its
parent controls. Handling the OnContextMenu event makes sense only when you
want to do some extra processing.

The Handled parameter is initialized to False, so that if you do nothing in the event
handler, the normal pop-up menu processing will occur. If you do something in
your event handler to replace the normal pop-up menu processing (such as popping
up a dialog or a customized menu, as in this case), you should set Handled to True
and the system will stop processing the message. Setting Handled to True should be
fairly rare, as you’ll generally handle the OnContextPopup to dynamically create or
customize the pop-up menu, but then you can let the default handler actually show
the menu.

The handler of an OnContextPopup event isn’t limited to displaying a pop-up menu.
It can do any other operation, such as directly display a dialog box. Here is an exam-
ple of a right-click operation used to change the color of the control:

procedure TFormPopup.Label2ContextPopup(Sender: TObject;
 MousePos: TPoint; var Handled: Boolean);
begin
 ColorDialog1.Color := Label2.Color;
 if ColorDialog1.Execute then
 Label2.Color := ColorDialog1.Color;
 Handled := True;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 223

end;

All the code snippets of this section are available in the simple CustPop example.

Creating Menu Items Dynamically

Besides defining the structure of a menu with the Menu Designer and modifying the
status of the items using the Checked, Visible, and Caption properties, you can cre-
ate an entire menu or portions of one at run time. This makes sense, for example,
when you have many repetitive items, or when the menu items depend on some sys-
tem configuration or user permissions.

The basic idea is that each object of the TMenuItem class—which Delphi uses for both
menu items and pull-down menus—contains a list of menu items. Each of these
items has the same structure, in a kind of recursive way. A pull-down menu has a
list of submenus, and each sub-menu has a list of sub-menus, each with its own list
of submenus, and so on. The properties you can use to explore the structure of an
existing menu are Items, which contains the actual list of menu items, and Count,
which contains the number of subitems. Adding new menu items or entire pull-
down menus to an existing menu is fairly easy, particularly if you can write a single
event handler for all of them.

This is demonstrated by the DynaMenu example, which also illustrates the use of
menu check marks, radio items, and many other features of menus that aren’t
described in detail in the text. As soon as you start this program, it creates a new
pull-down with menu items used to change the font size of a big label hosted by the
form. Instead of creating a bunch of menu items with captions indicating sizes rang-
ing from 8 to 48, you can let the program do this repetitive work for you.

The new pull-down menu should be inserted in the Items property of the MainMenu1
component. You can calculate the position by asking the MainMenu component for
the previous pull-down menu:

procedure TFormColorText.FormCreate(Sender: TObject);
var
 PullDown, Item: TMenuItem;
 Position, I: Integer;
begin
 // create the new pull-down menu
 PullDown := TMenuItem.Create (Self);
 PullDown.AutoHotkeys := maManual;
 PullDown.Caption := ‘&Size’;
 PullDown.OnClick := SizeClick;
 // compute the position and add it

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

224 - Chapter 5: Advanced Use of the Standard Components

 Position := MainMenu1.Items.IndexOf (Options1);
 MainMenu1.Items.Insert (Position + 1, PullDown);
 // create menu items for various sizes
 I := 8;
 while I <= 48 do
 begin
 // create the new item
 Item := TMenuItem.Create (Self);
 Item.Caption := IntToStr (I);
 // make it a radio item
 Item.GroupIndex := 1;
 Item.RadioItem := True;
 // handle click and insert
 Item.OnClick := SizeItemClick;
 PullDown.Insert (PullDown.Count, Item);
 I := I + 4;
 end;
 // add extra item at the end
 Item := TMenuItem.Create (Self);
 Item.Caption := ‘More...’;
 // make it a radio item
 Item.GroupIndex := 1;
 Item.RadioItem := True;
 // handle it by showing the font selection dialog
 Item.OnClick := Font1Click;
 PullDown.Insert (PullDown.Count, Item);
end;

As you can see in the code above, the menu items are created in a while loop, set-
ting the radio item style and calling the Insert method with the number of items as
a parameter to add each item at the end of the pull-down. At the end, the program
adds one extra item, which is used to set a different size than those listed. The
OnClick event of this last menu item is handled by the Font1Click method (also
connected to a specific menu item), which displays the font selection dialog box.
You can see the dynamic menu in Figure 5.6.

note Because the program uses the Caption of the new items dynamically, we should either disable
the AutoHotkeys property of the main menu component, or disable this feature for the pull-
down menu we are going to add (and thus automatically disable it for the menu items). This is
what I’ve done in the code above by setting the AutoHotkeys property of the dynamically cre-
ated pull-down component to maManual. An alternative approach is to let the menu display the
automatic captions and then call the new StripHotkeys function before converting then cap-
tion to a number. There is also a new GetHotkey function, which returns the active character of
the caption.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 225

Figure 5.6:
The Size pull-down
menu of the
DynaMenu example is
created at run time,
along with all of its
menu items. Image
from the original book.

The handler for the OnClick event of these dynamically created menu items uses the
caption of the Sender menu item to set the size of the font:

procedure TFormColorText.SizeItemClick(Sender: TObject);
begin
 with Sender as TMenuItem do
 Label1.Font.Size := StrToInt (Caption);
end;

This code doesn’t set the proper radio item mark next to the selected item, because
the user can select a new size also by changing the font. The proper radio item is
checked in the OnClick event handler of the entire pull-down menu, which is con-
nected just after the pull-down is created and activated just before showing the pull-
down. The code scans the items of the pull-down menu (the Sender object) and
checks whether the caption matches the current Size of the font. If no match is
found, the program checks the last menu item, to indicate that a different size is
active:

procedure TFormColorText.SizeClick (Sender: TObject);
var
 I: Integer;
 Found: Boolean;
begin
 Found := False;
 with Sender as TMenuItem do
 begin
 // look for a match, skipping the last item
 for I := 0 to Count - 2 do
 if StrToInt (Items [I].Caption) =
 Label1.Font.Size then
 begin
 Items [I].Checked := True;
 Found := True;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

226 - Chapter 5: Advanced Use of the Standard Components

 System.Break; // skip the rest of the loop
 end;
 if not Found then
 Items [Count - 1].Checked := True;
 end;
end;

When you want to create a menu or a menu item dynamically, you can use the cor-
responding components, as I’ve done in the DynaMenu example. As an alternative,
you can also use some global functions available in the Menus unit: NewMenu,
NewPopupMenu, NewSubMenu, NewItem, and NewLine.

Using Menu Images

In Delphi it is very easy to improve a program’s user interface by adding images to
menu items. This is becoming common in Windows applications and it is very nice
that Borland has added all the required support, making the development of graphi-
cal menu items trivial.

All you have to do is add an image list control to the form, add a series of bitmaps to
the image list, connect the image list to the menu using its Images property, and set
the proper ImageIndex property for the menu items. You can see the effect of these
simple operations in Figure 5.7. (You can also associate a bitmap with the menu
item directly, using the Bitmap property.)

note Delphi 5 makes the definition of images for menus more flexible, by allowing you to associate an
image list with any specific pull-down menu (and even a specific menu item) using the new
SubMenuImages property. Having a specific and smaller image list for each pull-down menu,
instead of one single huge image list for the entire menu, allows for more run-time customization
of an application.

Figure 5.7:
The simple graphical
menu of the MenuImg
example. Image from
the original book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 227

To create the image list you can double-click on the component, activating the cor-
responding editor (shown in Figure 5.8), and then import existing bitmap or icon
files. You can actually prepare a single large bitmap and let the image editor divide
it according to the Height and Width properties of the ImageList component, which
refer to the size of the individual bitmaps in the list.

Figure 5.8:
The Image List editor,
with the bitmaps of the
MenuImg example.
Image from the
original book.

note As an alternative, you can use the series of images that ship with Delphi159 and are stored by
default in the Program Files/Common Files/Borland Shared/Images/Buttons direc-
tory. Each bitmap contains both an “enabled” and a “disabled” image. As you import them, the
Image List editor will ask you whether to split them in two, a suggestion you should accept. This
operation adds to the image list a normal image and a disabled one, which is not generally used
(as it can be built automatically when needed). For this reason I generally delete the disabled part
of the bitmap from the Image List.

The program’s code is very simple. The only element I want to emphasize is that if
you set the Checked property of a menu item with an image instead of displaying a
check mark, the item paints its image as sunken. You can see this in the Large Font
menu of the MenuImg example in Figure 5.7. Here is the code for that menu item
selection:

procedure TForm1.LargeFont1Click(Sender: TObject);
begin
 if Memo1.Font.Size = 8 then
 Memo1.Font.Size := 12
 else

159 These images are no longer available. The GetIt Package manager offers a nice collection of
images, called Icons8 (licensed under Creating Commons), but you can find many others
available online.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

228 - Chapter 5: Advanced Use of the Standard Components

 Memo1.Font.Size := 8;
 // changes the image style near the item
 LargeFont1.Checked := not LargeFont1.Checked;
end;

Customizing the System Menu

In some circumstances, it is interesting to add menu commands to the system menu
itself, instead of (or besides) having a menu bar. This might be useful for secondary
windows, toolboxes, windows requiring a large area on the screen, and “quick-and-
dirty” applications. Adding a single menu item to the system menu is straightfor-
ward:

AppendMenu (GetSystemMenu (Handle, FALSE),
 MF_SEPARATOR, 0, ‘’);
AppendMenu (GetSystemMenu (Handle, FALSE),
 MF_STRING, idSysAbout, ‘&About...’);

This code fragment (extracted from the OnCreate event handler of the SysMenu
example) adds a separator and a new item to the system menu item. The
GetSystemMenu API function, which requires as a parameter the handle of the form,
returns a handle to the system menu. The AppendMenu API function is a general-pur-
pose function you can use to add menu items or complete pull-down menus to any
menu (the menu bar, the system menu, or an existing pull-down menu). When
adding a menu item, you have to specify its text and a numeric identifier. In the
example I’ve defined this identifier as:

const
 idSysAbout = 100;

Adding a menu item to the system menu is easy, but how can we handle its selec-
tion? Selecting a normal menu generates the wm_Command Windows message. This is
handled internally by Delphi, which activates the OnClick event of the correspond-
ing menu item component. The selection of system menu commands, instead,
generates a wm_SysCommand message, which is passed by Delphi to the default han-
dler. Windows usually needs to do something in response to a system menu
command.

We can intercept this command and check to see whether the command identifier
(passed in the CmdType field of the TWmSysCommand parameter) of the menu item is
our idSysAbout. Since there isn’t a corresponding event in Delphi, we have to define
a new message-response method for the form class:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 229

public
 procedure WMSysCommand (var Msg: TMessage);
 message wm_SysCommand;

The code of this procedure is not very complex. We just need to check whether the
command is our own and call the default handler:

procedure TForm1.WMSysCommand (var Msg: TWMSysCommand);
begin
 if Msg.CmdType = idSysAbout then
 ShowMessage (‘Mastering Delphi: SysMenu example’);
 inherited;
end;

To build a more complex system menu, instead of adding and handling each menu
item as we have just done, we can follow a different approach. Just add a MainMenu
component to the form, create its structure (any structure will do), and write the
proper event handlers. Then reset the value of the Menu property of the form, remov-
ing the menu bar.

Now we can add some code to the SysMenu example to add each of the items from
the hidden menu to the system menu. This operation takes place when the button of
the form is pressed. The corresponding handler uses generic code that doesn’t
depend on the structure of the menu we are appending to the system menu:

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 // add a separator
 AppendMenu (GetSystemMenu (Handle, FALSE), MF_SEPARATOR, 0, ‘’);
 // add the main menu to the system menu
 with MainMenu1 do
 for I := 0 to Items.Count - 1 do
 AppendMenu (GetSystemMenu (Self.Handle, FALSE),
 mf_Popup, Items[I].Handle, PChar (Items[I].Caption));
 // disable the button
 Button1.Enabled := False;
end;

note This code uses the expression Self.Handle to access the handle of the form. This is required
because we are currently working on the MainMenu1 component, as specified by the with state-
ment.160

160 This is, in fact, a very good reason to avoid the use of the with statement in the first place. In
retrospective, I don’t like the fact I was encouraging this and I really don’t like this code snip-
pet. I decided to keep it offers me a good opportunity to explain this is not good code.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

230 - Chapter 5: Advanced Use of the Standard Components

The menu flag used in this case, mf_Popup, indicates that we are adding a pull-down
menu. In this function call the fourth parameter is interpreted as the handle of the
pull-down menu we are adding (in the previous example we passed the identifier of
the menu, instead). Since we are adding to the system menu items with sub-menus,
the final structure of the system menu will have two levels, as you can see in Figure
5.9.

Figure 5.9:
The second-level
system menu items of
the SysMenu example
are the result of
copying a complete
main menu to the
system menu. Images
captured in Delphi 5
and Delphi 12.

note The Windows API uses the terms pop-up menu and pull-down menu interchangeably. This is
really odd, because most of us use the terms to mean different things. Pop-up menus are shortcut
menus, and pull-down menus are the secondary menus of the menu bar. Apparently, Microsoft
uses the terms in this way because the two elements are implemented with the same kind of inter-
nal windows; and the fact that they are two distinct user-interface elements is probably something
that was later conceptually built over a single basic internal structure.

Once you have added the menu items to the system menu, you need to handle them.
Of course, you can check for each menu item in the WMSysCommand method, or you
can try building a smarter approach. Since in Delphi it is easier to write a handler
for the OnClick event of each item, we can look for the item corresponding to the
given identifier in the menu structure. Delphi helps us by providing a FindItem
method.

When (and if) we have found a main menu item that corresponds to the item
selected in the system menu, we can call its Click method (which invokes the
OnClick handler). Here is the code I’ve added to the WMSysCommand method:

var
 Item: TMenuItem;
begin
 ...
 Item := MainMenu1.FindItem (Msg.CmdType, fkCommand);

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 231

 if Item <> nil then
 Item.Click;

In this code, the CmdType field of the message structure that is passed to the
WMSysCommand procedure holds the command of the menu item being called.

note You can also use a simple if or case statement to handle one of the system menu’s predefined
menu items that have special codes for this identifier, such as sc_Close, sc_Minimize,
sc_Maximize, and so on. For more information, you can see the description of the
wm_SysCommand message in the Windows API Help file.

This application works but has one glitch. If you click the right mouse button over
the Taskbar icon representing the application, you get a plain system menu (actually
different from the default one). The reason is that this system menu belongs to a
different window, the window of the Application global object. I’ll discuss the
Application object, and update this example to make it work with the Taskbar but-
ton, in Chapter 6.

The ActionList Component161

As explained in the previous chapter, Delphi’s event architecture is very open: You
can write a single event handler and connect it to the OnClick events of a toolbar
button and a menu. You can also connect the same event handler to different but-
tons or menu items, as the event handler can use the Sender parameter to refer to
the object that fired the event by using the Sender parameter. It’s a little more diffi-
cult to synchronize the status of toolbar buttons and menu items. If you have a
menu item and a toolbar button that both toggle the same option, every time the
option is toggled, you must both add the check mark to the menu item and change
the status of the button to show it pressed.

To overcome this problem, Delphi 4 introduced an event-handling architecture
based on actions. An action (or command) both indicates the operation to do when a
menu item or button is clicked and determines the status of all the elements con-
nected to the action. The connection of the action with the user interface of the

161 This is a fundamental feature of the VCL architecture, still incredibly modern and still largely
unused by Delphi developers. I want to underline the fact this was a great idea and it remains
very important today to move form a pure RAD visual development to a much more flexible
architecture based on visual design, but separating the UI from the application logic.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

232 - Chapter 5: Advanced Use of the Standard Components

linked controls is very important and should not be underestimated, because it is
where you can get the real advantages of this architecture.

note If you have ever written code using the MFC class library of Visual C++, you’ll recognize that a
Delphi action maps to both a command and a CCommandUpdateUI object. The Delphi architec-
ture is more flexible, though, because it can be extended by sub-classing the action classes.

There are many players in this event-handling architecture. The central role is cer-
tainly played by the action objects. Action objects have a name, like any other
component, and they have other properties that will be applied to the linked con-
trols (called action clients). These properties include the Caption, the graphical
representation (ImageIndex), the status (Checked, Enabled, and Visible), and the
user feedback (Hint and HelpContext). The base class for an action object is
TBasicAction. There is a TAction class, but it inherits from TCustomAction, which
derives from TContainedAction, which in turn descends from TBasicAction, a
TComponent subclass.

Each action object is connected to one or more client objects through an ActionLink
object. Multiple controls, possibly of different types, can share the same action
object, as indicated by their Action property. Technically, the ActionLink objects
maintain a bidirectional connection between the client object and the action. The
ActionLink object is required because the connection works in both directions. An
operation on the object (such as a click) is forwarded to the action object and results
in a call to its OnExecute event; an update to the status of the action object is
reflected in the connected client controls. In other words, one or more client con-
trols can create an ActionLink, which registers itself with the action object.

You should not set the properties of the client controls you connect with an action,
because the action will override the property values of the client controls. For this
reason you should generally write the actions first and then create the menu items
and buttons you want to connect with them. Note also that when an action has no
OnExecute handler, the client control is automatically disabled (or grayed), unless
the DisableIfNoHandler property is set to False.

The client controls connected to actions are usually menu items and various types of
buttons (push buttons, check boxes, radio buttons, speed buttons, toolbar buttons,
and the like), but nothing prevents you from creating new components that hook
into this architecture. Component writers can even define new actions and new link
action objects.

Besides a client control, some actions can also have a target component. Some pre-
defined actions hook to a specific target component (for examples, see the coverage
of the DataSet components in the Chapter 9 section “Looking for Records in a

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 233

Table”). Other actions automatically look for a target component in the form that
supports the given action, starting with the active control.

Finally, the action objects are held by an ActionList component, the only class of this
architecture that shows up on the Component Palette. The action list receives the
execute actions that aren’t handled by the specific action objects, firing the
OnExecuteAction. If even the action list doesn’t handle the action, Delphi calls the
OnExecuteAction event of the Application object. The ActionList component
has a special editor you can use to create a number of actions, as you can see in Fig-
ure 5.10.

Figure 5.10:
The ActionList
component editor, with
a list of predefined
actions you can use.
Image from the
original book.

In the editor, actions are displayed in different groups, as indicated by their
Category property. By simply setting this property to a brand-new value, you
instruct the editor to introduce a new category. These categories are basically logical
groups, although in some cases a group of actions can work only on a specific type of
target component. You might want to define a category for every pull-down menu or
group them in some other logical way.

With the action list editor, you can create a brand new action or choose one of the
existing actions registered in the system. These are listed in a secondary dialog box,
as shown in Figure 5.10. There are many predefined actions, which can be divided
into logical groups162:

162 There are many additional groups added to the predefined list of actions, including DataSnap
Client, Dialog, File, Format (for RichEdit operations), Internet, Search, Tab, and Tools. There
are almost 70 predefined actions in Delphi 12.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

234 - Chapter 5: Advanced Use of the Standard Components

· Edit actions, illustrated in the next example. They include Cut, Copy,
and Paste actions.

· MDI window actions, which will be demonstrated in Chapter 8, as we
examine the Multiple Document Interface approach. They include all
the most common MDI operations: Arrange, Cascade, Close, Tile, and
Minimize all.

· Dataset actions, which relate to database tables and queries and will
be discussed in Chapter 11. There are many dataset actions, representing
all the main operations you can perform on a dataset.

· Help actions, which allow you to activate the contents page or index of
the Help file attached to the application.

note You can also define new custom actions and register them in Delphi’s IDE, as we’ll see in Chapter
13.

Besides handling the OnExecute event of the action and changing the status of the
action to affect the user interface of the client controls, an action can also handle the
OnUpdate event, which is activated when the application is idle. This gives you the
opportunity to check the status of the application or the system and change the user
interface of the controls accordingly. For example, the standard PasteEdit action
enables the client controls only when there is some text in the Clipboard.

Actions in Practice

Now that you understand the main ideas behind this very important Delphi feature,
let’s try out an example. The program is called Actions and demonstrates a number
of features of the action architecture.

I began building it by placing a new ActionList component in its form and adding
the three standard edit actions and a few custom ones. The form also has a panel
with some speed buttons, a main menu, and a Memo control (the automatic target
of the edit actions). This is the list of the actions, extracted from the DFM file:

object ActionList1: TActionList
 Images = ImageList1
 object ActionCopy: TEditCopy
 Category = ‘Edit’
 Caption = ‘&Copy’
 Hint = ‘Copy’
 ImageIndex = 1

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 235

 ShortCut = <Ctrl+C>
 end
 object ActionCut: TEditCut
 Category = ‘Edit’
 Caption = ‘Cu&t’
 Hint = ‘Cut’
 ImageIndex = 0
 ShortCut = <Ctrl+X>
 end
 object ActionPaste: TEditPaste
 Category = ‘Edit’
 Caption = ‘&Paste’
 Hint = ‘Paste’
 ImageIndex = 2
 ShortCut = <Ctrl+V>
 end
 object ActionNew: TAction
 Category = ‘File’
 Caption = ‘&New’
 Hint = ‘New’
 ImageIndex = 3
 ShortCut = <Ctrl+N>
 OnExecute = ActionNewExecute
 end
 object ActionExit: TAction
 Category = ‘File’
 Caption = ‘E&xit’
 Hint = ‘Exit’
 ImageIndex = 5
 ShortCut = <Alt+F4>
 OnExecute = ActionExitExecute
 end
 object NoAction: TAction
 Category = ‘Test’
 Caption = ‘&No Action’
 Hint = ‘No Action’
 end
 object ActionCount: TAction
 Category = ‘Test’
 Caption = ‘&Count Chars’
 Hint = ‘Count Characters’
 ImageIndex = 6
 OnExecute = ActionCountExecute
 OnUpdate = ActionCountUpdate
 end
 object ActionBold: TAction
 Category = ‘Edit’
 Caption = ‘&Bold’
 Hint = ‘Bold’
 ImageIndex = 4
 ShortCut = <Ctrl+B>
 OnExecute = ActionBoldExecute
 end

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

236 - Chapter 5: Advanced Use of the Standard Components

 object ActionEnable: TAction
 Category = ‘Test’
 Caption = ‘&Enable NoAction’
 Hint = ‘Enable No Action’
 OnExecute = ActionEnableExecute
 end
 object ActionSender: TAction
 Category = ‘Test’
 Caption = ‘Test &Sender’
 Hint = ‘Test Sender’
 OnExecute = ActionSenderExecute
 end
end

note The shortcut keys are stored in the DFM files using virtual key numbers, which also include val-
ues for the Ctrl and Alt keys. In this and other listings throughout the book I’ve replaced the
numbers with the literal values, enclosing them in angle brackets.

All of these actions are connected with the items of a MainMenu component and
some of them also with the buttons of a Toolbar control (more on the Toolbar con-
trol in Chapter 7). Notice that the images selected in the ActionList control affect the
actions in the editor only, as you can see in Figure 5.11. For the images of the Image-
List to show up also in the menu items and in the toolbar buttons, you must also
select the image list in the MainMenu and in the Toolbar components.

Figure 5.11:
The ActionList editor
of the Actions example.
Image from the
original book.

The three predefined actions for the Edit menu don’t have associated handlers, but
these special objects have internal code to perform the related action on the active
edit or memo control. These actions also enable and disable themselves, depending
on the content of the Clipboard and on the existence of selected text in the active

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 237

edit control. Most other actions have custom code, except for the NoAction object.
Having no code, the menu item and the button connected with this command are
disabled, even if the Enabled property of the action is set to True.

I’ve added to the example, and to the Test menu, another action that enables the
menu item connected to the NoAction object:

procedure TForm1.ActionEnableExecute(Sender: TObject);
begin
 NoAction.Enabled := True;
 NoAction.DisableIfNoHandler := False;
 ActionEnable.Enabled := False;
end;

Simply setting Enabled to True will produce the effect for only a very short time,
unless you set the DisableIfNoHandler property, as discussed in the previous sec-
tion. Once this operation is done, I disable the current action, since there is no need
to issue the same command again.

This is different from an action you can toggle, such as the Edit Bold menu item
and the corresponding speed button. Here is the code of the Bold action:

procedure TForm1.ActionBoldExecute(Sender: TObject);
begin
 with Memo1.Font do
 if fsBold in Style then
 Style := Style - [fsBold]
 else
 Style := Style + [fsBold];
 // toggle status
 ActionBold.Checked := not ActionBold.Checked;
end;

The ActionCount object has very simple code, but it demonstrates an OnUpdate han-
dler; when the memo control is empty, it is automatically disabled. We could have
obtained the same effect by handling the OnChange event of the memo control itself,
but in general it might not always be possible or easy to determine the status of a
control simply by handling one of its events. Here is the code of the two handlers of
this action:

procedure TForm1.ActionCountExecute(Sender: TObject);
begin
 ShowMessage (‘Characters: ‘ + IntToStr (
 Length (Memo1.Text)));
end;

procedure TForm1.ActionCountUpdate(Sender: TObject);
begin
 ActionCount.Enabled := Memo1.Text <> ‘’;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

238 - Chapter 5: Advanced Use of the Standard Components

end;

Finally, I’ve added a special action to test the sender object of the action event han-
dler and get some other system information. Besides showing the object class and
name, I’ve added code that accesses the action list object. I’ve done this mainly to
show that you can access this information and how to do it:

procedure TForm1.ActionSenderExecute(Sender: TObject);
begin
 Memo1.Lines.Add (
 ‘Sender class: ‘ + Sender.ClassName);
 Memo1.Lines.Add (
 ‘Sender name: ‘ + (Sender as TComponent).Name);
 Memo1.Lines.Add (
 ‘Category: ‘ + (Sender as TAction).Category);
 Memo1.Lines.Add (
 ‘Action list name: ‘ + (Sender as TAction).ActionList.Name);
 end;

You can see the output of this code in Figure 5.12, along with the user interface of
the example. Notice that the Sender is not the menu item you’ve selected, even if the
event handler is connected to it. The Sender object, which fires the event, is the
action, which intercepts the user operation.

Finally, keep in mind that you can also write handlers for the events of the Action-
List object itself, which play the role of global handlers for all the actions of the list
(something I haven’t done in the example).

Figure 5.12:
The Actions example,
with a detailed
description of the
Sender of an Action
object’s OnExecute
event. Image from the
original book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 239

Owner-Draw Controls

Let’s return briefly to menu graphics. Besides using an ImageList to add glyphs to
the menu items, you can turn a menu into a completely graphical element, using the
owner-draw technique. The same technique also works for other controls, such as
list boxes. In Windows, the system is usually responsible for painting buttons, list
boxes, edit boxes, menu items, and similar elements. Basically these controls know
how to paint themselves. As an alternative, however, the system allows the owner of
these controls, generally a form, to paint them. This technique, available for but-
tons, list boxes, combo boxes, and menu items, is called owner-draw.

In Delphi the situation is slightly more complex. The components can take care of
painting themselves in this case (as in the TBitBtn class for bitmap buttons) and
possibly activate corresponding events. Basically, the system sends the request for
painting to the owner (usually the form), and the form forwards the event back to
the proper control, firing its event handlers.

note Most of the Win32 common controls have support for the owner-draw technique, generally called
custom drawing. You can fully customize the appearance of a ListView, a TreeView, a TabControl,
a PageControl, a HeaderControl, a StatusBar, and a ToolBar. In Delphi 5 the ToolBar, ListView
and TreeView controls also support advanced custom drawing, a more fine-tuned drawing capa-
bility introduced by Microsoft in the latest versions of the Win32 common controls library. The
downside to owner-draw is that when the Windows user interface style changes in the future (and
it always does), your owner-draw controls that fit in perfectly with the current user interface
styles will look outdated and out of place. Since you are creating a custom user interface, you’ll
need to keep it updated yourself. By contrast, if you use the standard output of the controls, your
applications will automatically adapt to a new version of such controls.

Owner-Draw Menu Items

Delphi makes the development of graphical menu items quite simple compared to
the traditional approach of the Windows API. You set the OwnerDraw property of a
menu item component to True and handle its OnMeasureItem and OnDrawItem
events.

In the OnMeasureItem event you can determine the size of the menu items. This
event handler is activated once for each menu item when the pull-down menu is
displayed and has two reference parameters you can set:

procedure ColorMeasureItem (Sender: TObject;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

240 - Chapter 5: Advanced Use of the Standard Components

 ACanvas: TCanvas; var Width, Height: Integer);

The other parameter, ACanvas, is typically used to determine the height of the cur-
rent font.

In the OnDrawItem event you paint the actual image. This event handler is activated
every time the item has to be repainted. This happens when Windows first displays
the items and each time the status changes; for example, when the mouse moves
over an item, it should become highlighted. In fact, to paint the menu items, we
have to consider all the possibilities, including drawing the highlighted items with
specific colors, drawing the check mark if required, and so on. Luckily enough the
Delphi event passes to the handler the Canvas where it should paint, the output rec-
tangle, and the status of the item (selected or not):

 procedure ColorDrawItem(Sender: TObject;
 ACanvas: TCanvas; ARect: TRect; Selected: Boolean);

In the ODMenu example I’ll handle the highlighted color, but skip other advanced
aspects (such as the check marks). I’ve set the OwnerDraw property of the menu and
written handlers for some of the menu items. To write a single handler for each
event of the three color-related menu items, I’ve set their Tag property to the value
of the actual color in the OnCreate event handler of the form:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Blue1.Tag := clBlue;
 Red1.Tag := clRed;
 Green1.Tag := clGreen;
end;

This makes the handler of the actual OnClick event of the items quite straightfor-
ward:

procedure TForm1.ColorClick(Sender: TObject);
begin
 ShapeDemo.Brush.Color :=
 (Sender as TComponent).Tag
end;

The handler of the OnMeasureItem event doesn’t depend on the actual items, but
uses a fixed value (different from the handler of the other pull-down):

procedure TForm1.ColorMeasureItem(Sender: TObject;
 ACanvas: TCanvas; var Width, Height: Integer);
begin
 Width := 80;
 Height := 30;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 241

The most important portion of the code is in the handlers of the OnDrawItem events.
For the color, we use the value of the tag to paint a rectangle of the given color, as
you can see in Figure 5.13. Before doing this, however, we have to fill the back-
ground of the menu items (the rectangular area passed as a parameter) with the
standard color for the menu (clMenu) or the selected menu items (clHighlight):

procedure TForm1.ColorDrawItem(Sender: TObject;
 ACanvas: TCanvas; ARect: TRect; Selected: Boolean);
begin
 // set the background color and draw it
 if Selected then
 ACanvas.Brush.Color := clHighlight
 else
 ACanvas.Brush.Color := clMenu;
 ACanvas.FillRect (ARect);
 // show the color
 ACanvas.Brush.Color := (Sender as TComponent).Tag;
 InflateRect (ARect, -5, -5);
 ACanvas.Rectangle (ARect.Left, ARect.Top,
 ARect.Right, ARect.Bottom);
end;

Figure 5.13:
The owner-draw menu
of the ODMenu
example. Image from
the original book.

The three handlers for this event of the Shape pull-down menu items are all differ-
ent, although they use similar code:

procedure TForm1.Ellipse1DrawItem(Sender: TObject; ACanvas: TCanvas;
 ARect: TRect; Selected: Boolean);
begin
 // set the background color and draw it
 if Selected then
 ACanvas.Brush.Color := clHighlight
 else
 ACanvas.Brush.Color := clMenu;
 ACanvas.FillRect (ARect);
 // draw the ellipse

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

242 - Chapter 5: Advanced Use of the Standard Components

 ACanvas.Brush.Color := clWhite;
 InflateRect (ARect, -5, -5);
 ACanvas.Ellipse (ARect.Left, ARect.Top,
 ARect.Right, ARect.Bottom);
end;

note To accommodate the increasing number of states in the Windows 2000 user interface style, Del-
phi 5 includes a new OnAdvancedDrawItem event for menus.

A ListBox of Colors

As we have just seen for menus, list boxes have an owner-draw capability, which
means a program can paint the items of a list box. The same support is provided for
combo boxes. To create an owner-draw list box, we set its Style property to
lbOwnerDrawFixed or lbOwnerDrawVariable. The first value indicates that we are
going to set the height of the items of the list box by specifying the ItemHeight prop-
erty and that this will be the height of each and every item. The second owner-draw
style indicates a list box with items of different heights. In this case the component
will trigger the OnMeasureItem event for each item, to ask the program for their
heights.

In the ODList example, I’ll stick with the first, simpler, approach. The example
stores color information along with the items of the list box and then draws the
items in colors (instead of using a single color for the whole list). Here are the prop-
erties of the components of the main form of this example:

object ODListForm: TODListForm
 Caption = ‘Owner-draw Listbox’
 OnCreate = FormCreate
 object ListBox1: TListBox
 Align = alClient
 Font.Charset = ANSI_CHARSET
 Font.Color = clBlack
 Font.Height = -32
 Font.Name = ‘Arial’
 Font.Style = [fsBold]
 ItemHeight = 16
 ParentFont = False
 Sorted = True
 Style = lbOwnerDrawFixed
 OnDblClick = ListBox1DblClick
 OnDrawItem = ListBox1DrawItem
 end
 object ColorDialog1: TColorDialog...

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 243

end

Notice the value of the TextHeight attribute of the form, which indicates the num-
ber of pixels required to display text. This is the value we should use for the
ItemHeight property of the list box. An alternative solution is to compute this value
at run time, so that if we later change the font at design time we don’t have to
remember to set the height of the items accordingly.

note I’ve just described TextHeight as an attribute of the form, not a property. And in fact it isn’t a
property but a local value of the form. If it is not a property, you might ask, how does Delphi save
it in the DFM file? Well, the answer is that Delphi’s streaming mechanism is based on properties
plus special property-clones created by the DefineProperties method. You can refer to the
Delphi Help file or to Delphi Developer’s Handbook for information about this advanced topic.

Since TextHeight is not a property, although it is listed in the form description, we
cannot access it directly. Studying the VCL source code, I found that this value is
computed by calling a private method of the form, GetTextHeight. Since it is pri-
vate, we cannot call this function. What we can do is to duplicate its code (which is
actually quite simple) in the FormCreate method of the form, after selecting the font
of the list box:

Canvas.Font := ListBox1.Font;
ListBox1.ItemHeight := Canvas.TextHeight(‘0’);

The next thing we have to do is add some items to the list box. Since this is a list box
of colors, we want to add color names to the Items of the list box and the corre-
sponding color values to the Objects data storage related to each item of the list.
Instead of adding the two values separately, I’ve written a procedure to add new
items to the list:

procedure TODListForm.AddColors (Colors: array of TColor);
var
 I: Integer;
begin
 for I := Low (Colors) to High (Colors) do
 ListBox1.Items.AddObject (
 ColorToString (Colors[I]),
 TObject(Colors[I]));
end;

This method uses an open-array parameter, an array of an undetermined number of
elements of the same type. (See the online tutorial Essential Pascal at
www.marcocantu.com if you are unfamiliar with this language construct.) For each
item passed as a parameter, we add the name of the color to the list, and we add its
value to the related data, by calling the AddObject method. To obtain the string cor-

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

244 - Chapter 5: Advanced Use of the Standard Components

responding to the color, we call the Delphi ColorToString function. This returns a
string containing either the corresponding color constant, if any, or the hexadecimal
value of the color. The color data is added to the list box after casting its value to the
TObject data type (a four-byte reference), as required by the AddObject method.

note Besides ColorToString, which converts a color value into the corresponding string with the
identifier or the hexadecimal value, there is also a Delphi function to convert a properly formatted
string into a color, StringToColor.

In the ODList example this method is called in the OnCreate event handler of the
form (after previously setting the height of the items):

AddColors ([clRed, clBlue, clYellow, clGreen, clFuchsia, clLime,
 clGray, RGB (213, 23, 123), RGB (0, 0, 0),
 clAqua, clNavy, clOlive, clPurple, clTeal]);

The code used to draw the items is not particularly complex. We simply retrieve the
color associated with the item, set it as the color of the font, and then draw the text:

procedure TODListForm.ListBox1DrawItem(Control: TWinControl;
 Index: Integer; Rect: TRect; State: TOwnerDrawState);
begin
 with Control as TListbox do
 begin
 // erase
 Canvas.FillRect(Rect);
 // draw item
 Canvas.Font.Color := TColor (Items.Objects [Index]);
 Canvas.TextOut(Rect.Left, Rect.Top, Listbox1.Items[Index]);
 end;
end;

The system already sets the proper background color, so the selected item is dis-
played properly even without any extra code on our part. You can see an example of
the output of this program at startup in Figure 5.14. The example also allows you to
add new items, by double-clicking on the list box:

procedure TODListForm.ListBox1DblClick(Sender: TObject);
begin
 if ColorDialog1.Execute then
 AddColors ([ColorDialog1.Color]);
end;

If you try using this capability, you’ll notice that some colors you add are turned into
color names (one of the Delphi color constants) while others are converted into
hexadecimal numbers.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 245

Figure 5.14:
The output of the
ODList example, with a
colored owner-draw
list box. Image from
the original book.

ListView and TreeView

Although using an owner-draw list box is quite simple, this kind of list box is often
replaced by the more powerful ListView and TreeView controls. Again, these two
controls are part of the Win32 common controls, stored in the ComCtl32.DLL
library.

Microsoft has kept expanding this library over the last two years, adding new con-
trols such as the calendar and the coolbar, all available since Delphi 4, and
extending the existing ones. Some of the versions of the library (distributed in par-
ticular along with the numerous versions of Microsoft Internet Explorer) have
created compatibility problems with the controls, although the situation has appar-
ently become more stable over the last year.

Some of these controls are complex, can be customized in a number of ways, and
even support custom drawing features. Here I’ll show you a couple of simple exam-
ples of the use of the TreeView and ListView components. In Chapters 7 and 8 we’ll

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

246 - Chapter 5: Advanced Use of the Standard Components

use other common controls. In any case, I cannot provide extensive coverage of all
of the features of these controls, which would require too much space.

A Graphical Reference List

When you use a ListView component, you can provide bitmaps both indicating the
status of the element (for example, the selected item) and describing the contents of
the item in a graphical way.

How do we connect the images to a list or tree? We need to refer to the ImageList
component we’ve already used for the images of the menu. A ListView can actually
have three image lists, one for the large icons (the LargeImages property), one for
the small icons (the SmallImages property), and one used for the state of the items
(the StateImages property).

To define the images of the RefList example, however, I used an alternative
approach: I created a single big bitmap (16 x 80 pixels for five small images and 32 x
160 pixels for five large images) with all the images inside. Figure 5.15 shows these
two bitmaps in the Delphi Image Editor163. Then I added the bitmap to a resource
file and wrote some code to load it all at once (not one image at a time).

Figure 5.15:
All the images of the
ListView of the RefList
example are stored in
two bitmaps. Image
from the original book
(the Image Editor isn’t
available with Delphi
any more).

I created two ImageList components at run time. As you can see in the parameter of
the Create constructor, I assigned the form as their owner, so that I don’t have to

163 This image editing tool is not available any more.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 247

manually destroy them at the end. Here is the code of the handler for the first part
of the form’s OnCreate event:

procedure TForm1.FormCreate(Sender: TObject);
var
 ImageList1, ImageList2: TImageList;
begin
 // load the large images
 ImageList1 := TImageList.Create (self);
 ImageList1.Height := 32;
 ImageList1.Width := 32;
 ImageList1.ResourceLoad (rtBitmap,
 ‘LargeImages’, clWhite);
 ListView1.LargeImages := ImageList1;

 // load the small images
 ImageList2 := TImageList.Create (self);
 ImageList2.ResourceLoad (rtBitmap,
 ‘SmallImages’, clWhite);
 ListView1.SmallImages := ImageList2;

Each of the items of the ListView has an ImageIndex, which refers to its image in the
list. For this to work properly, the elements in the two image lists should follow the
same order. When you have a fixed image list, you can add items to it using Delphi’s
ListView Item Editor, which is connected to the Items property. You can see an
example of the use of this editor in Figure 5.16. In this editor you can define items
and so-called subitems. The subitems are displayed only in the detailed view (when
you set the vsReport value of the ViewStyle property) and are connected with the
titles set in the Columns property.

Figure 5.16:
The ListView Item
Editor. Image from the
original book.

In my RefList example (a simple list of references to books, magazines, CD-ROMs,
and Web sites) the items are stored to a file, since users of the program can edit the
content of the list, which are automatically saved as the program exits. This way,
edits made by the user become persistent.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

248 - Chapter 5: Advanced Use of the Standard Components

Saving and loading the contents of a ListView is not trivial, since the TListItems
type doesn’t have an automatic mechanism to save the data. As an alternative sim-
ple approach, I’ve copied the data to and from a string list, using a custom format.
The string list can then be saved to a file and reloaded with a single command.

The file format is simple, as you can see in the following saving code. For each item
of the list, the program saves the caption on one line, the image index on another
line (prefixed by the @ character), and the subitems on the following lines, indented
with a tab character:

procedure TForm1.FormDestroy(Sender: TObject);
var
 I, J: Integer;
 List: TStringList;
begin
 // store the items
 List := TStringList.Create;
 try
 for I := 0 to ListView1.Items.Count - 1 do
 begin
 // save the caption
 List.Add (ListView1.Items[I].Caption);
 // save the index
 List.Add (‘@’ + IntToStr (ListView1.Items[I].ImageIndex));
 // save the subitems (indented)
 for J := 0 to ListView1.Items[I].SubItems.Count - 1 do
 List.Add (#9 + ListView1.Items[I].SubItems [J]);
 end;
 List.SaveToFile (
 ExtractFilePath (Application.ExeName) + ‘Items.txt’);
 finally
 List.Free;
 end;
end;

The items are then reloaded in the second part of the FormCreate method:

procedure TForm1.FormCreate(Sender: TObject);
var
 List: TStringList;
 NewItem: TListItem;
 I: Integer;
begin
 ...
 // load the items
 ListView1.Items.Clear;
 List := TStringList.Create;
 try
 List.LoadFromFile (
 ExtractFilePath (Application.ExeName) + ‘Items.txt’);
 for I := 0 to List.Count - 1 do

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 249

 if List [I][1] = #9 then
 NewItem.SubItems.Add (Trim (List [I]))
 else if List [I][1] = ‘@’ then
 NewItem.ImageIndex := StrToIntDef (List [I][2], 0)
 else
 begin
 // a new item
 NewItem := ListView1.Items.Add;
 NewItem.Caption := List [I];
 end;
 finally
 List.Free;
 end;
end;

The program has a menu you can use to choose one of the different views supported
by the ListView control, and to add check boxes to the items, as in a CheckListBox.
You can see some of the various combinations of these styles in Figure 5.17164.

Figure 5.17:
Different examples of
the output of a
ListView component of
the RefList program,
obtained by changing
the ViewStyle property
and adding the check
boxes. Image from the
original book.

Another important feature, which is common in the detailed or report view of the
control, is to let a user sort the items on one of the columns. To accomplish this

164 The content of this demo, that is the list of books and magazine, it really a blast form the past.
You can notice even the company web site, inprise.com!

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

250 - Chapter 5: Advanced Use of the Standard Components

requires three operations. The first is to set the SortType property of the ListView to
stBoth or stData. In this way, the ListView will operate the sorting not based on the
captions, but calling the OnCompare event for each two items it has to sort. Since we
want to do the sorting on each of the columns of the detailed view, we also handle
the OnColumnClick event (which takes place when the user clicks on the column
titles in the detailed view, but only if the ShowColumnHeaders property is set to
True). Each time a column is clicked, the program saves the number of that column
in the nSortCol private field of the form class:

procedure TForm1.ListView1ColumnClick(Sender: TObject;
 Column: TListColumn);
begin
 nSortCol := Column.Index;
 ListView1.AlphaSort;
end;

Then, in the third step, the sorting code uses either the caption or one of the
subitems according to the current sort column:

procedure TForm1.ListView1Compare(Sender: TObject;
 Item1, Item2: TListItem;
 Data: Integer; var Compare: Integer);
begin
 if nSortCol = 0 then
 Compare := CompareStr (Item1.Caption, Item2.Caption)
 else
 Compare := CompareStr (Item1.SubItems [nSortCol - 1],
 Item2.SubItems [nSortCol - 1]);
end;

The final features I’ve added to the program relate to mouse operations. When the
user left-clicks an item, the RefList program shows a description of the selected
item. Right-clicking the selected item sets it in edit mode, and a user can change it
(keep in mind that the changes will automatically be saved when the program termi-
nates). Here is the code for both operations, in the OnMouseDown event handler of the
ListView control:

procedure TForm1.ListView1MouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
var
 strDescr: string;
 I: Integer;
begin
 // if there is a selected item
 if ListView1.Selected <> nil then
 if Button = mbLeft then
 begin
 // create and show a description
 strDescr := ListView1.Columns [0].Caption + #9 +

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 251

 ListView1.Selected.Caption + #13;
 for I := 1 to ListView1.Selected.SubItems.Count do
 strDescr := strDescr + ListView1.Columns [I].Caption + #9 +
 ListView1.Selected.SubItems [I-1] + #13;
 ShowMessage (strDescr);
 end
 else if Button = mbRight then
 // edit the caption
 ListView1.Selected.EditCaption;
end;

Although it is not feature-complete, this example shows some of the potential of the
ListView control. I’ve also activated the Windows 98 “hot-tracking” feature, which
lets the list view highlight and underline the item under the mouse, as Figure 5.18
demonstrates. The relevant properties of the ListView can be seen in its textual
description:

object ListView1: TListView
 Align = alClient
 Columns = <
 item
 Caption = ‘Reference’
 Width = 230
 end
 item
 Caption = ‘Author’
 Width = 180
 end
 item
 Caption = ‘Country’
 Width = 80
 end>
 Font.Height = -13
 Font.Name = ‘MS Sans Serif’
 Font.Style = [fsBold]
 FullDrag = True
 HideSelection = False
 HotTrack = True
 HotTrackStyles = [htHandPoint, htUnderlineHot]
 SortType = stBoth
 ViewStyle = vsList
 OnColumnClick = ListView1ColumnClick
 OnCompare = ListView1Compare
 OnMouseDown = ListView1MouseDown
end

This program is actually quite interesting, and I’ll further extend it in Chapter 8,
adding a dialog box to it.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

252 - Chapter 5: Advanced Use of the Standard Components

Figure 5.18:
The new hot-tracking
feature of the ListView
control. Notice that the
items are sorted by
author. Image from the
original book.

A Tree of Data

Now that we’ve seen an example based on the ListView, we can close the chapter by
looking at the TreeView control. The TreeView has a user interface that is flexible
and powerful (with support for editing and dragging elements). It is also standard,
because it is the user interface of the Windows Explorer. There are a number of
properties and various ways to customize the bitmap of each line or of each type of
line.

To define the structure of the nodes of the TreeView at design time, you can use the
TreeView Items property editor (see Figure 5.19). In this case, however, I’ve decided
to load it in the TreeView data at startup, in a way similar to the last example.

Figure 5.19:
The TreeView Items
property editor. Image
from the original book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 253

The Items property of the TreeView component has many member functions you
can use to alter the hierarchy of strings. For example, we can build a two-level tree
with the following lines:

var
 Node: TTreeNode;
begin
 Node := TreeView1.Items.Add (nil, ‘First level’);
 TreeView1.Items.AddChild (Node, ‘Second level’);

Using these two methods (Add and AddChild) we can build a complex structure at
run time. But how do we load the information? Again, you can use a StringList at
run time, load a text file with the information, and parse it.

However, since the TreeView control has a LoadFromFile method, the DragTree
example uses the following simpler code:

procedure TForm1.FormCreate(Sender: TObject);
begin
 TreeView1.LoadFromFile (
 ExtractFilePath (Application.ExeName) + ‘TreeText.txt’);
end;

The LoadFromFile method basically loads the data in a string list and checks the
level of each item by looking at the number of tab characters. (If you are curious, see
the TTreeStrings.GetBufStart method, which you can find in the ComCtrls unit in
the VCL source code included in Delphi.) By the way, the data I’ve prepared for the
TreeView is the organizational chart of a multinational company.

Besides loading the data, the program saves it when it terminates, making the
changes persistent. It also has a few menu items to customize the font of the Tree-
View control and change some other simple settings. The specific feature I’ve
implemented in this example is support for dragging items and entire subtrees. I’ve
set the DragMode property of the component to dmAutomatic and written the event
handlers for the OnDragOver and OnDragDrop events.

In the first of the two handlers, the program makes sure the user is not trying to
drag an item over a child item (which would be moved along with the item, leading
to an infinite recursion):

procedure TForm1.TreeView1DragOver(Sender, Source: TObject;
 X, Y: Integer; State: TDragState; var Accept: Boolean);
var
 TargetNode, SourceNode: TTreeNode;
begin
 TargetNode := TreeView1.GetNodeAt (X, Y);
 // accept dragging from itself
 if (Source = Sender) and (TargetNode <> nil) then

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

254 - Chapter 5: Advanced Use of the Standard Components

 begin
 Accept := True;
 // determines source and target
 SourceNode := TreeView1.Selected;
 // look up the target parent chain
 while (TargetNode.Parent <> nil) and
 (TargetNode <> SourceNode) do
 TargetNode := TargetNode.Parent;
 // if source is found
 if TargetNode = SourceNode then
 // do not allow dragging over a child
 Accept := False;
 end
 else
 Accept := False;
end;

The effect of this code is that (except for the particular case we need to disallow) a
user can drag an item of the TreeView over another one, as shown in Figure 5.20.
Writing the actual code for moving the items is simple, because the TreeView con-
trol provides the support for this operation, through the MoveTo method of the
TTreeNode class:

procedure TForm1.TreeView1DragDrop(Sender,
 Source: TObject; X, Y: Integer);
var
 TargetNode, SourceNode: TTreeNode;
begin
 TargetNode := TreeView1.GetNodeAt (X, Y);
 if TargetNode <> nil then
 begin
 SourceNode := TreeView1.Selected;
 SourceNode.MoveTo (TargetNode, naAddChildFirst);
 TargetNode.Expand (False);
 TreeView1.Selected := TargetNode;
 end;
end;

note Among the Demos shipping with Delphi, there is an interesting one showing a custom-draw Tree-
View control. The example is in the CustomDraw sub-directory.165

165 The CustomDraw example is no longer available as part of the official Delphi demos.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 5: Advanced Use of the Standard Components - 255

Figure 5.20:
The DragTree example
during a dragging
operation

What’s Next?

In this chapter, we have started to explore some of the basic components available
in Delphi. These components correspond to the standard Windows controls and
some of the Win32 common controls, and they are extremely common in applica-
tions. We have also seen how to create main menus and pop-up menus, and we’ve
seen how to add extra graphics to some of these controls.

We also explored a very important and still little-used component, the ActionList,
and its architecture for handling menu-item and toolbar-button events. We’ll get
back to this topic in other examples, and we’ll cover the standard MDI and dataset
actions in the related chapters.

The next step, however, is to explore in depth one of the most common elements of
Delphi programming: forms. We’ve already used forms many times, but there are
still plenty of new features to discuss, including some quite important ones.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

256 - Chapter 6: Forms, Windows, and Applications

Chapter 6: Forms,

Windows, And

Applications

If you’ve read the previous chapter, you should now be able to use Delphi’s standard
components in your applications. So let’s turn our attention to the central element
of development in Delphi: the form. We have used forms since the initial chapters,
but I’ve never described in detail what you can do with a form, which properties you
can use, or which methods of the TForm class are particularly interesting.

This chapter looks at some of the properties and styles of forms and at sizing and
positioning them. I’ll also introduce applications with multiple forms and cover the
global VCL objects that handle the interaction among them, Screen and
Application. I’ll also devote some time to input on a form, both from the keyboard
and the mouse. Let me start this chapter with a general, theoretical discussion of
forms and windows.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 257

Forms versus Windows

In Windows, most elements of the user interface are windows. For this reason, in
Delphi most components are also based on windows—most of them, but not all. Of
course, this is not what a user perceives. The distinction is not obvious, so you
should consider the following definitions carefully. Then we can make some further
observations.

· From a user standpoint, a window is a portion of the screen surrounded by a bor-
der, having a caption and usually a system menu, that can be moved on the
screen, closed, and at times also minimized and maximized. Windows can be
moved on the screen or inside other windows, as in MDI (Multiple Document
Interface) applications. These user windows can be divided into two general cat-
egories: main windows and dialog boxes.

· Technically speaking, a window is an entry in an internal memory area of the
Windows system, often corresponding to an element visible on the screen, that
has some associated code. One of the Windows system libraries contains a list of
all the windows that have been built by every application and assigns to each of
them a unique number (usually known as a handle). Some of these windows are
perceived as such by users (see the first definition above), others have the role of
controls or visual components, others are temporarily created by the system (for
example, to show a pull-down menu), and still others are created by the applica-
tion but remain hidden from the user.

The common denominator of all windows is that they are known by the Windows
system and refer to a function for their behavior; each time something happens in
the system, a notification message is sent to the proper window, which responds by
executing some code. Each window of the system, in fact, has an associated function
(generally called its window procedure), which handles the various messages the
window is interested in.

In a Delphi application, the system converts these lower-level messages into events.
But at times, as we have already seen in some examples, we handle low-level mes-
sages directly in a form. Delphi allows us to work at a higher level than the system,
making application development much easier.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

258 - Chapter 6: Forms, Windows, and Applications

note The memory area of the Windows system allocated to listing all the windows that have been built
is limited. Building too many windows reduces the so-called system resources. Windows 3.1 had a
severe limit to the number of windows available in the system. In Windows 95 and 98, this limit
has been greatly enlarged, and in Windows NT it doesn’t even exist. Once there are too many win-
dows in the system (including all the controls and hidden windows), you cannot create even one
more window, something that will block most applications. This is why, in Delphi, there are a
number of non-windowed components, including labels. This approach lets you save a lot of this
system memory without having to worry (or even know) about it. As already mentioned in Chap-
ter 4, graphical non-windowed controls have also other advantages, including faster creation and
redraw and less overhead overall166.

With these general definitions in mind, we can now move back to Delphi and try to
understand the role of forms. Forms represent windows from a user standpoint and
can be used to build main windows, MDI windows, and dialog boxes. Their behavior
is defined mostly by the code written for them but also by a couple of very important
properties, FormStyle and BorderStyle, which we’ll explore shortly. Many other
components are based on windows, but only forms appear to be windows from a
user’s point of view. The other windowed components, or controls, can be consid-
ered windows only according to the technical definition.

As an example, simply create a new application and place a button in it, save the
files in a directory with default names, and run the program. Using the WinSight
tool supplied with Delphi167, you can see the list of the windows of the system; notice
in particular the windows created by the application, as shown in Figure 6.1. These
include the following windows:

· A main window, the form, with the title Form1. It is an overlapped window of
class TForm1.

· A child window, the button inside the form, with the title Button1. This is a child
window of class TButton.

· A hidden main window, the application window, entitled Project1. This is a pop-
up window of class TApplication.

Notice that the names in brackets in WinSight, which are internal names of the sys-
tem, correspond to the names of the classes of the Delphi components.

166 If if the Windows handle limit is not relevant today, using graphical controls with no handle
still offers advantages, for controls with limited user interaction and not mapped to platform
controls.

167 WinSight is not available as part of the product, and I haven’t been able to find it online. A
newer, similar tools is Spy++ by Microsoft.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 259

Figure 6.1: The
windows of a simple
application as they
appear in WinSight.
Image from the
original book.

Overlapped, Pop-Up, and Child Windows

To understand the role of the various windows of this program, we need to look at some
technical elements related to the Windows environment. These are not simple concepts, but they
are worth knowing about.

1. Each window you create has one of three general styles that determine its behavior. These
styles are overlapped, pop-up, and child:
Overlapped windows are main windows of the application, which behave as you would probably
expect.

2. Pop-up windows are often used for dialog boxes and message boxes and can be considered a
holdover from older versions of the system. In fact, in Windows 1, the windows were not
overlapped but tiled, and only the pop-up windows could cover other windows. Pop-up windows
are generally very similar to overlapped windows.

3. The third group, child windows, was originally used for controls inside a dialog box. You can
use this style for any window that cannot move outside the client area of the parent window. The
obvious extension is to use child windows to build MDI applications; but this behavior is not
automatic.

It is important to note that, technically speaking, only child windows can have a parent. Any
other window, however, can have an owner. An owner is a window that has a continuous
message exchange with the windows it owns—for example, when the window is reduced to an
icon, when it is activated, and so on. Usually a parent is also the owner, but it forces its child to
live inside its client area. The child windows don’t use screen coordinates; instead, they use the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

260 - Chapter 6: Forms, Windows, and Applications

client area coordinates of their parent window—to display themselves they borrow pixels not
from the screen but from their parent window.

Notice that the Windows API uses the same term (Parent) to indicate both the parent and the
owner. Even the GetParent API function can return both items. Within the system, however,
the two handles (that of the parent window and that of the owner window) are stored separately.
This is indeed very odd, and it causes a lot of confusion.

In Delphi, all forms are overlapped windows, including dialog boxes, and the form owns all the
windowed components (the controls) you place inside it. However, their parent can be either the
form or one of the special container components, such as the GroupBox or the Panel. When you
place a radio button inside a group box, the group box is its parent, but the form is its owner.
What about pop-up windows? In Delphi, they are used for the hidden application window, the
drop-down list of custom combo boxes, and hint windows. In the system, they are used for
message boxes and pop-up or pull-down menus, just to mention two examples.

The Parent property of a control indicates what is responsible for displaying it. When you drop
a component into a form in the designer, the form will become both parent and owner. When you
create the control at run time, you’ll need to set the owner (using the Create constructor
parameter), but you must also set the Parent property, or the control won’t be visible.

The Application Is a Window

From the analysis of the WinSight information, you might have noticed that the pro-
gram has an extra window for the application. Similarly, in the last chapter, we saw
that items added to the system menu of the main form were not added to the
Taskbar icon, as well. The application window, in fact, is hidden from sight but
appears on the Taskbar. This is why Delphi names the window Form1 and the corre-
sponding Taskbar icon Project1168.

The window related to the Application object—the application window—serves to
keep together all the windows of an application. The fact that all the top-level forms
of a program have this hidden owner window, for example, is fundamental when the

168 There is a a significant change in the VCL pertaining to what its displayed in the task bar. You
have the option to use the main form rather than the Application hidden window. This is im-
portant today, since the taskbar button offers a form preview and other related features. The
default project source code adds by default the line “Application.MainFormOnTaskbar :=
True;” which does what the name implies: It displays the main form rather then the Applica-
tion handle in the taskbar. When you open an old Delphi application (like those in the original
source code of this book), that code is missing and you get the old behavior.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 261

application is activated. In fact, when the windows of your program are behind
other windows, clicking on one window in your application will bring all of your
application’s windows to the front. In other words, the hidden application window is
used to connect the different forms of the application. Actually the application win-
dow is not hidden, because that would affect its behavior; it simply has zero height
and width, and therefore it is not visible.

When you create a new, blank application, Delphi generates a code for the project
file, which includes the following169:

begin
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end.

This code uses the global object Application, which is of class TApplication and is
defined by the VCL in the Forms unit. This object is indeed a component, although
you cannot set its properties using the Object Inspector. The properties include the
name of the executable file (ExeName), the Title of the application (by default, the
name of the executable file without the extension), and the Icon displayed in the
Taskbar. You can see the application’s Title in the Windows Taskbar170. The same
name appears when you scan the running applications with the Alt+Tab keys. To
avoid a discrepancy between the two titles, you can change the application’s title at
design time, in the Application page of the Project Options dialog box. Or at run
time, you can copy the form’s caption to the title of the application with this code171:

Application.Title := Form1.Caption;

You can also set other properties of the global Application object using the same
dialog box. To handle the events of the Application object, until Delphi 4 you had
to write the code manually. Delphi 5, instead, includes the new ApplicationEvents
component, specifically intended to handle events of the Application object. Beside
the easier connection of event handlers at design time, the advantage of using this
new component lies in the fact it allows for multiple handlers. If you simply place
two instances of the ApplicationEvents component in two different forms, each of
them can handle the same event, and both event handlers will be executed. In other
words, multiple ApplicationEvents components can chain the handlers.

169 As mentioned in the previous note, there is now an extra line, “Application.MainFormOn-
Taskbar := True;”.

170 That is, unless you set MainFormOnTaskbar to True.

171 This isn’t recommended any more, given the better alternative available.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

262 - Chapter 6: Forms, Windows, and Applications

Some of these application-wide events, including OnActivate, OnDeactivate,
OnMinimize, and OnRestore, allow you to keep track of the status of the application.
Other events are forwarded to the application by the controls receiving them, as
OnActionExecute, OnActionUpdate, OnHelp, OnHint, OnShortCut, and OnShowHint.
Finally, there is the OnException global exception handler we’ve used in Chapter 3,
the OnIdle event used for background computing and the OnMessage event, which
fires whenever a message is posted to any of the windows or windowed controls of
the application.

In most applications, you don’t care about the application window, apart from set-
ting its Title and icon and handling some of its events. There are some simple
operations you can do anyway. Setting the ShowMainForm property to False in the
project source code indicates that the main form should not be displayed at start-
up. Inside a program, instead, you can use the MainForm property of the
Application object to access the main form, which is the first form created in the
program.

Displaying the Application Window

There is no better proof that there is indeed a window for the Application object
than to display it. Actually, we don’t need to show it—we just need to resize it and
set a couple of window attributes, such as the presence of a caption and a border.
We can perform these operations by using Windows API functions on the window
indicated by the Handle property of the Application object:

procedure TForm1.Button1Click(Sender: TObject);
var
 OldStyle: Integer;
begin
 // add border and caption to the app window
 OldStyle := GetWindowLong (
 Application.Handle, gwl_Style);
 SetWindowLong (Application.Handle, gwl_Style,
 OldStyle or ws_ThickFrame or ws_Caption);
 // set the size of the app window
 SetWindowPos (Application.Handle,
 0, 0, 0, 200, 100, swp_NoMove or swp_NoZOrder);
end;

The two GetWindowLong and SetWindowLong API functions are used to access the
system information related to the window. In this case, we are using the gwl_Style
parameter to read or write the styles of the window, which include its border, title,
system menu, border icons, and so on. The code above gets the current styles and
adds (using an or statement) a standard border and a caption to the form. As we’ll

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 263

see later in this chapter, you seldom need to use these low-level API functions in
Delphi, because there are properties of the TForm class that have the same effect. We
need this code here because the application window is not a form.

Executing this code displays the project window, as you can see in Figure 6.2172.
Although there’s no need to implement something like this in your own programs,
running this program will reveal the relationship between the application window
and the main window of a Delphi program. This is a very important starting point if
you want to understand the internal structure of Delphi applications.

Figure 6.2: The
hidden application
window revealed by the
ShowApp program.
Image from the
original book.

note In Windows, the minimize and maximize operations are associated by default with system sounds
and a visual animated effect. Applications built with Delphi up to version 4 didn’t play the sounds
or show the visual effect (unless you write some specific code). Delphi 5 applications, instead, pro-
duce the sound and display the visual effect by default. Simply recompile your programs and
they’ll exhibit this extra feature! Technically, the reason this didn’t happen in earlier releases is
that the main form’s minimize and maximize system messages were not being passed to the
default window procedure, where Windows implements system sound behavior, was to avoid an
unwanted animation effect in the Taskbar. Having found a fix for this problem in Delphi 5, the
default behavior has been restored by passing the messages to the operating system.173

172 This still happens today with Delphi 12 and Windows 11. If you try it, the application window
on screen looks really weird. The point, of course, is just to make you see it exists, it has no role
in an actual application.

173 Even if for different reasons, VCL main forms minimize and maximize without using the most
common Windows APIs calls for this operations, therefore missing some of the standard ef-
fects. I don’t think this is a significant issue.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

264 - Chapter 6: Forms, Windows, and Applications

The Application System Menu

Unless you write a very odd program like the example we’ve just looked at, users
will only see the application window in the Taskbar. There, they can activate the
window’s system menu by right-clicking on it. As I mentioned, when discussing the
system menu in the last chapter, an application’s menu is not the same as that of the
main form. In the SysMenu example in Chapter 5, I added custom items to the sys-
tem menu of the main form. Now in the SysMenu2 example, I want to customize the
system menu of the application window in the Taskbar.

First we have to add the new items to the system menu of the application window
when the program starts. Here is the updated code of the FormCreate method:

procedure TForm1.FormCreate(Sender: TObject);
begin
 // add a separator and a menu item to the system menu
 AppendMenu (GetSystemMenu (Handle, FALSE),
 MF_SEPARATOR, 0, ‘’);
 AppendMenu (GetSystemMenu (Handle, FALSE),
 MF_STRING, idSysAbout, ‘&About...’);
 // add the same items to the application system menu
 AppendMenu (GetSystemMenu (Application.Handle, FALSE),
 MF_SEPARATOR, 0, ‘’);
 AppendMenu (GetSystemMenu (Application.Handle, FALSE),
 MF_STRING, idSysAbout, ‘&About...’);
end;

The first part of the code adds the new separator and item to the system menu of the
main form. The other two calls add the same two items to the application’s system
menu, simply by referring to Application.Handle. This is enough to display the
updated system menu, as you can see by running this program. The next step is to
handle the selection of the new menu item.

To handle form messages, we can simply write new event handlers or message-han-
dling methods. We cannot do the same with the application window, simply because
inheriting from the TApplication class is quite a complex issue. Most of the time we
can simply handle the OnMessage event of this class, which is activated for every
message the application retrieves from the message queue.

To handle the OnMessage event of the global Application object, simply add an
ApplicationEvents component to the main form, and define a handler for the
OnMessage event of this component. In this case, we simply need to handle the
wm_SysCommand message, and we only need to do that if the wParam parameter indi-
cates that the user has selected the menu item we’ve just added, idSysAbout:

procedure TForm1.ApplicationEvents1Message(var Msg: tagMSG;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 265

 var Handled: Boolean);
begin
 if (Msg.Message = wm_SysCommand) and
 (Msg.wParam = idSysAbout) then
 begin
 ShowMessage (‘Mastering Delphi: SysMenu2 example’);
 Handled := True;
 end;
end;

This method is very similar to the one used to handle the corresponding system
menu item of the main form:

procedure WMSysCommand (var Msg: TWMSysCommand);
 message wm_SysCommand;
...
procedure TForm1.WMSysCommand (var Msg: TWMSysCommand);
begin
 // handle a specific command
 if Msg.CmdType = idSysAbout then
 ShowMessage (‘Mastering Delphi: SysMenu2 example’);
 inherited;
end;

Activating Applications and Forms

To show how the activation of forms and applications works, I’ve written a simple,
self-explanatory example called ActivApp. This example has two forms. Each form
has a Label component (LabelForm) used to display the status of the form. The pro-
gram uses text and color for this, as the handlers of the OnActivate and
OnDeactivate events of the first form demonstrate:

procedure TForm1.FormActivate(Sender: TObject);
begin
 LabelForm.Caption := ‘Form2 Active’;
 LabelForm.Color := clRed;
end;

procedure TForm1.FormDeactivate(Sender: TObject);
begin
 LabelForm.Caption := ‘Form2 Not Active’;
 LabelForm.Color := clBtnFace;
end;

The second form has a similar label and similar code. The main form also displays
the status of the entire application. It uses an ApplicationEvents component to han-
dle the OnActivate and OnDeactivate events of the Application object. These two

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

266 - Chapter 6: Forms, Windows, and Applications

event handlers are similar to the two listed previously, with the only difference
being that they modify the text and color of a second label of the form.

If you try running this program, you’ll see whether this application is the active one
and, if so, which of its forms is the active one. By looking at the output (see Figure
6.3) and listening for the beep, you can understand how each of the activation
events is triggered by Delphi. Run this program and play with it for a while to
understand how it works. We’ll get back to other events related to the activation of
forms in a while.

Figure 6.3: The
ActivApp example
shows whether the
application is active
and which of the
application’s forms is
active. Image from the
original book.

Setting Form and Border Styles

Among the properties of a form, two of them determine the fundamental rules of its
behavior: FormStyle and BorderStyle. The first of these two special properties
allows you to choose between a normal SDI (Single Document Interface) and one of
the windows that make up an MDI (Multiple Document Interface) application174.

These are the possible values of the FormStyle property:

· fsNormal: The form is a normal SDI window or a dialog box.

· fsMDIChild: The form is an MDI child window.

· fsMDIForm: The form is an MDI parent window—that is, the frame window of the
MDI application.

174 MDI has long been deprecated by Microsoft, but some VCL developers still use it. That’s why
Delphi in version 12 overhauled MDI with quality and features improvements .

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 267

· fsStayOnTop: The form is an SDI window, but it always remains on top of all
other windows except for any that also happen to be stay-on-top windows.

Because an application that conforms to the Multiple Document Interface standard
needs windows of two different kinds (frame and child), two values of the
FormStyle property are involved. To build an MDI application, you can use the stan-
dard application template or look at Chapter 8, which focuses on the MDI in detail.
For now, though, it might be interesting to explore the use of the fsStayOnTop style.

To create a topmost form (a form whose window is always on top), you need only set
the FormStyle property, as indicated above. This property has two different effects,
depending on the kind of form you apply it to:

· The main form of an application will remain in front of every other application
(unless other applications have the same topmost style, too).

· A secondary form will remain in front of any other form of the application it
belongs to. The windows of other applications are not affected, though.

The Border Style

The second property of a form is BorderStyle. This property refers to a visual ele-
ment of the form, but it has a much more profound influence on the behavior of the
window, as you can see in Figure 6.4.

At design time, the form is always shown using the default value of the BorderStyle
property, bsSizeable. This corresponds to a Windows style known as thick frame.
When a main window has a thick frame around it, a user can resize it by dragging its
border. This is made clear by the special resize cursors (with the shape of a double-
pointer arrow) displayed when the user moves the mouse onto this thick window
border.175

175 The user interface of windows borders has changed a lot in Windows over recent editions.
While the technical foundations described here are still the same, the UI and behavior are sig-
nificantly different.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

268 - Chapter 6: Forms, Windows, and Applications

Figure 6.4: Sample
forms with the
different border styles,
created by the Borders
example. Image from
the original book.

A second important choice for this property is bsDialog. If you select it, the form
uses as its border the typical dialog-box frame—a thick frame that doesn’t allow
resizing. In addition to this graphical element, note that if you select the bsDialog
value, the form becomes a dialog box. This involves a number of changes. For exam-
ple, the items on its system menu are different, and the form will ignore some of the
elements of the BorderIcons set property.

note Setting the BorderStyle property at design time produces no visible effect. In fact, several com-
ponent properties do not take effect at design time, because they would prevent you from working
on the component while developing the program. For example, how could you resize the form
with the mouse if it were turned into a dialog box? When you run the application, though, the
form will have the border you requested.

There are four more values we can assign to the BorderStyle property. The style
bsSingle can be used to create a main window that’s not resizable. Many games and
applications based on windows with controls (such as data-entry forms) use this
value, simply because resizing these forms makes no sense. Enlarging a form to see
an empty area or reducing its size to make some components less visible often
doesn’t help a program’s user (although Delphi’s automatic scroll bars partially
solve the last problem). The value fsNone is used only in very special situations and
inside other forms. You’ll never see an application with a main window that has no
border or caption (except maybe as an example in a programming book to show you
that it makes no sense).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 269

The last two values, bsToolWindow and bsSizeToolWin, are related to the specific
Win32 extended style ws_ex_ToolWindow. This style turns the window into a floating
toolbox, with a small title font and close button. This style should not be used for the
main window of an application.

To test the effect and behavior of the different values of the BorderStyle property,
I’ve written a simple program called Borders. You’ve already seen its output, in Fig-
ure 6.4. However, I suggest you run this example and experiment with it for a while
to understand all the differences in the forms.

The main form of this program contains only a radio group and a button. There is
also a secondary form, with no components and the Position property set to
poDefaultPosOnly. This affects the initial position of the secondary form we’ll create
by pressing the button. (I’ll discuss the Position property later in this chapter.)

The code of the program is very simple. When you press the button, a new form is
dynamically created, depending on the selected item of the radio group:

procedure TForm1.BtnNewFormClick(Sender: TObject);
var
 NewForm: TForm2;
begin
 NewForm := TForm2.Create (Application);
 NewForm.BorderStyle := TFormBorderStyle (
 BorderRadioGroup.ItemIndex);
 NewForm.Caption := BorderRadioGroup.Items[
 BorderRadioGroup.ItemIndex];
 NewForm.Show;
end;

This code actually uses a trick: it casts the number of the selected item into the
TFormBorderStyle enumeration. This works because I’ve given the radio buttons
the same order as the values of this enumeration:

type
 TFormBorderStyle = (bsNone, bsSingle, bsSizeable,
 bsDialog, bsToolWindow, bsSizeToolWin);

The BtnNewFormClick method then copies the text of the radio button to the caption
of the secondary form. This program refers to TForm2, the secondary form defined in
a secondary unit of the program, saved as SECOND.PAS. For this reason, to compile
the example, you must add the following lines to the implementation section of the
unit of the main form:

uses
 Second;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

270 - Chapter 6: Forms, Windows, and Applications

note Whenever you need to refer to another unit of a program, place the corresponding uses state-
ment in the implementation portion instead of the interface portion if possible. This speeds
up the compilation process, results in cleaner code (because the units you include are separate
from those included by Delphi), and never generates circular references between different units.
To accomplish this, you can also use the File Use Unit menu command.

The Border Icons

Another important element of a form is the presence of icons on its border176. By
default, a window has a small icon connected to the system menu, a Minimize but-
ton, a Maximize button, and a Close button on the far right. You can set different
options using the BorderIcons property, a set with four possible values:
biSystemMenu, biMinimize, biMaximize, and biHelp.

note The biHelp border icon enables the “What’s this?” Help. When this style is included and the
biMinimize and biMaximize styles are excluded, a question mark appears in the form’s title
bar. If you click on this question mark and then click on a component inside the form (but not on
the form itself!), Delphi activates the Help about that object inside a pop-up window. This is
demonstrated by the BIcons example, which has a simple Help file with a page connected to the
HelpContext property of the button in the middle of the form.

The BIcons example demonstrates the behavior of a form with different border
icons and shows how to change this property at run time. The form of this example
is very simple: it has only a menu, with a pull-down containing four menu items,
one for each of the possible elements of the set of border icons. I’ve written a single
method, connected with the four commands, that reads the check marks on the
menu items to determine the value of the BorderIcons property. This code is there-
fore also a good exercise in working with sets:

procedure TForm1.SetIcons(Sender: TObject);
var
 BorIco: TBorderIcons;
begin
 (Sender as TMenuItem).Checked :=
 not (Sender as TMenuItem).Checked;
 if SystemMenu1.Checked then
 BorIco := [biSystemMenu]

176 The ability of customizing the border has been largely expanded over time. The VCL library in-
cludes a TitleBarPanel component offering complete control on the title bar, as you can place
other controls on it (effectively displaying the in the title bar). This is the component the Del-
phi IDE also uses to host buttons, a combo boxe, and a search box it its title bar.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 271

 else
 BorIco := [];
 if MaximizeBox1.Checked then
 Include (BorIco, biMaximize);
 if MinimizeBox1.Checked then
 Include (BorIco, biMinimize);
 if Help1.Checked then
 Include (BorIco, biHelp);
 BorderIcons := BorIco;
end;

While running the BIcons example, you can easily set and remove the various visual
elements of the form’s border. You’ll immediately see that some of these elements
are closely related: if you remove the system menu, all of the border icons will dis-
appear; if you remove either the Minimize or the Maximize button, it will be grayed;
if you remove both these buttons, they will disappear. Notice also that in these last
two cases, the corresponding items of the system menu are automatically disabled.
This is the standard behavior for any Windows application. When the Maximize and
Minimize buttons have been disabled, you can activate the Help button. As a short-
cut to obtain this effect, you can press the button inside the form. Also, you can click
on the button after pressing the Help Menu icon to see a Help message, as you can
see in Figure 6.5.

Figure 6.5: The Help
button displayed by the
BIcons example. By
dragging the Help
cursor over the button
you get the Help
displayed in the figure.
Image from the
original book.

As an extra feature, the program also displays the time that the Help was invoked in
the caption, by handling the OnHelp event of the form. This effect is visible in the fig-
ure.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

272 - Chapter 6: Forms, Windows, and Applications

Setting More Window Styles

The border style and border icons are indicated by two different Delphi properties,
which can be used to set the initial value of the corresponding user interface ele-
ments. We have seen that besides changing the user interface, these properties
affect the behavior of a window. It is important to know that these border-related
properties and the FormStyle property mainly correspond to different settings in
the style and extended style of a window. These two terms reflect two parameters of
the CreateWindowEx API function Delphi uses to create forms.

It is important to acknowledge this, because Delphi allows you to modify these two
parameters freely by overriding the CreateParams virtual method:

public
 procedure CreateParams (
 var Params: TCreateParams); override;

This is the only way to use some of the peculiar window styles that are not directly
available through form properties. For a list of window styles and extended styles,
see the API Help under the topics CreateWindow and CreateWindowEx. You’ll
notice that the Win32 API has a number of styles for these functions, including
those related to tool windows.

To show how to use this approach, I’ve written the NoTitle example, which lets you
create a program with a custom caption. First we have to remove the standard cap-
tion but keep the resizing frame by setting the corresponding styles:

procedure TForm1.CreateParams (var Params: TCreateParams);
begin
 inherited CreateParams (Params);
 Params.Style := (Params.Style or ws_Popup) and
 not ws_Caption;
end;

note Besides changing the style and other features of a window when it is created, you can change
them at run time, although some of the settings do not take effect. To change most of the creation
parameters at run time, you can use the SetWindowLong API function, which allows you to
change the internal information of a window. The companion GetWindowLong function can be
used to read the current status. Two more functions, GetClassLong and SetClassLong, can
be used to read and modify class styles (the information of the WindowClass structure of
TCreateParams). You’ll seldom need to use these low-level Windows API functions in Delphi,
unless you write advanced components.

To remove the caption, we need to change the overlapped style to a pop-up style;
otherwise, the caption will simply stick. Now how do we add a custom caption? I’ve

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 273

placed a label aligned to the upper border of the form and a small button on the far
end. You can see this effect at run time in Figure 6.6.

Figure 6.6: The
NoTitle example has no
real caption but a fake
one made with a label.
Image from the
original book.

To make the fake caption work, we have to tell the system that a mouse operation on
this area corresponds to a mouse operation on the caption. This can be done by
intercepting the wm_NCHitTest Windows message, which is frequently sent to Win-
dows to determine where the mouse currently is. When the hit is in the client area
and on the label, we can pretend the mouse is on the caption by setting the proper
result:

procedure TForm1.HitTest (var Msg: TWmNCHitTest);
 // message wm_NcHitTest
begin
 inherited;
 if (Msg.Result = htClient) and (Msg.YPos <
 Label1.Height + Top + GetSystemMetrics (sm_cyFrame)) then
 Msg.Result := htCaption;
end;

The GetSystemMetrics API function used in the listing above is used to query the
operating system about the size of the various visual elements177. It is important to
make this request every time (and not cache the result) because users can customize
most of these elements by using the Appearance tab of the Desktop options (in Con-
trol Panel) and other Windows settings. The small button, instead, has a call to the
Close method in its OnClick event handler. The button is kept in its position even
when the window is resized by using the [akTop,akRight] value for the Anchors

177 These days the VCL intercepts the GetSystemMetrics API to make is DPI aware.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

274 - Chapter 6: Forms, Windows, and Applications

property. The form also has size constraints, so that a user cannot make it too small,
as described in the “Form Constraints” section later in this chapter.

Scaling Forms

When you create a form with a number of components, it is common to make the
form nonresizable to avoid having some of the components fall outside the visible
portions of the form. This is not a big problem, because Delphi automatically adds
scroll bars to the form so you can reach every control easily. (Form scrolling is one
of the subjects of Chapter 7.)

Be aware of this problem when you create a big form: if you build a form on a high-
resolution screen, it might be bigger than the available screen size on your end-
user’s systems. This is a pity, and it is more common that you might expect. If you
can, never build a form larger than 640 x 480 pixels178.

If you have to build a bigger form and using scroll bars is not a solution, Delphi has
some nice scaling features. There are two basic techniques:

· The form’s ScaleBy method allows you to scale the form and each of its compo-
nents. You can use this method at startup, after you’ve determined the screen
resolution, or in response to a specific request by the user.

· The PixelsPerInch and Scaled properties allow Delphi to resize an application
automatically when the application is run with a different system font size, often
because of a different screen resolution179. Of course, you can change the values
of these properties manually, as described in the next section, and let the system
scale the form only when you want.

note Form scaling is calculated based on the difference between the font height at run time and the
font height at design time. Scaling ensures that edit and other controls are large enough to display
their text using the user’s font preferences without clipping the text. The form scales as well, as we
will see later on, but the main point is to make edit and other controls readable.

178 This size makes little sense with today’s screens. Also this entire sections ignores the issues
with HiDPI Windows configurations, system scaling, and all of the options that have been
dded to the operating system and the VCL to handle these scenarios. I won’t call out these dif-
ferences for each of the references in this section that are subject to these changes, or I could
add a footnote for almost each line!

179 This is mostly true for HiDPI configurations.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 275

In both cases, to make the form scale its window, be sure to also set the AutoScroll
property to False. Otherwise, the contents of the form will be scaled, but the form
border itself will not.

Manual Form Scaling

Any time you want to scale a form, including its components, you can use the
ScaleBy method, which has two integer parameters, a multiplier and a divisor—it’s
a fraction. You can apply the same method to a single component. For example,
with this statement

ScaleBy (3, 4);

the size of the current form is divided by 4 and multiplied by 3; that is, the form is
reduced to three-quarters of its original size. Generally, it is easier to use percentage
values. The same statement can be written this way:

ScaleBy (75, 100);

When you scale a form, all the proportions are maintained, but if you go below or
above certain limits, the text strings can alter their proportions slightly. If you
reduce the size of a form too much, most of the components will become unusable
or even disappear completely. The problem is that in Windows, components can be
placed and sized only in whole pixels, while scaling almost always involves multiply-
ing by fractional numbers. So any fractional portion of a component’s origin or size
will be truncated.

To avoid similar problems, you should let the user perform only a limited number of
scaling operations or re-create the form from scratch before each new scaling so
that round-off errors do not accumulate.

note If you apply the ScaleBy method to a form, the form won’t actually be scaled. Only the compo-
nents inside the form will change their size. As I mentioned before, to overcome this problem, you
should disable the form’s AutoScroll property. What is the relationship between scaling and
scrolling? My guess is that if scrolling is enabled, the component can be moved outside the form’s
visible area without many problems; otherwise, the form is resized, too.

I’ve built a simple example, Scale, to show how you can scale a form manually,
responding to a request by the user. The form of this application (see Figure 6.7) has
two buttons, a label, an edit box, and an UpDown control.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

276 - Chapter 6: Forms, Windows, and Applications

Figure 6.7: The form
of the Scale example
after a scaling with 50
and 200. Image from
the original book.

The UpDown component connects to the edit box, using its Associate property.
With this setting, a user can type numbers in the box or click on the two small
arrows to increase or decrease the number in the edit box by a fixed amount (indi-
cated by the Increment property of the UpDown component). To extract the input
value, you can use the Text property of the edit box or the Position of the UpDown
control. You can also prevent input errors by setting the Min and Max properties of
the UpDown, as I’ve done in this example:

 object UpDown1: TUpDown
 Associate = Edit1
 Min = 30
 Max = 300
 Increment = 10
 Position = 100
 Wrap = False
 end

When you press the ScaleButton button, the current input value is used to deter-
mine the scaling percentage of the form:

procedure TForm1.ScaleButtonClick(Sender: TObject);
begin
 AmountScaled := UpDown1.Position;
 ScaleBy (AmountScaled, 100);
 UpDown1.Height := Edit1.Height;
 ScaleButton.Enabled := False;
 RestoreButton.Enabled := True;
end;

This method stores the current input value in the form’s AmountScaled private field
and enables the Restore button, disabling the one that was pressed. Later, when the

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 277

user presses the Restore button, the opposite scaling takes place, by calling ScaleBy
(100, AmountScaled). In both cases, I’ve added a line of code to set the Height of
the UpDown component to the same Height as the edit box it is attached to. This
prevents small differences between the two.

note If you want to scale the text of the form properly, including the captions of components, the items
in list boxes, and so on, you should use TrueType fonts exclusively. The system font (MS Sans
Serif) doesn’t scale well. The font issue is important because the size of many components
depends on the text height of their captions, and if the caption does not scale well, the component
might not work properly. For this reason, in the Scale example I’ve used an Arial font.180

Automatic Form Scaling

Instead of playing with the ScaleBy method, you can ask Delphi to do the work for
you. When Delphi starts, it asks the system for the display configuration and stores
the value in the PixelsPerInch property of the Screen object, a special global object
of the VCL, available in any application.

PixelsPerInch sounds like it has something to do with the pixel resolution of the
screen, but unfortunately, it doesn’t. If you change your screen resolution from 640
x 480 to 800 x 600 to 1024 x 768 or even 1600 x 1280181, you will find that Windows
reports the same PixelsPerInch value in all cases, unless you change the system
font. What PixelsPerInch really refers to is the screen pixel resolution that the cur-
rently installed system font was designed for. When the end user changes the
system font scale, usually to make menus and other text easier to read, the user will
expect all applications to honor those settings. An application that does not reflect
the user desktop preferences will look out of place and, in extreme cases, may be
unusable to visually impaired users who rely on very large fonts and high-contrast
color schemes.

The most common PixelPerInch values are 96 (small fonts) and 120 (large fonts),
but other values are possible. Windows 98 even allows the user to set the system
font size to an arbitrary scale182. At design time, the PixelsPerInch value of the
screen, which is a read-only property, is copied to every form of the application.

180 I’d say this is now hardly the case any more, as the Windows OS had many improvements in
this area.

181 Which is still very small compared to a 4K monitor… again, some of the core concepts still ap-
ply, but a lot has changed in Windows and in the VCL in this area.

182 This has now become a very commonly used feature, with many user setting their display at
150% or 200% scalcing.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

278 - Chapter 6: Forms, Windows, and Applications

Delphi then uses the value of PixelsPerInch, if the Scaled property is set to True, to
resize the form when the application starts.

As I’ve already mentioned, both automatic scaling and the scaling performed by the
ScaleBy method operate on components by changing the size of the font. The size of
each control, in fact, depends on the font it uses. With automatic scaling, the value
of the form’s PixelsPerInch property (the design-time value) is compared to the
current system value (indicated by the corresponding property of the Screen
object), and the result is used to change the font of the components on the form.
Actually, to improve the accuracy of this code, the final height of the text is com-
pared to the design-time height of the text, and its size is adjusted if they do not
match.

Thanks to Delphi automatic support, the same application running on a system with
a different system font size automatically scales itself, without any specific code. The
application’s edit controls will be the correct size to display their text in the user’s
preferred font size, and the form will be the correct size to contain those controls.
Although automatic scaling has problems in some special cases, if you comply with
the following rules, you should get good results183:

· Set the Scaled property of forms to True. (This is the default.)

· Use only TrueType fonts.

· Use Windows small fonts (96dpi) on the computer you use to develop the forms.

· Set the AutoScroll property to False, if you want to scale the form and not just
the controls inside it. (AutoScroll defaults to True, so don’t forget to do this step.)

· Set the form position either near the upper-left corner or in the center of the
screen (with the poScreenCenter value) to avoid having an out-of-screen form.
Form position is discussed in the next section.

Setting the Form’s Position and Size

In addition to PixelsPerInch, there are more run-time properties you can set to
control the appearance of a form. The Position property indicates the initial posi-
tion of the form on the screen when it is first created. The default poDesigned value

183 Add to this using PerMonivotrv2 configuration as a must have, along with enabling themes.
There is a lot more to be said, but covering modern HiDPI and proper forms and controls scal-
ing and positioning will require an entire chapter, not a footnote.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 279

indicates that the form will appear where you designed it and use the positional and
size properties of the form. Some of its other choices (poDefault,
poDefaultPosOnly, and poDefaultSizeOnly) depend on a feature of the system:
using a specific flag, Windows can position and/or size new windows using a cas-
cade layout. Finally, with the poScreenCenter value, the form is displayed in the
center of the screen, with the size you set at design time.

note The default positions are ignored when the form has a dialog border style.

The second parameter that affects the initial size and position of a window is its
state. You can use the WindowState property at design time to display a maximized
or minimized window at startup. This property, in fact, can have only three values:
wsNormal, wsMinimized, and wsMaximized. The meaning of this property is intuitive.
If you set a minimized window state, it will be properly displayed in the Windows
Taskbar.

Of course, you can maximize or minimize a window at run time, too. Simply chang-
ing the value of the WindowState property to wsMaximized or to wsNormal produces
the expected effect. Setting the property to wsMinimized, however, creates a mini-
mized window that is placed over the Taskbar, not within it. This is not the expected
action for a main form, but that for a secondary form! The simple solution to this
problem is to call the Minimize method of the Application object. There is also a
Restore method in the TApplication class that you can use when you need to
restore a form, although most often the user will do this using the Restore command
of the system menu.

The Size of a Form and Its Client Area

At design time, there are two ways to set the size of a form: by setting the value of
the Width and Height properties or by dragging its borders. At run time, if the form
has a resizable border, the user can resize it (producing the OnResize event).

However, if you look at a form’s properties in source code or in the online Help, you
can see that there are two properties referring to its width and two referring to its
height. Height and Width refer to the size of the form, including the borders;
ClientHeight and ClientWidth refer to the size of the internal area of the form,
excluding the borders, the caption, scroll bars (if any), and the menu bar. The client
area of the form is the surface you can use to place components on the form, to cre-
ate output, and to receive user input.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

280 - Chapter 6: Forms, Windows, and Applications

Since you might be interested in having a certain available area, at times it makes
sense to set the client size of a form instead of its global size. This is straightforward,
because as you set one of the two client properties, the corresponding form property
changes accordingly. When you modify the value of ClientHeight, the value of
Height immediately changes.

note In Windows, it is also possible to create output and receive input from the nonclient area of the
form—that is, its border. Painting on the border and getting input when you click on it are com-
plex issues. If you are interested, look in the Help file at the description of such Windows
messages as wm_NCPaint, wm_NCCalcSize, and wm_NCHitTest and the series of nonclient
messages related to the mouse input, such as wm_NCLButtonDown. The difficulty of this
approach is in combining your code with the default Windows behavior. However, Delphi lets you
process these low-level Windows messages without any problem, something that most visual pro-
gramming environments do not allow at all.

Form Constraints

When you choose a re-sizable border for a form, users can generally resize the form
as they like and also maximize it to full screen. Windows informs you that the form’s
size has changed with the wm_Size message, which generates the OnResize event.
OnResize takes place after the size of the form has already been changed. Modifying
the size again in this event (if the user has reduced or enlarged the form too much)
would be silly. A preventive approach is better suited to this problem.

Delphi provides a specific property for forms and also for all controls: the
Constraints property. Simply setting the sub-properties of the Constraints prop-
erty to the proper maximum and minimum values creates a form that cannot be
resized beyond those limits. Here is an example:

object Form1: TForm1
 Width = 242
 Height = 162
 Constraints.MaxHeight = 300
 Constraints.MaxWidth = 300
 Constraints.MinHeight = 150
 Constraints.MinWidth = 150
end

Notice that as you set up the Constraints property, it has an immediate effect even
at design time, changing the size of the form if it is outside the permitted area.

Delphi also uses the maximum constraints for maximized windows, producing an
awkward effect. For this reason, you should generally disable the Maximize button

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 281

of a window that has a maximum size. There are cases in which maximized windows
with a limited size make sense—this is the behavior of Delphi’s main window.

note The Constraints property plays an even more important role for controls and for their docking
operations, as we’ll see in Chapter 7.

In case you need to change constraints at run time, you can also consider using two
specific events, OnCanResize and OnContrainedResize. The first of the two can also
be used to disable resizing a form or control in given circumstances.

Creating Forms

Up to now we have ignored the issue of form creation. We know that when the form
is created, we receive the OnCreate event and can change or test some of the initial
form’s properties or fields. The statement responsible for creating the form is in this
project’s source file (or DPR file, available through the Project menu command):

begin
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end.

To skip the automatic form creation, you can either modify this code or use the
Forms page of the Project Options dialog box (see Figure 6.8). In this dialog box,
you can decide whether the form should be automatically created. If you disable the
automatic creation, the project’s initialization code becomes the following:

begin
 Applications.Initialize;
 Application.Run;
end.

If you now run this program, nothing happens. It terminates immediately because
no main window is created. So what is the effect of the call to the application’s
CreateForm method? It creates a new instance of the form class passed as the first
parameter and assigns it to the variable passed as the second parameter.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

282 - Chapter 6: Forms, Windows, and Applications

Figure 6.8: The
Forms page of the
Delphi Project Options
dialog box. Images
captured in Delphi 5
and Delphi 12.

Something else happens behind the scenes. When CreateForm is called, if there is
currently no main form, the current form is assigned to the application’s MainForm
property. For this reason, the form indicated as Main form in the dialog box shown
in Figure 6.8 corresponds to the first call to the application’s CreateForm method
(that is, when several forms are created at start-up).

The same holds for closing the application. Closing the main form terminates the
application, regardless of the other forms. If you want to perform this operation
from the program’s code, simply call the Close method of the main form, as we’ve
done several times in past examples.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 283

note In Delphi 5, you can (finally) control the automatic creation of secondary forms by using the Auto
Create Forms checkbox on the Preferences page of the Environment Options dialog box184.

Delphi Form Creation Order

Regardless of the manual or automatic creation of forms, when a form is created,
there are many events you can intercept. Form-creation events are fired in the fol-
lowing order:

1. OnCreate indicates that the form is being created.

2. OnShow indicates that the form is being displayed. Besides main forms, this
event happens after you set the Visible property of the form to True or call
the Show or ShowModal methods. This event is fired again if the form is hidden
and then displayed again.

3. OnActivate indicates that the form becomes the active form within the
application. This event is fired every time you move from another form of the
application to the current one, as we saw in the section “Activating
Applications and Forms.”

4. Other events, including OnResize and OnPaint, indicate operations always
done at start-up but then repeated many times.

As you can see in the list above, every event has a specific role apart from form ini-
tialization, except for the OnCreate event, which is guaranteed to be called only once
as the form is created.

However, there is an alternative approach to adding initialization code to a form:
overriding the constructor. This is usually done as follows:

constructor TForm1.Create(AOwner: TComponent);
begin
 inherited Create (AOwner);
 // extra initialization code
end;

Before the call to the Create method of the base class, the properties of the form are
still not loaded, and the internal components are not available. For this reason the
standard approach is to call the base class constructor first and then do the custom
operations.

Now the question is whether these custom operations are executed before or after
the OnCreate event is fired. The answer depends on the value of the OldCreateOrder

184 This is in the Tools | Options dialog box under User Interface | Form Designer.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

284 - Chapter 6: Forms, Windows, and Applications

property of the form, introduced in Delphi 4 for backward compatibility with past
versions of Delphi185. (This property is part of the Legacy category, which in Delphi 5
is hidden by default.) By default, for a new project, all of the code in the constructor
is executed before the OnCreate event handler. In fact, this event handler is not acti-
vated by the base class constructor but by its AfterConstruction method, a sort of
constructor introduced for compatibility with C++Builder.

note To study the creation order and the potential problems, you can examine the CreatOrd program.
This program has an OnCreate event handler, which creates a list box control dynamically. The
constructor of the form can access to this list box or not depending on the value of the
OldCreateOder property.

Tracking Forms with the Screen Object

We have already explored some of the properties and events of the Application
object. Other interesting global information about an application is available
through the Screen object, whose base class is TScreen. This object holds informa-
tion about the system display (the screen size and the screen fonts) and also about
the current set of forms in a running application. For example, you can display the
screen size and the list of fonts by writing:

Label1.Caption := IntToStr (Screen.Width) + ‘x’ +
 IntToStr (Screen.Height);
ListBox1.Items := Screen.Fonts;

TScreen also reports the number and resolution of monitors in a multimonitor sys-
tem. What I want to focus on now, however, is the list of forms held by the Forms
property of the Screen object, the topmost form indicated by the ActiveForm prop-
erty, and the related OnActiveFormChange event. Note that the forms the Screen
object references are the forms of the application and not those of the system.

These features are demonstrated by the Screen example, which maintains a list of
the current forms in a list box. This list must be updated each time a new form is
created, an existing form is destroyed, or the active form of the program changes. To
see how this works, you can create a number of secondary forms by clicking on the
button labeled New:

procedure TMainForm.NewButtonClick(Sender: TObject);

185 This OldCreateOrder property was recently removed, after having been deprecated for a very
long time. As indicated here, it was added for Delphi 4 migration, and after another 20 ver-
sions of the product, the team felt it was time to remove it.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 285

var
 NewForm: TSecondForm;
begin
 // create a new form, set its caption, and run it
 NewForm := TSecondForm.Create (Self);
 Inc (nForms);
 NewForm.Caption := ‘Second ‘ + IntToStr (nForms);
 NewForm.Show;
end;

One of the key portions of the program is the OnCreate event handler of the form,
which fills the list a first time and then connects a handler to the
OnActiveFormChange event:

procedure TMainForm.FormCreate(Sender: TObject);
begin
 FillFormsList (Self);
 // set the secondary forms counter to 0
 nForms := 0;
 // set an event handler on the screen object
 Screen.OnActiveFormChange := FillFormsList;
end;

The code used to fill the Forms list box is inside a second procedure,
FillFormsList, which is also installed as an event handler for the
OnActiveFormChange event of the Screen object:

procedure TMainForm.FillFormsList (Sender: TObject);
var
 I: Integer;
begin
 FormsLabel.Caption := ‘Forms: ‘ +
 IntToStr (Screen.FormCount);
 FormsListBox.Clear;
 // write class name and form title to the list box
 for I := 0 to Screen.FormCount - 1 do
 FormsListBox.Items.Add (Screen.Forms[I].ClassName +
 ‘ - ‘ + Screen.Forms[I].Caption);
 ActiveLabel.Caption := ‘Active Form : ‘ +
 Screen.ActiveForm.Caption;
end;

note It is very important that you remove the OnActiveFormChange event handler before exiting the
application; that is, before the main form is destroyed. Otherwise, the code will be executed when
no list box exists, and you’ll get a system error. The solution is to handle the OnClose event of the
main form and assign nil to Screen.OnActiveFormChange.

The FillFormsList method fills the list box and sets a value for the two labels above
it to show the number of forms and the name of the active one. When you click on

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

286 - Chapter 6: Forms, Windows, and Applications

the New button, the program creates an instance of the secondary form, gives it a
new title, and displays it. The Forms list box is updated automatically because of the
handler we have installed for the OnActiveFormChange event. Figure 6.9 shows the
output of this program when some secondary windows have been created.

note The program always updates the text of the ActiveLabel above the list box to show the cur-
rently active form, which is always the same as the first one in the list box.

The secondary forms each have a Close button you can select to remove them. The
program handles the OnClose event, setting the Action parameter to caFree, so that
the form is actually destroyed when it is closed. This code closes the form, but it
doesn’t update the list of the windows properly. The system moves the focus to
another window first, firing the event that updates the list, and destroys the old
form only after this operation.

Figure 6.9: The
output of the Screen
example with a number
of secondary forms.
Image from the
original book.

The first idea I had to update the windows list properly is to introduce a delay, post-
ing a user-defined Windows message. Because the posted message is queued and
not handled immediately, if we send it at the last possible moment of life of the sec-
ondary form, the main form will receive it when the other form is destroyed.

The trick is to post the message in the OnDestroy event handler of the secondary
form. To accomplish this, we need to refer to the MainForm object, by adding a uses
statement in the implementation portion of this unit. I’ve posted a wm_User mes-
sage, which is handled by a specific message method of the main form, as shown
here:

public

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 287

 procedure ChildClosed (var Message: TMessage);
 message wm_User;

Here is the code for this method:

procedure TMainForm.ChildClosed (var Message: TMessage);
begin
 FillFormsList (self);
end;

The problem here is that if you close the main window before closing the secondary
forms, the main form exists, but its code cannot be executed anymore. To avoid
another system error (an Access Violation Fault), you need to post the message only
if the main form is not closing. But how do you know that? One way is to add a flag
to the TMainForm class and change its value when the main form is closing, so that
you can test the flag from the code of the secondary window.

This is a good solution—so good that the VCL already provides something similar.
There is a barely documented ComponentState property. It is a Pascal set that
includes (among other flags) a csDestroying flag, which is set when the form is
closing. Therefore, we can write the following code:

procedure TSecondForm.FormDestroy(Sender: TObject);
begin
 if not (csDestroying in MainForm.ComponentState) then
 PostMessage (MainForm.Handle, wm_User, 0, 0);
end;

With this code, the list box always lists all of the forms in the application. Note that
you need to disable the automatic creation of the secondary form by using the
Forms page of the Project Options dialog box.

After giving it some thought, however, I found an alternative and much more Del-
phi-oriented solution. Every time a component is destroyed, it tells its owner about
the event by calling the Notification method defined in the TComponent class.
Because the secondary forms are owned by the main one, as specified in the code of
the NewButtonClick method, we can override this method and simplify the code. In
the form class, simply write

protected
 procedure Notification(AComponent: TComponent;
 Operation: TOperation); override;

Here is the code of the method:

procedure TMainForm.Notification(AComponent: TComponent;
 Operation: TOperation);
begin

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

288 - Chapter 6: Forms, Windows, and Applications

 inherited Notification(AComponent, Operation);
 if Showing and (AComponent is TForm) then
 FillFormsList;
end;

You’ll find the complete code of this version in the Screen2 directory.

note In case the secondary forms were not owned by the main one, we could have used the
FreeNotification method to get the secondary form to notify the main form when they are
destroyed. FreeNotification receives as parameter the component to notify when the current
component is destroyed. The effect is a call to the Notification method coming from a compo-
nent other than the owned ones. FreeNotification is generally used by component writers to
safely connect components on different forms or data modules.

The last feature I’ve added to both versions of the program is a simple one. When
you click on an item in the list box, the corresponding form is activated, using the
BringToFront method:

procedure TMainForm.FormsListBoxClick(Sender: TObject);
begin
 Screen.Forms [FormsListBox.ItemIndex].BringToFront;
end;

Nice—well, almost nice. If you click on the list box of an inactive form, the main
form is activated first, and the list box is rearranged, so you might end up selecting a
different form than you were expecting. If you experiment with the program, you’ll
soon realize what I mean. This minor glitch in the program is an example of the
risks you face when you dynamically update some information and let the user work
on it at the same time.

Closing a Form

When you close the form using the Close method or by the usual means (Alt+F4,
the system menu, or the Close button), the OnCloseQuery event is called. In this
event, you can ask the user to confirm the action, particularly if there is unsaved
data in the form. Here is a simple scheme of the code you can write:

procedure TForm1.FormCloseQuery(Sender: TObject;
 var CanClose: Boolean);
begin
 if MessageDlg (‘Are you sure you want to exit?’,
 mtConfirmation, [mbYes, mbNo], 0) = idNo then
 CanClose := False;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 289

If OnCloseQuery indicates that the form should still be closed, the OnClose event is
called. The third step is to call the OnDestroy event, which is the opposite of the
OnCreate event and is generally used to deallocate objects related to the form and
free the corresponding memory.

note To be more precise, the BeforeDestruction method generates an OnDestroy event before
the Destroy destructor is called. That is, unless you have set the OldCreateOrder property to
True, in which case Delphi uses a different closing sequence.

So what is the use of the intermediate OnClose event? In this method, you have
another chance to avoid closing the application, or you can specify alternative “close
actions.” The method, in fact, has an Action parameter passed by reference. You can
assign the following values to this parameter:

· caNone: The form is not allowed to close. This corresponds to setting the
CanClose parameter of the OnCloseQuery method to False.

· caHide: The form is not closed, just hidden. This makes sense if there are other
forms in the application; otherwise, the program terminates. This is the default
for secondary forms, and it’s the reason I had to handle the OnClose event in the
previous example to actually close the secondary forms.

· caFree: The form is closed, freeing its memory, and the application eventually
terminates if this was the main form. This is the default action for the main form
and the action you should use when you create multiple forms dynamically (if
you want to remove the Windows and destroy the corresponding Delphi object as
the form closes).

· caMinimize: The form is not closed but only minimized. This is the default action
for MDI child forms, as we’ll see in Chapter 8.

note When a user shuts down Windows, the OnCloseQuery event is activated, and a program can use
it to stop the shut-down process. In this case, the OnClose event is not called even if
OnCloseQuery sets the CanClose parameter to True.

Form Input

Having discussed some special capabilities of forms, I’ll now move to a very impor-
tant topic: user input in a form. If you decide to make limited use of components,

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

290 - Chapter 6: Forms, Windows, and Applications

you might write complex programs as well, receiving input from the mouse and the
keyboard. In this chapter, I’ll only introduce this topic. More about graphics can be
found in Chapter 22, “Graphics in Delphi.”

Supervising Keyboard Input

Generally, forms don’t handle keyboard input directly. If a user has to type some-
thing, your form should include an edit component or one of the other input
components. If you want to handle keyboard shortcuts, you can use those connected
with menus (possibly using a hidden pop-up menu).

At other times, however, you might want to handle keyboard input in particular
ways for a specific purpose. What you can do in these cases is turn on the
KeyPreview property of the form. Then, even if you have some input controls, the
form’s OnKeyPress event will always be activated for any keyboard-input operation.
The keyboard input will then reach the destination component, unless you stop it in
the form by setting the character value to zero (not the character 0, but the value 0
of the character set, indicated as #0).

The example I’ve built to demonstrate this, KPreview, has a form with no special
properties (not even KeyPreview), a radio group with four options, and some edit
boxes, as you can see in Figure 6.10.

By default the program does nothing special, except when the different radio but-
tons are used to enable the key preview:

procedure TForm1.RadioPreviewClick(Sender: TObject);
begin
 KeyPreview := RadioPreview.ItemIndex <> 0;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 291

Figure 6.10: The
KPreview program
allows you to type into
the caption of the form
(among other things).
Image from the
original book.

Now we’ll start receiving the OnKeyPress events, and we can do one of the three
actions requested by the three special buttons of the radio group. The action
depends on the value of the ItemIndex property of the radio group component. This
is the reason the event handler is based on a case statement:

procedure TForm1.FormKeyPress(Sender: TObject; var Key: Char);
begin
 case RadioPreview.ItemIndex of
 ...

In the first case, if the value of the Key parameter is #13, which corresponds to the
Enter key, we disable the operation (setting Key to zero) and then mimic the activa-
tion of the Tab key. There are many ways to accomplish this, but the one I’ve chosen
is quite particular. I send the CM_DialogKey message to the form, passing the code
for the Tab key (VK_TAB):

 1: // Enter = Tab
 if Key = #13 then
 begin
 Key := #0;
 Perform (CM_DialogKey, VK_TAB, 0);
 end;

note The CM_DialogKey message is an internal undocumented Delphi message, something that is
really beyond the scope of this book but is discussed in other texts, including my own Delphi
Developer’s Handbook (Sybex, 1998).186

186 Not an easy book to find, thee days, but I have to say it has a lot of advanced content still valid
and interesting today, along with areas of the libraries that have been significantly modified.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

292 - Chapter 6: Forms, Windows, and Applications

To type in the caption of the form, the program simply adds the character to the cur-
rent Caption, as you can see in Figure 6.10. There are two special cases. When the
Backspace key is pressed, the last character of the string is removed (by copying to
the Caption all the characters of the current Caption but the last one). When the
Enter key is pressed, the program stops the operation, by resetting the ItemIndex
property of the radio group control. Here is the code:

 2: // type in caption
 begin
 if Key = #8 then // backspace: remove last char
 Caption := Copy (Caption, 1,
 Length (Caption) - 1)
 else if Key = #13 then // enter: stop operation
 RadioPreview.ItemIndex := 0
 else // anything else: add character
 Caption := Caption + Key;
 Key := #0;
 end;

Finally, if the last radio item is selected, the code checks whether the character is a
vowel (by testing for its inclusion in a constant vowel set). In this case, the character
is skipped altogether:

 3: // skip vowels
 if Key in [‘a’, ‘e’, ‘i’, ‘o’, ‘u’,
 ‘A’, ‘E’, ‘I’, ‘O’, ‘U’] then
 Key := #0;

Getting Mouse Input

When a user presses one of the mouse buttons over a form (or over a component, by
the way), Windows sends the application some messages. Delphi defines some
events you can use to write code that responds to these messages. The two basic
events are as follows:

· OnMouseDown is received when one of the mouse buttons is pressed.

· OnMouseUp is received when one of the buttons is released.

Another fundamental system message is related to mouse movement. The event is
OnMouseMove. Although it should be easy to understand the meaning of the three
messages—down, up, and move—the question that might arise is, how do they relate
to the OnClick event we have often used up to now?

We have used the OnClick event for components, but it is also available for the
form. Its general meaning is that the left mouse button has been pressed and

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 293

released on the same window or component. However, between these two actions,
the cursor might have been moved outside the area of the window or component,
while the left mouse button was held down. If you press the mouse button at a cer-
tain position and then move it away and release it, no click is involved. In this case,
the window receives only a down message, some move messages, and an up mes-
sage. Another difference is that the click event relates only to the left mouse button.

The Mouse Buttons

Most of the mouse types connected to a Windows PC have two mouse buttons, and
some even have three. Usually we refer to these buttons as the left mouse button,
which is the most used; the right mouse button; and the middle mouse button:

· The left mouse button is the mouse button. It is used to select elements on
screen, to give menu commands, to click buttons, to select and move elements
(dragging), to select and activate (usually with a double-click), and so on.

· The right mouse button is used for local pop-up menus. Many applications used
this approach in the past, but Windows 95 has made local menus the standard
effect of right-clicking.

· The middle button is seldom used because most users either don’t have it or
don’t have a proper software driver. Some CAD programs use the middle button.
If you want to support this button, it should be optional (or else you should be
ready to provide your customers with a free three-button mouse and the corre-
sponding driver).

Keep in mind that users can customize their mouse buttons, switching the left and
right buttons and turning a single click on the middle button into a double-click of
the left button. When you refer to events related to a mouse button in your code,
what matters is not the physical button but rather its meaning.

note Beyond the three traditional mouse buttons, there are now some mouse devices with a “button
wheel” instead of the middle button. Users typically use the wheel for scrolling (causing an
OnMouseWheel event), but they can also press it (generating the OnMouseWheelDown and
OnMouseWheelUp events). The up and down messages are similar to the mouse button messages,
whereas the OnMouseWheel event is devoted to handling the scrolling operations. Mouse wheel
events are automatically converted into scrolling events.

Using Windows without a Mouse

A user should always be able to use any Windows application without the mouse.
This is not an option; it is a Windows programming rule. Of course, an application

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

294 - Chapter 6: Forms, Windows, and Applications

might be easier to use with a mouse, but that should never be mandatory. In fact,
there are users who for various reasons might not have a mouse connected, such as
travelers with a small laptop and no space, workers in industrial environments, and
bank clerks with a number of other peripherals around.

There is another reason, already mentioned in this chapter in respect to the menu,
to support the keyboard: Using the mouse is nice, but it tends to be slower. If you
are a skilled touch typist, you won’t use the mouse to drag a word of text; you’ll use
shortcut keys to copy and paste it, without moving your hands from the keyboard.

For all these reasons, you should always set up a proper tab order for a form’s com-
ponents, remember to add keys for buttons and menu items for keyboard selection,
use shortcut keys on menu commands, and so on. An exception to this rule might be
a graphics program. However, be aware that you can use even a program such as
Microsoft Paint without the mouse—although I don’t recommend it.

The Parameters of the Mouse Events

Since I’m going to build a graphics program, I will focus only on the use of the
mouse. The first event we need to consider for the first minimal version of the
MouseOne program is OnMouseDown. The related method has a number of parame-
ters, as shown in the following declaration:

procedure TShapesForm.FormMouseDown (
 Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);

In addition to the usual Sender parameter, there are four more parameters:

· Button indicates which of the three mouse buttons has been pressed. Possible
values are mbRight, mbLeft, and mbCenter. These are exclusive values because the
purpose of this parameter is to determine which button generated the message.

· Shift indicates which mouse-related keys were pressed when the event
occurred. These mouse-related keys are Alt, Ctrl, and Shift, plus the mouse but-
tons themselves. This parameter is of a set type since several keys (and mouse
buttons) might be pressed at the same time. This means you should test for a
condition using the in expression, not for equality.

· X and Y indicate the coordinates of the position of the mouse, in client area coor-
dinates of the current window (a form or a control). The origin of the x-and y-
axes of these coordinates is the upper-left corner of the client area of the window
receiving the event (again, a form or a control).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 295

Using this information, it is very simple to draw a small circle in the position of a
left mouse button-down event:

procedure TForm1.FormMouseDown(
 Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Button = mbLeft then
 Canvas.Ellipse (X-10, Y-10, X+10, Y+10);
end;

note To draw on the form, we use a very special property: Canvas. A TCanvas object has two distinc-
tive features: it holds a collection of drawing tools (such as a pen, a brush, and a font) and it has a
number of drawing methods, which use the current tools. This kind of direct drawing code in this
example is not correct, because the on-screen image is not persistent: moving another window
over the current one will clear its output. The next example demonstrates the Windows “store-
and-draw” approach.

Dragging and Drawing with the Mouse

To demonstrate a few of the mouse techniques discussed so far, I’ve built a simple
example based on a form without any component and called MouseOne. The first
feature of this program is that it displays in the Caption of the form the current
position of the mouse:

procedure TMouseForm.FormMouseMove(Sender: TObject;
 Shift: TShiftState; X, Y: Integer);
begin
 // display the position of the mouse in the caption
 Caption := Format (‘Mouse in x=%d, y=%d’, [X, Y]);
end;

You can use this simple feature of the program to better understand how the mouse
works. Make this test: run the program (this simple version or the complete one)
and resize the windows on the desktop so that the form of the MouseOne program is
behind another window and inactive but with the title visible. Now move the mouse
over the form, and you’ll see that the coordinates change. This means that the
OnMouseMove event is sent to the application even if its window is not active, and it
proves what I have already mentioned: mouse messages are always directed to the
window under the mouse. The only exception is the mouse capture operation I’ll
discuss in this same example.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

296 - Chapter 6: Forms, Windows, and Applications

Besides showing the position in the title of the window, the MouseOne example can
track mouse movements by painting small pixels on the form if the user keeps the
Shift key pressed. (Again this direct painting code produces nonpersistent output.)

procedure TMouseForm.FormMouseMove(Sender: TObject;
 Shift: TShiftState; X, Y: Integer);
begin
 // display the position of the mouse in the caption
 Caption := Format (‘Mouse in x=%d, y=%d’, [X, Y]);
 if ssShift in Shift then
 // mark points in yellow
 Canvas.Pixels [X, Y] := clYellow;
end;

The real feature of this example, however, is the direct mouse dragging support.
Contrary to what you might think, Windows has no system support for dragging,
which is implemented in the VCL by means of lower-level mouse events and opera-
tions. (An example of dragging from one control to another was discussed in the last
chapter.) In the VCL, forms cannot originate dragging operations, so in this case we
are obliged to use the low-level approach. The aim of this example is to draw a rec-
tangle from the initial position of the dragging operation to the final one, giving the
users some visual clue of the operation they are doing.

The idea behind dragging is quite simple. The program receives a sequence of but-
ton-down, mouse-move, and button-up messages. When the button is pressed,
dragging begins, although the real actions take place only when the user moves the
mouse (without releasing the mouse button) and when dragging terminates (when
the button-up message arrives).

The problem with this basic approach is that it is not reliable. A window usually
receives mouse events only when the mouse is over its client area; so if the user
presses the mouse button, moves the mouse onto another window, and then
releases the button, the second window will receive the button-up message.

There are two solutions to this problem. One (seldom used) is mouse clipping.
Using a Windows API function (namely ClipCursor), you can force the mouse not
to leave a certain area of the screen. When you move it outside the specified area, it
stumbles against an invisible barrier. The second and more common solution is to
capture the mouse. When a window captures the mouse, all the subsequent mouse
input is sent to that window. This is the approach we will use for the MouseOne
example.

The code of the example is built around three methods: FormMouseDown,
FormMouseMove, and FormMouseUp. Pressing the left mouse button over the form
starts the process, setting the fDragging Boolean field of the form (which indicates
that dragging is in action in the other two methods). The method also uses a TRect

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 297

variable used to keep track of the initial and current position of the dragging. Here
is the code:

procedure TMouseForm.FormMouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 if Button = mbLeft then
 begin
 fDragging := True;
 SetCapture (Handle);
 fRect.Left := X;
 fRect.Top := Y;
 fRect.BottomRight := fRect.TopLeft;
 Canvas.DrawFocusRect (fRect);
 end;
end;

An important action of this method is the call to the SetCapture API function. Now
even if a user moves the mouse outside of the client area, the form still receives all
mouse-related messages. You can see that for yourself by moving the mouse toward
the upper-left corner of the screen; the program shows negative coordinates in the
caption.

When dragging is active and the user moves the mouse, the program draws a dotted
rectangle corresponding to the actual position. Actually, the program calls the
DrawFocusRect method twice. The first time this method is called, it deletes the cur-
rent image, thanks to the fact that two consecutive calls to DrawFocusRect simply
reset the original situation. After updating the position of the rectangle, the program
calls the method a second time:

procedure TMouseForm.FormMouseMove(Sender: TObject;
 Shift: TShiftState; X, Y: Integer);
begin
 // display the position of the mouse in the caption
 Caption := Format (‘Mouse in x=%d, y=%d’, [X, Y]);
 if fDragging then
 begin
 // remove and redraw the dragging rectangle
 Canvas.DrawFocusRect (fRect);
 fRect.Right := X;
 fRect.Bottom := Y;
 Canvas.DrawFocusRect (fRect);
 end
 else
 if ssShift in Shift then
 // mark points in yellow
 Canvas.Pixels [X, Y] := clYellow;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

298 - Chapter 6: Forms, Windows, and Applications

When the mouse button is released, the program terminates the dragging operation
by calling the ReleaseCapture API function and by setting the value of the
fDragging field to False:

procedure TMouseForm.FormMouseUp(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 if fDragging then
 begin
 ReleaseCapture;
 fDragging := False;
 Invalidate;
 end;
end;

The final call, Invalidate, triggers a painting operation and executes the following
OnPaint event handler:

procedure TMouseForm.FormPaint(Sender: TObject);
begin
 Canvas.Rectangle (fRect.Left, fRect.Top,
 fRect.Right, fRect.Bottom);
end;

This makes the output of the form persistent, even if you hide it behind another
form. Figure 6.11 shows a previous version of the rectangle and a dragging operation
in action.

Figure 6.11: The
MouseOne example
uses a dotted line to
indicate, during a
dragging operation, the
final area of a
rectangle. Image from
the original book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 299

Painting in Windows

Why do we need to handle the OnPaint event to produce a proper output, and why
can we not paint directly over the form canvas? It depends on Windows’ default
behavior. As you draw on a window, Windows does not store the resulting image.
When the window is covered, its contents are usually lost187.

The reason for this behavior is simple: to save memory. Windows assumes it’s
“cheaper” in the long run to redraw the screen using code than to dedicate system
memory to preserving the display state of a window. It’s a classic memory versus
CPU cycles trade-off. A color bitmap for a 300 x 400 image at 256 colors requires
about 120KB. By increasing the color count or the number of pixels, you can easily
have full-screen bitmaps of about 1MB and reach 4MB of memory for a 1280 x 1024
resolution at 16 million colors. If storing the bitmap was the default choice, running
half a dozen simple applications would require at least 8MB of memory, if not
16MB, just for remembering their current output188.

In the general case you want to have a consistent output for your applications, there
are two techniques you can use. The general solution is to store enough data about
the output to be able to reproduce it when the systems sends a painting requested.
An alternative approach is to save the output of the form in a bitmap while you pro-
duce it, by placing an Image component over the form and drawing on the canvas of
this image component.

The first technique, painting, is the common approach to handling output in Win-
dows, aside from particular graphics-oriented programs that store the form’s whole
image in a bitmap. The approach used to implement painting has a very descriptive
name: store and paint. In fact, when the user presses a mouse button or performs
any other operation, we need to store the position and other elements; then, in the
painting method, we use this information to actually paint the corresponding image.

The idea of this approach is to let the application repaint its whole surface under
any of the possible conditions. If we provide a method to redraw the contents of the
form, and if this method is automatically called when a portion of the form has been
hidden and needs repainting, we will be able to re-create the output properly.

187 Core Windows painting concepts haven’t changed at all over the years.

188 Needless to say some of the memory usage observations makes little sense in today’s world, al-
though we get inquiries about issues with multi-gigabytes bitmaps, which make me wonder if
developers have an idea of the fact memory is finite anyway, even if so much larger.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

300 - Chapter 6: Forms, Windows, and Applications

Since this approach takes two steps, we must be able to execute these two opera-
tions in a row, asking the system to repaint the window—without waiting for the
system to ask for this. You can use several methods to invoke repainting:
Invalidate, Update, Repaint, and Refresh. The first two correspond to the Win-
dows API functions, while the latter two have been introduced by Delphi.

· The Invalidate method informs Windows that the entire surface of the form
should be repainted. The most important thing is that Invalidate does not
enforce a painting operation immediately. Windows simply stores the request
and will respond to it only after the current procedure has been completely exe-
cuted and as soon as there are no other events pending in the system. Windows
deliberately delays the painting operation because it is one of the most time-con-
suming operations. At times, with this delay, it is possible to paint the form only
after a number of changes have taken place, avoiding a number of consecutive
calls to the (slow) paint method.

· The Update method asks Windows to update the contents of the form, repainting
it immediately. However, remember that this operation will take place only if
there is an invalid area. This happens if the Invalidate method has just been
called or as the result of an operation by the user. If there is no invalid area, a call
to Update has no effect at all. For this reason, it is common to see a call to Update
just after a call to Invalidate. This is exactly what is done by the two Delphi
methods, Repaint and Refresh.

· The Repaint method calls Invalidate and Update in sequence. As a result, it
activates the OnPaint event immediately. There is a slightly different version of
this method called Refresh. For a form the effect is the same; for components it
might be slightly different.

When you need to ask the form for a repaint operation, you should generally call
Invalidate, following the standard Windows approach. This is particularly impor-
tant when you need to request this operation frequently, because if Windows takes
too much time to update the screen, the requests for repainting can be accumulated
into a simple repaint action. The wm_Paint message in Windows is a sort of low-pri-
ority message. To be more precise, if a request for repainting is pending but other
messages are waiting, the other messages are handled before the system actually
performs the paint action.

On the other hand, if you call Repaint several times, the screen must be repainted
each time before Windows can process other messages, and because paint opera-
tions are computationally intensive, this can actually make your application less
responsive. There are times, however, when you want the application to repaint a

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 6: Forms, Windows, and Applications - 301

surface as quickly as possible. In these less-frequent cases, calling Repaint is the
way to go.

note Another important consideration is that during a paint operation Windows redraws only the so-
called update region, to speed up the operation. For this reason if you invalidate only a portion of
a window, only that area will be repainted. To accomplish this you can use the InvalidateRect
and InvalidateRegion functions. Actually, this feature is a double-edged sword. It is a very
powerful technique, which can improve speed and reduce the flickering caused by frequent
repaint operations. On the other hand, it can also produce incorrect output. A typical problem is
when only some of the areas affected by the user operations are actually modified, while others
remain as they were even if the system executes the source code that is supposed to update them.
In fact, if a painting operation falls outside the update region, the system ignores it, as if it were
outside the visible area of a window.

What’s Next?

In this chapter we’ve explored some important form properties. Now we know how
to handle the size and position of a form, how to resize it, and how to get mouse
input and paint over it. We’ve also discussed in detail the role of two global objects,
Application and Screen, and we’ve built applications with multiple forms. In Chap-
ter 8, we’ll extend this to cover dialog boxes in more detail.

Other chapters in the book will describe topics related to forms. In particular, Chap-
ter 22, which was originally a bonus chapter available as a separate download;
Chapter 7, the use of toolbars, status bars, and scrolling forms; Chapter 8, building a
dialog box, forms with multiple pages, and MDI applications. As you can see from
this list, forms play a central role in Delphi programming, and we still have to
explore a number of topics related to them.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

302 - Chapter 7: Building a User Interface

Chapter 7:

Building A User

Interface

One of the distinctive features of many Windows applications is the presence of a
toolbar at the top of the window and a status bar at its bottom189. The toolbar usually
contains a number of small buttons the user can click to give commands or to toggle
options on and off. At times, a toolbar can also contain combo boxes, edit boxes, or
other controls. The toolbars of the current generation of big applications usually can
be moved to the left or right of the window, or even hidden and turned into a tool-
box, a small floating window with an array of buttons.

189 This is still a common UI, although many alternatives emerged and became popular over the
years. Modern apps tend to reduce the visible UI elements, which makes them nicer aestheti-
cally, but often not so easy to use.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 303

More complex applications tend to have multiple toolbars the user can configure. In
Delphi you can use either the native ControlBar component or the Win32 CoolBar
control190, originally introduced by Microsoft Internet Explorer, for this purpose.

Toolbars account only for the first part of this chapter, which also covers the dock-
ing support that was introduced in Delphi 4 and presents examples of splitting
forms, resizing controls dynamically, and scrolling the content of a form. These top-
ics are not particularly complex, but it is worth examining their key concepts briefly.

The Toolbar Control

In early versions of Delphi, toolbars had to be created using panels and speed but-
tons, as briefly described in “Building a Toolbar with a Panel” later in this chapter.
Starting with version 3, Delphi introduced a specific Toolbar component, which
encapsulates the corresponding Win32 common control. This component provides
a toolbar, with its own buttons, and it has some extended capabilities.

You’ve already seen examples of the Toolbar component in the Chapter 5 discussion
of actions. To use this component, you place it on a form and then use the compo-
nent editor (the shortcut menu activated by a right mouse button click) to create a
few buttons and separators. You can see an example of a Toolbar component under
construction in Figure 7.1.

The Toolbar is populated with objects of the TToolButton class. These are internal
objects, just as a TMenuItem is an internal object of a MainMenu component. These
objects have a fundamental property, Style, which determines their behavior191:

· The tbsButton style indicates a standard push button.

· The tbsCheck style indicates a button with the behavior of a check box, or that of
a radio button if the button is Grouped with the others in its block (determined by
the presence of separators).

190 The Coolbar controls, while still available, is rarely used these days. I’ve kept the coverage,
though.

191 There are now two further toolbar button styles, tbsTextButton and tbsWholeDropDown.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

304 - Chapter 7: Building a User Interface

Figure 7.1: To create
a toolbar, you can place
the corresponding
component on a form
and then use its
shortcut menu to add
buttons and
separators. Images
captured in Delphi 5
and Delphi 12.

· The tbsDropDown style indicates a drop-down button, a sort of combo box. The
drop-down portion can be easily implemented in Delphi by connecting a Popup-
Menu control to the DropdownMenu property of the control.

· The tbsSeparator and tbsDivider styles indicate separators with no or different
vertical lines (depending on the Flat property of the toolbar).

To create a graphic toolbar, you can add an ImageList component to the form192,
load some bitmaps into it, and then connect the ImageList with the Images property
of the toolbar. By default the images will be assigned to the buttons in the order they
appear, but you can change this quite easily by setting the ImageIndex property of
each toolbar button. You can prepare further ImageLists for special conditions of

192 Instead of using an image list, it’s now recommended to use an ImageCollection and a Virtual-
ImageList. The combination of these controls allows your application to select the correct im-
age depending on the HighDPI resolution the application is running on. In the ImageCollec-
tion you can provide multiple set of images for different resolutions, or the component can
create those automatically for you by resizing the available ones. By using the old approach ex-
plained here, you can end up with toolbars having very small images on HighDPI.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 305

the buttons and assign them to the DisabledImages and HotImages properties of the
toolbar. The first group is used for the disabled buttons, the second for the button
currently under the mouse. This is the effect introduced by Microsoft Internet
Explorer.

In a nontrivial application, you would generally add an ActionList component, par-
ticularly if you plan to have a menu with options that duplicate toolbar buttons (for
example, a File Save menu option and a Save button). In this case you’ll attach
very little behavior to the toolbar buttons, as their properties and events will be
managed by the action components. For example, you can obtain a toolbar button
that toggles between a “selected” and an “unselected” state, like a check box. You
obtain this effect by toggling the value of the Checked property of the action every
time this is executed. In this case there is no need to set up the toolbar button with
the tbsCheck style, as the code will determine the requested behavior.

The Toolbar and the ActionList of an Editor

In the MdEdit1 example, I’ve built a menu and a toolbar around a RichEdit control,
providing the first step of an RTF (Rich Text File) editor I’ll expand further in this
and future chapters.

The application is based on an ActionList component, which includes actions for file
handling and Clipboard support, and handles font and paragraph attributes. My
aim is not to build a full-featured editor, or to investigate each and every feature of
the RichEdit common control. I simply want to show how to build the user interface
of a program, for which purpose it is valuable to work with a useful example. Rather
than discuss all of the features of the program, I’ll only highlight the points related
to the current discussion. For a more detailed description of the code, you can open
the “MdEdit Basics” RTF document available with the source code of the project.

The toolbar of the MdEdit1 example has most of its buttons connected to actions,
which are available in a single ActionList component used to handle also all of the
menu items. Only the last button, which has the tbsDropDown style, is handled
directly and not through an action. Here is the structure of the toolbar:

object ToolBar1: TToolBar
 AutoSize = True
 Flat = True
 Images = Images
 object ToolButton1: TToolButton
 Action = acNew
 end
 object ToolButton2: TToolButton

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

306 - Chapter 7: Building a User Interface

 Action = acOpen
 end
 ...
 object ToolButton17: TToolButton
 DropdownMenu = SizeMenu
 ImageIndex = 13
 Style = tbsDropDown
 OnClick = ToolButton17Click
 end
end

The last button is connected to a PopupMenu component (called SizeMenu). This is
all you have to do to make it display the list of items when the down arrow is
selected, as you can see in Figure 7.2. Because the button can also be clicked, I’ve
provided an event handler, which increases the size of the selected text.

Figure 7.2: The
toolbar of the MdEdit1
example has a drop-
down button connected
to a pop-up menu.
Image from the
original book.

The three paragraph-alignment buttons have their Grouped property set to True,
forming a group (as they are enclosed between two separators). This is required
because the program checks the action corresponding to the current style, in the
OnUpdate event of the action list, but it fails to uncheck the other two actions. The
user interface behavior of the menu items is determined by their RadioItem style
and that of the toolbar buttons with the grouping and the AllowAllUp property.

Building a Toolbar with a Panel

Before the toolbar control was available in Delphi, the standard approach for building a toolbar
was to use a panel aligned to the top of the form and place a number of SpeedButton components
inside it. A speed button is a lightweight graphical control (consuming no Windows resources); it
cannot receive the input focus, it has no tab order, and it is faster to create and paint than a
bitmap button.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 307

Speed buttons can behave like push buttons, check boxes, or radio buttons, and they can have
different bitmaps depending on their status. To make a group of speed buttons work like radio
buttons, just place some speed buttons on the panel, select all of them, and give the same value to
each one’s GroupIndex property. All the buttons having the same GroupIndex become
mutually exclusive selections. One of these buttons should always be selected, so remember to
set the Down property to True for one of them at design time or as soon as the program starts.

By setting the AllowAllUp property, you can create a group of mutually exclusive buttons, each
of which can be up—that is, a group from which the user can select one option or leave them all
unselected. As a special case, you can make a speed button work as a check box, simply by
defining a group (the GroupIndex property) that has only one button and that allows it to be
deselected (the AllowAllUp property).

Finally, you can set the Flat property of all the SpeedButton components to True, obtaining a
more modern user interface. If you are interested in this approach, you can look at the PanelBar
example, illustrated here:

The use of SpeedButton controls is becoming less common. Besides the fact that the Toolbar
control is very handy and definitely more standard, speed buttons have two big problems. First,
each of them requires a specific bitmap and cannot use one from an image list (unless you write
some complex code). Second, speed buttons don’t work very well with actions, because some
properties such as the Down state do not map directly.

A Combo Box in a Toolbar

We can extend this example by adding a combo box to the toolbar. A number of
common applications use combo boxes in toolbars to show lists of styles, fonts, font
sizes, and so on. Because we’ve used a drop-down button for the font size, we can
add a combo box to allow rapid selection of the font family. This is simple to accom-
plish, as the Toolbar control is a full-featured control container; you can directly

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

308 - Chapter 7: Building a User Interface

take an edit box, a combo box, and other controls and place them inside the toolbar.
Figure 7.3 shows the MdEdit2 application, with its font-selection combo box.

Figure 7.3: The
MdEdit2 example at
run time. Image from
the original book.

The combo box in the toolbar is initialized in the FormCreate method, which
extracts the screen fonts available in the system:

ComboFont.Items := Screen.Fonts;
ComboFont.ItemIndex := ComboFont.Items.IndexOf (
 RichEdit.Font.Name)

The combo box initially displays the name of the default font used in the RichEdit
control, which is set at design time. This value is recomputed each time the current
selection changes, using the font of the selected text:

procedure TFormRichNote.RichEditSelectionChange(Sender: TObject);
begin
 ComboFont.ItemIndex :=
 ComboFont.Items.IndexOf (RichEdit.SelAttributes.Name)
end;

When a new font is selected from the combo box, the reverse action takes place. The
text of the current combo box item is assigned as the name of the font for any text
selected in the RichEdit control:

procedure TFormRichNote.ComboFontClick(Sender: TObject);
begin
 RichEdit.SelAttributes.Name :=
 ComboFont.Text;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 309

Toolbar Hints

Another common element in toolbars is the fly-by hint, also called balloon help—
some text that briefly describes the button currently under the cursor. This text is
usually displayed in a yellow box after the mouse cursor has remained steady over a
button for a set amount of time. To add hints to an application’s toolbar, simply set
its ShowHints property to True.

I want to use the Caption of each action as its hint, so I could simply copy them all
at run time, instead of setting each at design time. The problem is that the captions
include the ampersand character used for the menu shortcuts. We can solve this by
removing those extra characters with the new StripHotKey function in the Menus
unit. Here is the code:

procedure TFormRichNote.FormCreate(Sender: TObject);
var
 I: Integer;
begin
 ...
 // move captions to hints, removing the &
 for I := 0 to ActionList.ActionCount - 1 do
 (ActionList.Actions[I] as TAction).Hint :=
 StripHotKey ((ActionList.Actions[I] as TAction).Caption);
end;

As you can see in Figure 7.4, the hints also include a string showing the shortcut
associated with each menu item, as a reminder to the user. This is a default behav-
ior you can disable by setting the HintShortCuts property of the Application
object. This global object controls the hints with other properties and some methods
and events. For example, you can change the HintColor, HintPause, HintHidePause,
and HintShortPause properties. The MdEdit2 example allows a user to customize
the hint background color by selecting a specific menu item (Options Hint Color),
with the following event handler:

procedure TFormRichNote.acHintColorExecute (Sender: TObject);
begin
 ColorDialog.Color := Application.HintColor;
 if ColorDialog.Execute then
 Application.HintColor := ColorDialog.Color;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

310 - Chapter 7: Building a User Interface

Figure 7.4: The hints
displayed by the
MdEdit2 example.
Image from the
original book.

note As an alternative, you can change the hint color by handling the OnShowHint property of the
Application object. This handler can change the color of the hint just for specific controls. The
OnShowHint event is used in the following CustHint example.

Customizing the Hints

Just as we have added hints to an application’s toolbar, we can add hints to forms or
to the components of a form. For a large control, the hint will show up near the
mouse cursor. In some cases, it is important to know that a program can freely cus-
tomize how hints are displayed193.

The simplest thing you can do is change the value of the HintColor property of the
Application object (as in the previous example) and the three properties related to
the hint pause: HintPause, HintHidePause, and HintShortPause. The first defines
how long the cursor should remain on a component before hints are displayed, the
second how long the hint will be displayed, and the third how long the system
should wait to display a hint if another hint has just been displayed.

To obtain more control over hints, you can customize them even further by assign-
ing a method to the application’s OnShowHint event. You need to either hook them
up manually or—better—add an ApplicationEvents component to the form and han-
dle its OnShowHint event.

193 There is now also a BalloonHint component you can use to create hints with a more complex
UI structure and including more information. These new hints require Windows themes to be
active.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 311

The method you have to define has some interesting parameters, such as a string
with the text of the hint, a Boolean flag for its activation, and a structure with fur-
ther information:

TShowHintEvent = procedure (
 var HintStr: string;
 var CanShow: Boolean;
 var HintInfo: THintInfo) of object;

Each of the parameters is passed by reference, so you have a chance to change it.
The last parameter is a structure, containing a reference to the control, the position
of the hint, its color, and other information:

THintInfo = record
 HintControl: TControl;
 HintPos: TPoint;
 HintMaxWidth: Integer;
 HintColor: TColor;
 CursorRect: TRect;
 CursorPos: TPoint;
end;

You can modify the values of this structure; for example, you can change the posi-
tion of the hint window before it is displayed. This is what I’ve done in the CustHint
example, which shows the hint of the label at the center of its area. Here is what you
can write to show the hint for the big label in the center of its surface:

procedure TForm1.ShowHint (var HintStr: string;
 var CanShow: Boolean; var HintInfo: THintInfo);
begin
 with HintInfo do
 if HintControl = Label1 then
 HintPos := HintControl.ClientToScreen (Point (
 HintControl.Width div 2, HintControl.Height div 2));
end;

The code has to retrieve the center of the generic control (the
HintInfo.HintControl) and then convert its coordinates to screen coordinates,
applying the ClientToScreen method to the control itself.

We can further update the CustHint example in a different way. The RadioGroup
control in the form has three radio buttons. However, these are not stand-alone
components, but simply radio button clones painted on the surface of the radio
group. What if we want to add a hint for each of them?

The CursorRect field of the THintInfo record can be used for this purpose. It indi-
cates the area of the component that the cursor can move over without disabling the
hint. When the cursor moves outside this area, Delphi hides the hint window. If we
specify a different text for the hint and a different area for each of the radio buttons,

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

312 - Chapter 7: Building a User Interface

we can in practice provide three different hints. Since computing the actual position
of each radio button isn’t easy, I’ve simply divided the surface of the radio group
into as many equal parts as there are radio buttons. The text of the radio button (not
the selected item, but the item under the cursor) is then added to the text of the
hint:

procedure TForm1.ShowHint (var HintStr: string;
 var CanShow: Boolean; var HintInfo: THintInfo);
var
 RadioItem, RadioHeight: Integer;
 RadioRect: TRect;
begin
 with HintInfo do
 if HintControl = Label1 ... // as before
 else
 if HintControl = RadioGroup1 then
 begin
 RadioHeight := (RadioGroup1.Height) div
 RadioGroup1.Items.Count;
 RadioItem := CursorPos.Y div RadioHeight;
 HintStr := ‘Choose the ‘ +
 RadioGroup1.Items [RadioItem] + ‘ button’;
 RadioRect := RadioGroup1.ClientRect;
 RadioRect.Top := RadioRect.Top +
 RadioHeight * RadioItem;
 RadioRect.Bottom := RadioRect.Top + RadioHeight;
 // assign the hints rect and pos
 CursorRect := RadioRect;
 end;
end;

The final part of the code builds the rectangle for the hint, starting with the rectan-
gle corresponding to the client area of the component and moving its Top and
Bottom values to the proper section of the RadioGroup1 component. The resulting
effect is that each radio button of the radio group appears to have a specific hint, as
shown in Figure 7.5.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 313

Figure 7.5: The
RadioGroup control of
the CustHint example
shows a different hint,
depending on the radio
button the mouse is
over. Image from the
original book.

Toolbar Containers

Most modern applications have multiple toolbars, generally hosted by a specific
container. Microsoft Internet Explorer, the various standard business applications,
and the Delphi IDE all use this general approach. However, they each implement it
differently. Delphi has two ready-to-use toolbar containers, the CoolBar and the
ControlBar components. They have differences in their user interface, but the big-
gest one is that the CoolBar is a Win32 common control, part of the operating
system, while the ControlBar is a VCL-based component.

Both components can host toolbar controls, as well as some extra elements, such as
combo boxes and other controls. Actually, a toolbar can also replace the menu of an
application, as we’ll see later on.

We’ll investigate the two components in the next two sections, but I want to empha-
size here (without getting too far ahead of myself) that I generally favor the use of
the ControlBar. It is based on the VCL (and not subject to upgrade along with each
minor release of Microsoft Internet Explorer), and its user interface is nicer and
more similar to that of common office applications.

A Really Cool Toolbar

The CoolBar component is basically a collection of TCoolBand objects. Unlike the
toolbar buttons, these objects do not appear as stand-alone objects in the form, but
are simply a collection of subitems. They appear in the Object Inspector only when

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

314 - Chapter 7: Building a User Interface

you select the editor of the CoolBar’s Bands property, as you can see in Figure 7.6.
You create one or more bands and then set their attributes.

Figure 7.6: The
property editor of the
CoolBar component’s
Bands property works
in conjunction with the
Object Inspector.
Image from the
original book.

You can customize the CoolBar component in many ways: You can set a bitmap for
its background, add some bands using the editor for the Bands property, and then
assign to each band an existing component or component container. You can use
any window-based control (not graphic controls), but only some of them will show
up properly. If you want to have a bitmap on the background of the CoolBar, for
example, you need to use partially transparent controls.

The typical component used in a CoolBar is the Toolbar (which can be made com-
pletely transparent), but combo boxes, edit boxes, and animation controls are also
quite common. This is often inspired by the user interface of the Internet Explorer,
the first Microsoft application featuring the CoolBar component.

You can place one band on each line or all of them on the same line. Each one would
use a part of the available surface, and it would be automatically enlarged when the
user clicks on its title. It is easier to use this new component than to explain it. Try it
yourself or follow the description below, in which we build a new version of our con-
tinuing toolbar example based on a CoolBar control. You can see the form displayed
by this application at run time in Figure 7.7.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 315

Figure 7.7: The form
of the CoolBar example
at run time. Image
from the original book.

The CoolBar example has a TCoolBar component with four bands, two for each of
the two lines. The first band includes a subset of the toolbar of the previous exam-
ple, this time adding an ImageList for the highlighted images. The second has an
edit box used to set the font of the text; the third has a ColorGrid component, used
to choose the font color and that of the background. The last band has a ComboBox
control with the available fonts.

The ControlBar

The user interface of the CoolBar component is really very nice, and Microsoft is
increasingly using it in its applications194. However, the Windows CoolBar control
has had many different and incompatible versions, as Microsoft has released differ-
ent versions of the common control library with different versions of the Internet
Explorer. Some of these versions “broke” existing programs built with Delphi.

note It is interesting to note that Microsoft applications generally don’t use the common control
libraries. Word and Excel use their own internal versions of the common controls, and VB uses an
OCX, not the common controls directly. Part of the reason that Borland had so much trouble with
the common controls is that it uses them more (and in more ways) than even Microsoft does.

194 This was true at the time. Microsoft later moved towards using the Ribbon control even out-
side of of Office, where it was originally introduced. The Ribbon control is a common replace-
ment of toolbars.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

316 - Chapter 7: Building a User Interface

For this reason, Borland introduced (in Delphi 4) a toolbar container called the
ControlBar. A control bar hosts several controls, as a CoolBar does, and offers a sim-
ilar user interface that lets a user drag items and reorganize the toolbar at run time.
A good example of the use of the ControlBar control is Delphi’s own toolbar, but
Microsoft applications use a very similar user interface.

The ControlBar is a control container, and you build it just by placing other controls
inside it, as you do with a panel. Every control placed in the bar gets its own drag-
ging area (a small panel with two vertical lines, on the left of the control), as you can
see in Figure 7.8. For this reason, you should generally avoid placing specific but-
tons inside the ControlBar, but rather add further containers with buttons inside
them. Rather than using a panel, you should generally use one ToolBar control for
every section of the toolbar.

Figure 7.8: The
ControlBar is a
container that allows a
user to drag all the
elements, using the
special drag bar on the
side. Notice that each
button gets a separate
drag bar, something
you’ll generally try to
avoid. Image from the
original book.

The MdEdit3 example is another version of the RichEdit demo we’ve developed
throughout this chapter. I’ve basically grouped the buttons into three toolbars
(instead of a single one) and left the combo box as a stand-alone control. All these
components are inside a ControlBar, so that a user can arrange them at will, as you
can see in Figure 7.9 and in the following DFM listing:

object ControlBar1: TControlBar
 Align = alTop
 AutoSize = True
 ShowHint = True
 object ToolBarFile: TToolBar
 AutoSize = True
 EdgeBorders = []

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 317

 EdgeInner = esNone
 EdgeOuter = esNone
 Flat = True
 Images = Images
 Wrapable = False
 object ToolButton1: TToolButton
 Action = acNew
 end
 // more buttons
 end
 object ToolBarEdit: TToolBar
 // similar properties
 object ToolButton6: TToolButton
 Action = acCut
 end
 // more buttons
 end
 object ToolBarFont: TToolBar
 // ...
 end
 object ComboFont: TComboBox
 Hint = ‘Font Family’
 Style = csDropDownList
 Font.Height = -11
 Font.Name = ‘Arial’
 ItemHeight = 14
 ParentFont = False
 Sorted = True
 OnClick = ComboFontClick
 end
end

Notice in the listing that to obtain the standard effect, you have to disable the edges
of the toolbar controls and set their style to flat. Sizing all the controls alike, so that
you obtain one or two rows of elements of the same height, is not as easy as it might
seem at first. Some controls have automatic sizing or various constraints. In particu-
lar, to make the combo box the same height as the toolbars, you have to tweak the
type and size of its font. Resizing the control itself has no effect.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

318 - Chapter 7: Building a User Interface

Figure 7.9: The
MdEdit3 example at
run time, while a user
is rearranging the
toolbars in the control
bar. Image from the
original book.

The ControlBar also has a shortcut menu that allows you to show or hide each of the
controls currently inside it. Instead of writing code specific to this example, I’ve
implemented a more generic (and reusable) solution. The shortcut menu, called
BarMenu, is empty at design time and is populated when the program starts:

procedure TFormRichNote.FormCreate(Sender: TObject);
var
 I: Integer;
 mItem: TMenuItem;
begin
 ...
 // populate the control bar menu
 for I := 0 to ControlBar.ControlCount - 1 do
 begin
 mItem := TMenuItem.Create (Self);
 mItem.Caption := ControlBar.Controls [I].Name;
 mItem.Tag := Integer (ControlBar.Controls [I]);
 mItem.OnClick := BarMenuClick;
 BarMenu.Items.Add (mItem);
 end;

The BarMenuClick procedure is a single event handler that is used by all of the items
of the menu and uses the Tag property of the Sender menu item to refer to the ele-
ment of the ControlBar associated with the item in the FormCreate method:

procedure TFormRichNote.BarMenuClick(Sender: TObject);
var
 aCtrl: TControl;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 319

begin
 aCtrl := TControl ((Sender as TComponent).Tag);
 aCtrl.Visible := not aCtrl.Visible;
end;

Finally, the OnPopup event of the menu is used to refresh the check mark of the
menu items:

procedure TFormRichNote.BarMenuPopup(Sender: TObject);
var
 I: Integer;
begin
 // update the menu checkmarks
 for I := 0 to BarMenu.Items.Count - 1 do
 BarMenu.Items [I].Checked :=
 TControl (BarMenu.Items [I].Tag).Visible;
end;

A Menu in a Control Bar

If you look at the user interface of the Delphi development environment, you can
see that a ControlBar also hosts the application’s menu, which can be dragged in the
same way as the toolbars and the Component Palette195. How can we add a menu to
the ControlBar of our application?

The menu of the form cannot be placed inside the ControlBar, but we can add
another new toolbar control to host it. This control should have the ShowCaptions
property and the Flat property set to True. Then you should add as many tool but-
tons as there are pull-down menus, set their AutoSize and Grouped properties to
True, and connect each tool button with the proper pull-down menu using the
MenuItem property.

note Borland has made available a free TMenuBar component on its Web site (in the Delphi Down-
loads area). This component connects directly with a MainMenu component, doing all the
required settings automatically.196

Once more, instead of doing all of these operations at design time, we can automate
the creation of as many buttons as requested by the menu, adding more code to the
FormCreate method:

195 This is still the case today.

196 This extensions has been later integrated in the VCL library. You can now add a menu to the
control bar.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

320 - Chapter 7: Building a User Interface

 // create the buttons of the menu toolbar
 ToolSize := 0;
 for I := MainMenu.Items.Count - 1 downto 0 do
 begin
 tb := TToolButton.Create (ToolBarMenu);
 tb.Parent := ToolBarMenu;
 tb.AutoSize := True;
 tb.Grouped := True;
 tb.Caption := MainMenu.Items[I].Caption;
 tb.MenuItem := MainMenu.Items[I];
 Inc (ToolSize, tb.Width);
 end;
 // size the menu toolbar
 ToolBarMenu.Width := ToolSize;
 // hide the standard menu, using the form’s Menu property
 Menu := nil;

Notice that you have to disconnect the menu from the form, by removing the value
of the form’s Menu property, which is automatically set as you place the menu com-
ponent in the form. The result is a menu inside the ControlBar, as you can see in
Figure 7.10.

Figure 7.10: The
MdEdit4 example
shows how to place a
menu inside a toolbar
based on the
ControlBar component.
Image from the
original book.

Creating a Status Bar

Building a status bar is even simpler than building a toolbar. Delphi includes a spe-
cific StatusBar component, based on the corresponding Windows common control.
This component can be used almost as a panel when its SimplePanel property is set

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 321

to True. In this case you can use the SimpleText property to output some text. The
real advantage of this component, however, is that it allows you to define a number
of subpanels just by activating the editor of its Panels property. (You can also dis-
play this property editor by double-clicking on the status bar control.) Each
subpanel has its own graphical attributes, which you can customize using the editor.
Another feature of the status bar component is the “size grip” area added to the
lower-right corner of the bar, which is useful for resizing the form itself. This is a
typical element of the Windows user interface, and you can control it with the
SizeGrip property.

There are a number of uses for a status bar. The most common is to display infor-
mation about the menu item currently selected by the user. Besides this, a status bar
often displays other information about the status of a program: the position of the
cursor in a graphical application, the current line of text in a word processor, the
status of the lock keys, the time and date, and so on.

Menu Hints in the Status Bar

A new version of the editor, MdEdit5, has a status bar capable of displaying the
description of the current menu item, the status of the Caps Lock key, and the cur-
rent editing position. The StatusBar component of this example has four panels.
Although we’re going to display text on only three of them, we need to define the
fourth in order to delimit the area of the third panel. The last panel, in fact, is always
large enough to cover the remaining surface of the status bar.

To show information on a panel, you simply use its Text property, generally using
an expression like this:

StatusBar1.Panels[1].Text := ‘message’;

The panels are not independent components, so you cannot access them by name. A
good solution to improve the readability of the program is to define a constant for
each panel you want to use, and then use these constants when referring to the pan-
els. The MdEdit5 example defines the following constants:

const
 sbpMessage = 0;
 sbpCaps = 1;
 sbpPosition = 2;

Now we have to populate the panels of the status bar with the proper text. First, we
want to display a hint message for the menu items and toolbar buttons. To obtain
this effect, you need to take two steps. First, input a string as a Hint property of each

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

322 - Chapter 7: Building a User Interface

action of the ActionList component. This hint will be used both as a fly-by hint for
toolbar buttons and as a status bar message when the cursor is over the button or
the menu item is selected. Actually, we can use the Hint property to specify different
strings for the two cases, by writing a string divided into two portions by a separa-
tor, the | character. For example, you might enter the following as the value of the
Hint property:

‘Help|Activate the help of the application’

The first portion of the string, Help, is used by fly-by hints, the second portion by
the status bar. You can see an example of this effect in Figure 7.11.

note When the hint for a control is made up of two strings, you can use the GetShortHint and
GetLongHint methods to extract the first (short) and second (long) substrings from the string
you pass as a parameter, which is usually the value of the Hint property.

Figure 7.11: The
status bar of the
MdEdit5 example
displays (among other
information) a
description of the
current button or menu
item. The two portions
of the Hint property
are displayed in the
status bar and as a fly-
by hint. Image from
the original book.

To obtain the hint in the status bar, we have to write some code to handle the appli-
cation’s OnHint event. To avoid adding a new method to the form manually and then
assign it to the OnHint event of the Application object, we can add to the form the
ApplicationEvents component, and handle its event at design time.

The ShowHint procedure copies the current value of the application’s Hint property,
which temporarily contains a copy of the selected item’s hint, to the status bar:

procedure TFormRichNote.ShowHint(Sender: TObject);
begin

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 323

 StatusBar1.Panels[sbpMessage].Text := Application.Hint;
end;

This is all you need to do to display a hint indicating the effect of a menu in the sta-
tus bar.

To display the status of the Caps Lock key, or of any other key, you have to call the
GetKeyState API function, which returns a state number. If the low-order bit of this
number is set (that is, if the number is odd), then the key is pressed. When do we
check this state? We can do it every time the user presses a key on the form, when
the application is idle, or we can add a timer and make the check every 5 seconds.
This second approach has an advantage, because the user might press the Caps Lock
key while working with a different application, and this should be indicated on the
status bar of our program, too. However, using a timer makes the response to press-
ing the key quite slow, while speeding up the timer might slow down the program.
So I’ve decided to write a simple procedure, called CheckCapslock, and then call it
both in the OnUpdate event handler of the ActionList component (called when the
application has some idle time) and in the OnTimer event handler of a timer compo-
nent I’ve added to the form:

procedure TFormRichNote.CheckCapslock;
begin
 if Odd (GetKeyState (VK_CAPITAL)) then
 StatusBar1.Panels[sbpCaps].Text := ‘CAPS’
 else
 StatusBar1.Panels[sbpCaps].Text := ‘‘;
end;

Finally, the program uses the third panel to display the current cursor position
(measured in lines and characters per line) every time the selection changes.
Because the CaretPos values are zero-based (that is, the upper-left corner is line 0,
character 0), I’ve decided to add one to each value, to make them more reasonable
for a casual user:

procedure TFormRichNote.RichEditSelectionChange(Sender: TObject);
begin
 ...
 // update the position in the status bar
 StatusBar.Panels[sbpPosition].Text := Format (‘%d/%d’,
 [RichEdit.CaretPos.Y + 1, RichEdit.CaretPos.X + 1]);
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

324 - Chapter 7: Building a User Interface

Scrolling a Form

When you build a simple application, a single form might hold all of the compo-
nents you need. As the application grows, however, you may need to squeeze in the
components, increase the size of the form, or add new forms.

If you reduce the space occupied by the components, you might add some capability
to resize them at run time, possibly splitting the form into different areas. If you
choose to increase the size of the form, you might use scroll bars to let the user
move around in a form that is bigger than the screen.

note If you choose to add a new form, you can create secondary forms and dialog boxes, create forms
with multiple pages, or use the MDI approach (as described in the next chapter).

Adding a scroll bar to a form is simple. In fact, you don’t need to do anything. If you
place a number of components in a big form and then reduce its size, a scroll bar
will be added to the form automatically, as long as you haven’t changed the value of
the AutoScroll property from its default of True.

Along with AutoScroll, forms have two properties, HorzScrollBar and
VertScrollBar, which can be used to set several properties of the two
TFormScrollBar objects associated with the form. The Visible property indicates
whether the scroll bar is present, the Position property determines the initial status
of the scroll thumb, and the Increment property determines the effect of clicking
one of the arrows at the ends of the scroll bar. The most important property, how-
ever, is Range.

The Range property of a scroll bar determines the virtual size of the form in one
direction, not the actual range of values of the scroll bar. At first, this might be
somewhat confusing. Here is an example to clarify how the Range property works.
Suppose you need a form that will host a number of components and will therefore
need to be 1000 pixels wide. We can use this value to set the “virtual range” of the
form, changing the range of the horizontal scroll bar. See Figure 7.12 for an illustra-
tion of the virtual size of a form implied by the range of a scroll bar. If the width of
the client area of the form is smaller than 1000 pixels, a scroll bar will appear. Now
you can start using it at design time to add new components in the “hidden” portion
of the form.

The Position property of the scroll bar ranges from 0 to 1000 minus the current
size of the client area. For example, if the client area of the form is 300 pixels wide,
you can scroll 700 pixels to see the far end of the form (the thousandth pixel).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 325

Figure 7.12: A
representation of the
virtual size of a form
implied by the range
of a scroll bar. Image
based on a picture of
the original printed
book.

The Scroll Testing Example

I’ve built an example, Scroll1, which has a virtual form of 1000 pixels. To accom-
plish this, I simply set the range of the horizontal scroll bar to 1000:

object Form1: TForm1
 Width = 458
 Height = 368
 HorzScrollBar.Range = 1000
 VertScrollBar.Range = 305
 AutoScroll = False
 Caption = ‘Scrolling Form’
 OnResize = FormResize
 ...

The form of this example has been filled with a number of meaningless list boxes,
and I could have obtained the same scroll bar range by placing the rightmost list box
so that its position (Left) plus its size (Width) would equal 1000.

The interesting part of the example is the presence of a toolbox window displaying
the status of the form and of its horizontal scroll bar. This second form has four
labels; two with fixed text and two with the actual output. Besides this, the sec-
ondary form (called Status) has a bsToolWindow border style and is a topmost
window. You should also set its Visible property to True, to have its window auto-
matically displayed at startup:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

326 - Chapter 7: Building a User Interface

object Status: TStatus
 BorderIcons = [biSystemMenu]
 BorderStyle = bsToolWindow
 Caption = ‘Status’
 FormStyle = fsStayOnTop
 Visible = True
 object Label1: TLabel...
 ...

There isn’t much code in this program. Its aim is to update the values in the toolbox
each time the form is resized or scrolled (as you can see in Figure 7.13). The first
part is extremely simple. You can handle the OnResize event of the form and simply
copy a couple of values to the two labels. The labels are part of another form, so you
need to prefix them with the name of the form instance, Status:

procedure TForm1.FormResize(Sender: TObject);
begin
 Status.Label3.Caption := IntToStr(ClientWidth);
 Status.Label4.Caption := IntToStr(HorzScrollBar.Position);
end;

Figure 7.13: The
output of the Scroll1
example. Image from
the original book.

If we wanted to change the output each time the user scrolls the contents of the
form, we could not use a Delphi event handler, because there isn’t an OnScroll
event for forms (although there is one for stand-alone ScrollBar components).
Omitting this event makes sense, because Delphi forms handle scroll bars automati-
cally in a powerful way. In Windows, by contrast, scroll bars are extremely low-level
elements, requiring a lot of coding. Handling the scroll event makes sense only in

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 327

special cases, such as when you want to keep track precisely of the scrolling opera-
tions made by a user.

note Once again, what I really like in Delphi is that handling a Windows message that is not supported
by the environment requires only one more line of code. I’ve never seen something so nice in any
other visual environment.

Here is the code we need to write. First, add a method declaration to the class and
associate it with the Windows horizontal scroll message (wm_HScroll):

 public
 procedure FormScroll (var ScrollData: TWMScroll);
 message wm_HScroll;

Then write the code of this procedure, which is almost the same as the code of the
FormResize method we’ve seen before:

procedure TForm1.FormScroll (var ScrollData: TWMScroll);
begin
 inherited;
 Status.Label3.Caption := IntToStr(ClientWidth);
 Status.Label4.Caption := IntToStr(HorzScrollBar.Position);
end;

It’s important to add the call to inherited, which activates the method related to
the same message in the base class form. The inherited keyword in Windows mes-
sage handlers calls the method of the base class we are overriding, which is the one
associated with the corresponding Windows message (even if the procedure name is
different). Without this call, the form won’t have its default scrolling behavior; that
is, it won’t scroll at all.

Automatic Scrolling

The scroll bar’s Range property can seem strange until you start to use it consis-
tently. When you think about it a little, you’ll start to understand the advantages of
the “virtual range” approach. First of all, the scroll bar is automatically removed
from the form when the client area of the form is big enough to accommodate the
virtual size; and when you reduce the size of the form, the scroll bar is added again.

This feature becomes particularly interesting when the AutoScroll property of the
form is set to True. In this case, the extreme positions of the rightmost and lower
controls are automatically copied into the Range properties of the form’s two scroll
bars. Automatic scrolling works well in Delphi. In the last example, the virtual size

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

328 - Chapter 7: Building a User Interface

of the form would be set to the right border of the last list box. This was defined with
the following attributes:

object ListBox6: TListBox
 Left = 832
 Width = 145
end

Therefore, the horizontal virtual size of the form would be 977 (which is the sum of
the two above values). This number is automatically copied into the Range field of
the HorzScrollBar property of the form, unless you change it manually to have a
bigger form (as I’ve done for the Scroll1 example, setting it to 1000 to leave some
space between the last list box and the border of the form). You can see this value in
the Object Inspector, or make the following test: Run the program, size the form as
you like, and move the scroll thumb to the rightmost position. When you add the
size of the form and the position of the thumb, you’ll always get 1000, the virtual
coordinate of the rightmost pixel of the form, whatever the size.

Scrolling and Form Coordinates

We have just seen that forms can automatically scroll their components. But what
happens if you paint directly on the surface of the form? Some problems arise, but
their solution is at hand. Suppose that we want to draw some lines on the virtual
surface of a form, as shown in Figure 7.14.

Since you probably do not own a monitor capable of displaying 2000 pixels on each
axis, you can create a smaller form, add two scroll bars, and set their Range prop-
erty, as I’ve done in the Scroll2 example. Here is the textual description of the form:

object Form1: TForm1
 HorzScrollBar.Range = 2000
 VertScrollBar.Range = 2000
 ClientHeight = 336
 ClientWidth = 472
 OnPaint = FormPaint
end

If we simply draw the lines using the virtual coordinates of the form, the image
won’t display properly. In fact, in the OnPaint response method, we need to com-
pute the virtual coordinates ourselves. Fortunately, this is easy, since we know that
the virtual X1 and Y1 coordinates of the upper-left corner of the client area corre-
spond to the current positions of the two scroll bars:

procedure TForm1.FormPaint(Sender: TObject);

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 329

var
 X1, Y1: Integer;
begin
 X1 := HorzScrollBar.Position;
 Y1 := VertScrollBar.Position;

 // draw a yellow line
 Canvas.Pen.Width := 30;
 Canvas.Pen.Color := clYellow;
 Canvas.MoveTo (30-X1, 30-Y1);
 Canvas.LineTo (1970-X1, 1970-Y1);
// and so on ...

As a better alternative, instead of computing the proper coordinate for each output
operation, we can call the SetWindowOrgEx API to move the origin of the coordinates
of the Canvas itself. This way, our drawing code will directly refer to virtual coordi-
nates but will be displayed properly:

procedure TForm2.FormPaint(Sender: TObject);
begin
 SetWindowOrgEx (Canvas.Handle,
 HorzScrollbar.Position,
 VertScrollbar.Position, nil);

 // draw a yellow line
 Canvas.Pen.Width := 30;
 Canvas.Pen.Color := clYellow;
 Canvas.MoveTo (30, 30);
 Canvas.LineTo (1970, 1970);

 // and so on ...
 ...

This is the version of the program you’ll find in the source code you’ve downloaded.
Try using the program and commenting out the SetWindowOrgEx call to see what
happens if you don’t use virtual coordinates: You’ll find that the output of the pro-
gram is not correct—it won’t scroll, and the same image will always remain in the
same position, regardless of scrolling operations.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

330 - Chapter 7: Building a User Interface

Figure 7.14: The
lines to draw on the
virtual surface of the
form. Image based on
a picture of the
original printed book.

Form-Splitting Techniques

There are several ways to implement form-splitting techniques in Delphi, but the
simplest approach is to use the Splitter component, found in the Additional page of
the Component Palette. To make it more effective, the splitter can be used in combi-
nation with the Constraints property of the controls it relates to. As we’ll see in the
Split1 example, this allows us to define maximum and minimum positions of the
splitter and of the form.

To build this example, simply place a ListBox component in a form; then add a
Splitter component, a second ListBox, another Splitter, and finally a third ListBox
component. The form also has a simple toolbar based on a panel.

By simply placing these two splitter components, you give your form the complete
functionality of moving and sizing the controls it hosts at run time. The Width,
Beveled, and Color properties of the splitter components determine their appear-
ance, and in the Split1 example you can use the toolbar controls to change them.
Another relevant property is MinSize, which determines the minimum size of the
components of the form. During the splitting operation (see Figure 7.15), a line
marks the final position of the splitter, but you cannot drag this line over a certain
limit. The behavior of the Split1 program is not to let controls become too small. An

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 331

alternative technique is to set the new AutoSnap property of the splitter to True. This
property will make the splitter hide the control when its size goes below the MinSize
limit.

Figure 7.15: The
splitter component of
the Split1 example
determines the
minimum size for each
control on the form,
even those not adjacent
to the splitter itself.
Image from the
original book.

I suggest you try using the Split1 program, so that you’ll fully understand how the
splitter affects its adjacent controls and the other controls of the form.

Even if I’ve set the MinSize property, a user of this program can reduce the size of
its entire form to a minimum, hiding some of the list boxes. If you test the Split2
version of the example, instead, you’ll get better behavior. In Split2 I’ve set some
Constraints for the ListBox controls, as for example:

object ListBox1: TListBox
 Constraints.MaxHeight = 400
 Constraints.MinHeight = 200
 Constraints.MinWidth = 150

The size constraints are applied only as you actually resize the controls, so to make
this program work in a satisfactory way, you have to set the ResizeStyle property of
the two splitters to rsUpdate. This value indicates that the position of the controls is
updated for every movement of the splitter, not only at the end of the operation. If
you select the rsLine or the new rsPattern values, instead, the splitter simply
draws a line in the required position, checking the MinSize property but not the
constraints of the controls.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

332 - Chapter 7: Building a User Interface

note The Splitter component in Delphi 5 has a new property, AutoSnap. When you set this to True,
the splitter will completely hide the neighboring control when the size of that control is below the
minimum set for it in the Splitter component.

Horizontal Splitting

The Splitter component can also be used for horizontal splitting, instead of the
default vertical splitting. However, this approach is a little more complicated. Basi-
cally you can place a component on a form, align it to the top, and then place the
splitter on the form. By default, it will be left-aligned. Choose the alTop value for the
Align property, and then resize the component manually, by changing the Height
property in the Object Inspector (or by resizing the component).

You can see a form with a horizontal splitter in the SplitH example. This program
has two memo components you can open a file into, and it has a splitter dividing
them, defined as:

object Splitter1: TSplitter
 Cursor = crVSplit
 Align = alTop
 OnMoved = Splitter1Moved
end

When you double-click on a memo, the program loads a text file into it (notice the
structure of the with statement):

procedure TForm1.MemoDblClick(Sender: TObject);
begin
 with Sender as TMemo, OpenDialog1 do
 if Execute then
 Lines.LoadFromFile (FileName);
end;

The program features a status bar, which keeps track of the current height of the
two memo components. It handles the OnMoved event of the splitter (the only event
of this component) to update the text of the status bar. The same code is executed
whenever the form is resized:

procedure TForm1.Splitter1Moved(Sender: TObject);
begin
 StatusBar1.Panels[0].Text := Format (
 ‘Upper Memo: %d - Lower Memo: %d’,
 [MemoUp.Height, MemoDown.Height]);
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 333

You can see the effect of this code by looking at Figure 7.16, or by running the SplitH
example.

Figure 7.16: The
status bar of the SplitH
example indicates the
position of the
horizontal splitter
component.

Splitting with a Header

An alternative to using splitters is to use the standard HeaderControl compo-nent.
If you place this control on a form, it will be automatically aligned with the top of
the form. Then you can add the three list boxes to the rest of the client area of the
form. The first list box can be aligned on the left, but this time you cannot align the
second and third list box as well. The problem is that the sections of the header can
be dragged outside the visible surface of the form. If the list boxes use automatic
alignment, they cannot move outside the visible surface of the form, as the program
requires.

The solution is to define the sections of the header, using the specific editor of the
Sections property. This property editor allows you to access the various subobjects
of the collection, changing various settings. You can set the caption and alignment
of the text; the current, minimum, and maximum size of the header; and so on. Set-
ting the limit values is a powerful tool, and it replaces the MinSize property of the
splitter or the constraints of the list boxes we’ve used in past examples. You can see
the output of this program, named HdrSplit, in Figure 7.17.

We need to handle two events: OnSectionResize and OnSectionClick. The first
handler simply resizes the list box connected with the modified section (determined
by associating numbers with the ImageIndex property of each section and using it to
determine the name of the list box control):

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

334 - Chapter 7: Building a User Interface

procedure TForm1.HeaderControl1SectionResize(
 HeaderControl: THeaderControl; Section: THeaderSection);
var
 List: TListBox;
begin
 List := FindComponent (‘ListBox’ + IntToStr (
 Section.ImageIndex)) as TListBox;
 List.Width := Section.Width;
end;

Figure 7.17: The
output of the HdrSplit
example. Image from
the original book.

Along with this event, we need to handle the resizing of the form, using it to syn-
chronize the list boxes with the sections, which are all resized by default:

procedure TForm1.FormResize(Sender: TObject);
var
 I: Integer;
 List: TListBox;
begin
 for I := 0 to 2 do
 begin
 List := FindComponent (‘ListBox’ + IntToStr (
 HeaderControl1.Sections[I].ImageIndex)) as TListBox;
 List.Left := HeaderControl1.Sections[I].Left;
 List.Width := HeaderControl1.Sections[I].Width;
 end;
end;

After setting the height of the list boxes, this method simply calls the previous one,
passing parameters that we won’t use in this example. The second method of the

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 335

HeaderControl, called in response to a click on one of the sections, is used to sort
the contents of the corresponding list box:

procedure TForm1.HeaderControl1SectionClick(
 HeaderControl: THeaderControl; Section: THeaderSection);
var
 List: TListBox;
begin
 List := FindComponent (‘ListBox’ + IntToStr (
 Section.ImageIndex)) as TListBox;
 List.Sorted := not List.Sorted;
end;

Of course, this code doesn’t provide the common behavior of sorting the elements
when you click on the header and then sorting them in the reverse order if you click
again. To implement this, you should write your own sorting algorithm. Finally, the
HdrSplit example uses a new feature for the header control. It sets the DragReorder
property to enable dragging operations to reorder the header sections. When this
operation is performed, the control fires the OnSectionDrag event, where you can
exchange the positions of the list boxes. This event fires before the sections are actu-
ally moved, so I have to use the coordinates of the other section:

procedure TForm1.HeaderControl1SectionDrag(Sender: TObject;
FromSection,
 ToSection: THeaderSection; var AllowDrag: Boolean);
var
 List: TListBox;
begin
 List := FindComponent (‘ListBox’ + IntToStr (
 FromSection.ImageIndex)) as TListBox;
 List.Left := ToSection.Left;
 List.Width := ToSection.Width;

 List := FindComponent (‘ListBox’ + IntToStr (
 ToSection.ImageIndex)) as TListBox;
 List.Left := FromSection.Left;
 List.Width :=fromSection.Width;
end;

Control Anchors

In this chapter I’ve described how you can use alignment and splitters to create nice
and flexible user interfaces, which adapt to the current size of the form, giving users
the maximum freedom. Delphi also supports right and bottom anchors. Before this

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

336 - Chapter 7: Building a User Interface

feature was introduced in Delphi 4, every control placed on a form had coordinates
relative to the top and bottom sides, unless it was aligned to the bottom or right
sides. Aligning is good for some controls but not all of them, particularly buttons.

By using anchors, you can make the position of a control relative to any side of the
form. For example, to have a button anchored to the bottom-right corner of the
form, place the button in the required position and set its Anchors property to
[akRight, akBottom]. When the form size changes, the distance of the button from
the anchored sides is kept fixed. In other words, if you set these two anchors and
remove the two defaults, the button will remain in the bottom-right corner.

On the other hand, if you place a large component such as a Memo or a ListBox in
the middle of a form, you can set its Anchors property to include all four sides. This
way the control will behave as an aligned control, growing and shrinking with the
size of the form, but there will be some margin between it and the form sides.

note Anchors, like constraints, work both at design time and at run time; so you should set them up as
early as possible, to benefit from this feature while you’re designing the form as well as at run
time.

As an example of both approaches, you can try out the Anchors application, which
has two buttons on the bottom-right corner and a list box in the middle. As shown
in Figure 7.18, the controls automatically move and stretch as the form size changes.
To make this form work properly, you must also set its Constraints property; oth-
erwise, as the form becomes too small the controls can overlap or disappear.

Figure 7.18: The
controls of the Anchors
example move and
stretch automatically
as the user changes the
size of the form. No
code is needed to move
the controls, only a
proper use of the
Anchors property.
Image from the
original book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 337

note If you remove all of the anchors, or two opposite ones (for example, left and right), the resize
operations will cause the control to float. The control keeps its current size, and the system adds
or removes the same number of pixels on each side of it. This can be defined as a centered anchor,
because if the component is initially in the middle of the form it will keep that position. In any
case, if you want a centered control, you should generally use both opposite anchors, so that if the
user makes the form larger the control size will grow as well. In the case just presented, in fact,
making the form larger leaves a small control in its center.

Docking Toolbars and Controls

Another feature added in Delphi 4 was the support for dockable toolbars and con-
trols197. In other words, you can create a toolbar and move it to any of the sides of a
form, or even move it freely on the screen, undocking it. However, setting up a pro-
gram properly to obtain this effect is not as easy as it sounds.

First of all, Delphi’s docking support is connected with container controls, not with
forms. A panel, a ControlBar, and other containers (technically, any control derived
from TWinControl) can be set up as dock targets by enabling their DockSite prop-
erty. You can also set the AutoSize property of these containers, so that they’ll show
up only if they actually hold a control.

To be able to drag a control (an object of any TControl-derived class) into the dock
site, simply set its DragKind property to dkDock and its DragMode property to
dmAutomatic. This way, the control can be dragged away from its current position
into a new docking container. To undock a component and move it to a special form,
you can set its FloatingDockSiteClass property to TCustomDockForm (to use a pre-
defined stand-alone form with a small caption).

All the docking and undocking operations can be tracked by using special events of
the component being dragged (OnStartDock and OnEndDock) and the component
that will receive the docked control (OnDragOver and OnDragDrop). These docking
events are very similar to the dragging events available in earlier versions of Delphi.

There are also commands you can use to accomplish docking operations in code and
to explore the status of a docking container. Every control can be moved to a differ-
ent location using the Dock, ManualDock, and ManualFloat methods. A container has
a DockClientCount property, indicating the number of docked controls, and a
DockClients property, with the array of these controls.

197 Docking remains a core feature of the VCL library and the Delphi IDE uses it heavily.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

338 - Chapter 7: Building a User Interface

Moreover, if the dock container has the UseDockManager property set to True, you’ll
be able to use the DockManager property, which implements the IDockManager inter-
face. This interface has many features you can use to customize the behavior of a
dock container, even including support for streaming its status.

As you can see from this brief description, docking support in Delphi is based on a
large number of properties, events, methods and objects (such as dock zones and
dock trees)—more features than we have room to explore in detail. The next exam-
ple introduces the main features you’ll generally need.

Docking Toolbars in ControlBars

The MdEdit6 example is the final version of the RichEdit editor presented in this
chapter. This new version has a second ControlBar at the bottom of the form, which
accepts dragging one of the toolbars in the ControlBar at the top. Since both toolbar
containers have the AutoSize property set to True, they are automatically removed
when the host contains no controls. To let users drag the toolbars with the same
anchor used for moving them inside the container, remember to set the AutoDrag
property of the ControlBars, as well.

You can see an example of the program at run time in Figure 7.19. The components
inside the control bar at the top have their DragKind property set to dkDock. How-
ever, the menu toolbar cannot be moved outside of its container, because we want to
keep it close to the typical position of a menu bar. The combo box can be dragged,
but we don’t want to let a user dock it in the lower control bar. We implement the
second constraint in the control bar’s OnDockOver event handler, by accepting the
docking operation only for toolbars:

procedure TFormRichNote.ControlBarLowerDockOver(Sender: TObject;
 Source: TDragDockObject; X, Y: Integer; State: TDragState;
 var Accept: Boolean);
begin
 Accept := Source.Control is TToolbar;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 339

Figure 7.19: The
MdEdit6 example
allows you to dock the
toolbars (and the
menu) at the top or
bottom of the form or
to leave them floating.
Image from the
original book.

Next, we want to have a border for the lower control bar, but only when it hosts
some components, so that we don’t see the empty border (as the control bar resizes
itself to a very thin line when it is empty). To accomplish this, we can add the border
whenever a control is dropped onto the bar (OnDockDrop) and remove it when the
last control is being undocked (OnUnDock). To determine the number of controls, we
can use the DockClientCount property, which is updated after the undocking is
completed, so its value is still 1 when the last control is being undocked:

procedure TFormRichNote.ControlBarLowerDockDrop(Sender: TObject;
 Source: TDragDockObject; X, Y: Integer);
begin
 ControlBarLower.BevelKind := bkTile;
end;

procedure TFormRichNote.ControlBarLowerUnDock(Sender: TObject;
 Client: TControl; NewTarget: TWinControl; var Allow: Boolean);
begin
 if ControlBarLower.DockClientCount = 1 then
 ControlBarLower.BevelKind := bkNone;
end;

This excerpt from the form’s DFM file shows the properties related to docking sup-
port:

object FormRichNote: TFormRichNote
 object RichEdit: TRichEdit...
 object ControlBar: TControlBar
 AutoSize = True
 object ToolBarFile: TToolBar
 DragKind = dkDock
 DragMode = dmAutomatic
 end
 object ToolBarEdit: TToolBar
 DragKind = dkDock

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

340 - Chapter 7: Building a User Interface

 DragMode = dmAutomatic
 end
 object ToolBarFont: TToolBar
 DragKind = dkDock
 DragMode = dmAutomatic
 end
 object ComboFont: TComboBox
 DragKind = dkDock
 DragMode = dmAutomatic
 end
 object ToolBarMenu: TToolBar...
 end
 object StatusBar: TStatusBar...
 object ControlBarLower: TControlBar
 BevelKind = bkNone
 OnDockDrop = ControlBarLowerDockDrop
 OnDockOver = ControlBarLowerDockOver
 OnUnDock = ControlBarLowerUnDock
 end ...
end

note When you move one of the toolbars to the automatically created floating form, you might be
tempted to set it back by closing the floating form. This doesn’t work, as the floating form is
removed along with the toolbar it contains. However, you can use the shortcut menu of the top-
most ControlBar to show this hidden toolbar.

Controlling Docking Operations

Delphi provides many events and methods that give you a lot of control over dock-
ing operations, including a dock manager. To explore some of these features, try out
the DockTest example, a test bed for docking operations. The program assigns the
FloatingDockSiteClass property of a Memo component to TForm2, so that you can
design specific features and add them to the floating frame that will host the control
when it is floating, instead of using an instance of the default TCustomDockForm
class.

Another feature of the program is that it handles the OnDockOver and OnDockDrop
events of a dock host panel to display messages to the user, such as the number of
controls currently docked:

procedure TForm1.Panel1DockDrop(Sender: TObject;
 Source: TDragDockObject; X, Y: Integer);
begin
 Caption := ‘Docked: ‘ + IntToStr (Panel1.DockClientCount);
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 341

In the same way, the program also handles the main form’s docking events. Another
control, a list box, has a shortcut menu you can invoke to perform docking and
undocking operations in code, without the usual mouse dragging:

procedure TForm1.DocktoPanel1Click(Sender: TObject);
begin
 // dock to the panel
 ListBox1.ManualDock (Panel1, Panel1, alBottom);
end;

procedure TForm1.DocktoForm1Click(Sender: TObject);
begin
 // dock to the current form
 ListBox1.Dock (Self, Rect (200, 100, 100, 100));
end;

procedure TForm1.Floating1Click(Sender: TObject);
begin
 // toggle the floating status
 if ListBox1.Floating then
 ListBox1.ManualDock (Panel1, Panel1, alBottom)
 else
 ListBox1.ManualFloat (Rect (100, 100, 200, 300));
 Floating1.Checked := ListBox1.Floating;
end;

The final feature of the example is probably the most interesting one: Every time the
program closes, it saves the current docking status of the panel, using the dock
manager support. When the program is reopened, it reapplies the docking informa-
tion, restoring the previous configuration of the windows. The program does this
only with the panel, so the other floating windows will be displayed in their original
positions. Here is the code for saving and loading:

procedure TForm1.FormDestroy(Sender: TObject);
var
 FileStr: TFileStream;
begin
 if Panel1.DockClientCount > 0 then
 begin
 FileStr := TFileStream.Create (DockFileName,
 fmCreate or fmOpenWrite);
 try
 Panel1.DockManager.SaveToStream (FileStr);
 finally
 FileStr.Free;
 end;
 end
 else
 // remove the file
 DeleteFile (DockFileName);
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

342 - Chapter 7: Building a User Interface

procedure TForm1.FormCreate(Sender: TObject);
var
 FileStr: TFileStream;
begin
 // reload the settings
 DockFileName := ExtractFilePath (Application.Exename) +
 ‘dock.dck’;
 if FileExists (DockFileName) then
 begin
 FileStr := TFileStream.Create (DockFileName, fmOpenRead);
 try
 Panel1.DockManager.LoadFromStream (FileStr);
 finally
 FileStr.Free;
 end;
 end;
 Panel1.DockManager.ResetBounds (True);
end;

There are many more features you can test, but the DockTest program already tries
to do too many things, some of which conflict. For example, automatic alignments
don’t work terribly well with the docking manager’s code for restoring. I suggest you
take this program and explore its behavior, extending it to support the type of user
interface you prefer.

note Remember that although docking panels make an application look nice, some users get confused
by the fact that their toolbars might disappear or be in a different position than they are used to.
Don’t overuse the docking features, or some of your inexperienced users may get lost.

What’s Next?

In this chapter, we have examined a series of topics related to toolbars and forms:
the definition of a toolbar and a status bar; and ways to scroll, split, and drag forms.
Although these may seem very diverse topics, they all relate to the development of a
modern user interface for a form.

You can consider this chapter the first step toward building professional applica-
tions. We will take other steps in the following chapters; but you already know
enough to make your programs similar to some best-selling Windows applications,
which may be very important for your clients. Now that the elements of the main
form of our programs are properly set up, we can consider adding secondary forms
and dialog boxes. This is the topic of the next chapter, although we have already

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 7: Building a User Interface - 343

seen how simple it is to add a second form to a program to build a toolbox. In the
next chapter we’ll also explore multiple-page forms, another important addition to
the toolkit of any developer who wants to create a modern user interface.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

344 - Chapter 8: Using Multiple Forms

Chapter 8: Using

Multiple Forms

Up to this point, most of the programs in this book have consisted of single forms.
Usually, applications have a main window, some floating toolboxes or palettes, and
a number of dialog boxes that can be invoked through menu commands or com-
mand buttons. More complex applications might have an MDI structure—a frame
window with a number of child windows inside its client area. The development of
MDI applications will be discussed briefly at the end of this chapter, after we focus
on building dialog boxes and applications with multiple forms.

Dialog Boxes versus Forms

Before presenting examples of applications with multiple forms or user-defined dia-
log boxes, let me begin with a general description of these two alternatives. When
you write a program, there is really no big difference between a dialog box and a

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 345

second form, aside from the border, the border icons, and other user-interface ele-
ments you can customize.

What users associate with a dialog box is the concept of a modal window—a window
that takes the focus and must be closed before the user can move back to the main
window. This is true for message boxes and usually for dialog boxes, as well. How-
ever, you can also have nonmodal—or modeless—dialog boxes. So if you think that
dialog boxes are just modal forms, you are on the right track, but your description is
not precise. In Delphi (as in Windows), you can have modeless dialog boxes and
modal forms. We have to consider two different elements:

· The form’s border and its user interface determine whether it looks like a dialog
box.

· The use of two different methods (Show or ShowModal) to display the second form
determines its behavior (modeless or modal).

Adding a Second Form to a Program

To add a second form to an application, you simply click on the New Form button
on the Delphi toolbar or use the File New Form menu command. As an alterna-
tive you can select File New, move to the Forms or Dialogs page, and choose one
of the available form templates or form wizards.

If you have two forms in a project, you can use the Select Form or the Select Unit
button of the Delphi toolbar to navigate through them at design time. You can also
choose which form is the main one and which forms should be automatically cre-
ated at start-up using the Forms page of the Project Options dialog box. This
information is reflected in the source code of the project file.

note Secondary forms are automatically created in the project source-code file depending on a new
Delphi 5 setting, which is the Auto Create Forms check box of the Preferences page of the Envi-
ronment Options dialog box. Although automatic creation is the simplest and most reliable
approach for novice developers and quick-and-dirty projects, I suggest that you disable this check
box for any serious development. When your application contains hundreds of forms, you really
shouldn’t have them all created at application start-up. Create instances of secondary forms when
and where you need them, and free them when you’re done.

Once you have prepared the secondary form, you can simply set its Visible prop-
erty to True, and both forms will show up as the program starts. In general, the
secondary forms of an application are left “invisible” and are then displayed by call-
ing the Show method (or setting the Visible property at run time). If you use the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

346 - Chapter 8: Using Multiple Forms

Show function, the second form will be displayed as modeless, so you can move back
to the first one while the second is still visible. To close the second form, you might
use its system menu or click a button or menu item that calls the Close method. As
we saw in Chapter 6, the default close action (see the OnClose event) for a secondary
form is simply to hide it, so the secondary form is not destroyed when it is closed. It
is kept in memory (again, not always the best approach) and is available if you want
to show it again198.

Creating Secondary Forms at Run Time

Unless you create the forms when the program starts, you’ll need to check whether a
form exists and create it if necessary. The simplest case is when you want to create
multiple copies of the same form at run time. In the MultiWin example, I’ve done
this by writing the following code:

procedure TForm1.btnMultipleClick(Sender: TObject);
begin
 with TForm3.Create (Application) do
 Show;
end;

Every time you click the button, a new copy of the form is created. Notice that I
don’t use the Form3 global variable, because it doesn’t make much sense to assign
this variable a new value every time you create a new form object. The important
thing, however, is not to refer to the global Form3 object in the code of the form itself
or in other portions of the application. The Form3 variable, in fact, will invariably be
a pointer to nil, so you should actually remove it from the unit to avoid any confu-
sion.

note In the code of a form, you should never explicitly refer to the form by using the global variable
that Delphi sets up for it. For example, suppose that in the code of TForm3 you refer to
Form3.Caption. If you create a second object of the same type (the class TForm3), the expres-
sion Form3.Caption will invariably refer to the caption of the form object referenced by the
Form3 variable, which might not be the current object executing the code. To avoid this problem,
refer to the Caption property in the form’s method to indicate the caption of the current form
object, and use the Self keyword when you need a specific reference to the object of the current
form. To avoid any problem when creating multiple copies of a form, I suggest removing the
global form object from the interface portion of the unit declaring the form. This global variable is
required only for the automatic form creation.

198 All of this still applies 100% today.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 347

When you create multiple copies of a form dynamically, remember to destroy each
form object as is it closed, by handling the corresponding event:

procedure TForm3.FormClose(Sender: TObject;
 var Action: TCloseAction);
begin
 Action := caFree;
end;

Failing to do so will result in a lot of memory consumption, because all the forms
you create (both the windows and the Delphi objects) will be kept in memory and
simply hidden from view.

Now let us focus on the dynamic creation of a form, in a program that accounts for
only one copy of the form at a time. Creating a modal form is quite simple, because
the dialog box can be destroyed when it is closed, with code like this:

procedure TForm1.btnModalClick(Sender: TObject);
var
 Modal: TForm4;
begin
 Modal := TForm4.Create (Application);
 try
 Modal.ShowModal;
 finally
 Modal.Free;
 end;
end;

Because the ShowModal call can raise an exception, you should write it in a finally
block to make sure the object will be deallocated. Usually this block also includes
code that initializes the dialog box before displaying it and code that extracts the
values set by the user before destroying the form. The final values are read-only if
the result of the ShowModal function is mrOK, as we’ll see in the next example.

The situation is a little more complex when you want to display only one copy of a
modeless form. In fact, you have to create the form, if it is not already available, and
then show it:

procedure TForm1.btnSingleClick(Sender: TObject);
begin
 if not Assigned (Form2) then
 Form2 := TForm2.Create (Application);
 Form2.Show;
end;

With this code the form is created the first time it is required and then is kept in
memory, visible on the screen or hidden from view. To avoid using up memory and

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

348 - Chapter 8: Using Multiple Forms

system resources unnecessarily, you’ll want to destroy the secondary form when it is
closed. You can do that by writing a handler for the OnClose event:

procedure TForm2.FormClose(Sender: TObject;
 var Action: TCloseAction);
begin
 Action := caFree;
 // important: set pointer to nil!
 Form2 := nil;
end;

Notice that after we destroy the form, the global Form2 variable is set to nil. With-
out this code, closing the form would destroy its object, but the Form2 variable
would still refer to the original memory location. At this point, if you try to show the
form once more with the btnSingleClick method shown earlier, the if not
Assigned test will succeed, as it simply checks whether the Form2 variable is nil.
The code fails to create a new object, and the Show method, invoked on a nonexis-
tent object, will result in a system memory error.

As an experiment, you can generate this error by removing the last line of the listing
above. As we have seen, the solution is to set the Form2 object to nil when the object
is destroyed, so that properly written code will “see” that a new form has to be cre-
ated before using it. Again, experimenting with the MultiWin example can prove
useful to test various conditions. I haven’t illustrated any screens from this example
because the forms it displays are quite bare (totally empty except for the main form,
which has three buttons).

note Setting the form variable to nil makes sense—and works—if there is to be only one instance of
the form present at any given instant. If you want to create multiple copies of a form, you’ll have
to use other techniques to keep track of them. Also keep in mind that in this case we cannot use
the new Delphi 5 FreeAndNil procedure, because we cannot call Free on Form2. The reason is
that we cannot destroy the form before its event handlers have finished executing.

Merging Form Menus

Another feature of modeless forms is worth mentioning. Although every form of an application
can have its own menu bar, you can also use Delphi’s menu merging technique to move the
items of the secondary form’s menu to the main form’s menu bar. This technique is very useful
in MDI applications but less interesting for modeless forms, as this behavior can confuse the
user.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 349

In this technique, the application’s main window has a menu bar, as usual. The other forms have
a menu bar with the AutoMerge property enabled, so their menu bar won’t be displayed in the
form but will instead be merged with the one from the main window. These are the rules for
menu merging: Each pull-down menu has a GroupIndex property. When menu bars are merged,
the pull-down menus are arranged as follows:
- If two elements of the different menu bars have the same GroupIndex, those of the
original menu are removed.
- Elements are ordered by ascending GroupIndex values.

Creating a Dialog Box

I stated earlier in this chapter that a dialog box is not very different from other
forms. There is a very simple trick to build a dialog box instead of a form. Just select
the bsDialog value for the form’s BorderStyle property. With this simple change,
the interface of the form becomes like that of a dialog box, with no system icon, no
Minimize or Maximize boxes, and a system menu you can activate by right-clicking
over the caption. Of course, such a form has the typical thick dialog box border,
which is nonresizable.

Once you have built a dialog box form, you can display it as a modal or modeless
window using the two usual show methods (Show and ShowModal). Modal dialog
boxes, however, are more common than modeless ones. This is exactly the reverse
of forms; modal forms should generally be avoided since a user won’t expect them.
The following table lists the complete schema of the various combinations of styles:

Window Type Modal Modeless

Form Never used Usual, in SDI applications

Dialog box Most common kind of secondary form Used, but not very
common

To avoid using too many secondary forms, you can build multipage forms, as dis-
cussed later in this chapter. Another alternative is to use MDI forms, also covered
later in this chapter.

The Dialog Box of the RefList Example

In Chapter 5 we explored the RefList program, which used a ListView control to dis-
play references to books, magazines, Web sites, and more. In the RefList2 version

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

350 - Chapter 8: Using Multiple Forms

I’ll simply add to the basic version of that program a dialog box, used in two differ-
ent circumstances: adding new items to the list and editing existing items. You can
see the form of the dialog box in Figure 8.1 and its textual description in the follow-
ing listing (detailed because it has many interesting features, so I suggest you read
this code with care):

object FormItem: TFormItem
 Caption = ‘Item’
 Color = clBtnFace
 Position = poScreenCenter
 object Label1: TLabel
 Caption = ‘&Reference:’
 FocusControl = EditReference
 end
 object EditReference: TEdit...
 object Label2: TLabel
 Caption = ‘&Type:’
 FocusControl = ComboType
 end
 object ComboType: TComboBox
 Style = csDropDownList
 Items.Strings = (
 ‘Book’
 ‘CD’
 ‘Magazine’
 ‘Mail Address’
 ‘Web Site’)
 end
 object Label3: TLabel
 Caption = ‘&Author:’
 FocusControl = EditAuthor
 end
 object EditAuthor: TEdit...
 object Label4: TLabel
 Caption = ‘&Country:’
 FocusControl = EditCountry
 end
 object EditCountry: TEdit...
 object BitBtn1: TBitBtn
 Kind = bkOK
 end
 object BitBtn2: TBitBtn
 Kind = bkCancel
 end
end

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 351

Figure 8.1: The form
of the dialog box of the
RefList2 example at
design time. Images
captured in Delphi 5
and Delphi 12.

note The items of the combo box in this dialog describe the available images of the image list, so that a
user can select the type of the item and the system will show the corresponding glyph. An even
better option would have been to show those glyphs in the combo box, along with their descrip-
tions.

As I mentioned, this dialog box is used in two different cases. The first takes place as
the user selects File Add Items from the menu:

procedure TForm1.AddItems1Click(Sender: TObject);
var
 NewItem: TListItem;
begin
 FormItem.Caption := ‘New Item’;
 FormItem.Clear;
 if FormItem.ShowModal = mrOK then
 begin
 NewItem := ListView1.Items.Add;
 NewItem.Caption := FormItem.EditReference.Text;
 NewItem.ImageIndex := FormItem.ComboType.ItemIndex;
 NewItem.SubItems.Add (FormItem.EditAuthor.Text);
 NewItem.SubItems.Add (FormItem.EditCountry.Text);
 end;
end;

Besides setting the proper caption of the form, this procedure needs to initialize the
dialog box, as we are entering a brand-new value. If the user clicks OK, however, the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

352 - Chapter 8: Using Multiple Forms

program adds a new item to the list view and sets all its values. To empty the edit
boxes of the dialog, the program calls the custom Clear method, which resets the
text of each edit box control:

procedure TFormItem.Clear;
var
 I: Integer;
begin
 // clear each edit box
 for I := 0 to ControlCount - 1 do
 if Controls [I] is TEdit then
 TEdit (Controls[I]).Text := ‘‘;
end;

Editing an existing item requires a slightly different approach. First, the current val-
ues are moved to the dialog box before it is displayed. Second, if the user clicks OK,
the program modifies the current list item instead of creating a new one. Here is the
code:

procedure TForm1.ListView1DblClick(Sender: TObject);
begin
 if ListView1.Selected <> nil then
 begin
 // dialog initialization
 FormItem.Caption := ‘Edit Item’;
 FormItem.EditReference.Text := ListView1.Selected.Caption;
 FormItem.ComboType.ItemIndex := ListView1.Selected.ImageIndex;
 FormItem.EditAuthor.Text := ListView1.Selected.SubItems [0];
 FormItem.EditCountry.Text := ListView1.Selected.SubItems [1];

 // show it
 if FormItem.ShowModal = mrOK then
 begin
 // read the new values
 ListView1.Selected.Caption := FormItem.EditReference.Text;
 ListView1.Selected.ImageIndex := FormItem.ComboType.ItemIndex;
 ListView1.Selected.SubItems [0] := FormItem.EditAuthor.Text;
 ListView1.Selected.SubItems [1] := FormItem.EditCountry.Text;
 end;
 end;
end;

You can see the effect of this code in Figure 8.2. Notice that the code used to read
the value of a new item or modified one is similar. In general, you should try to
avoid this type of duplicated code and possibly place the shared code statements in
a method added to the dialog box. In this case, the method could receive as parame-
ter a TListItem object and copy the proper values into it.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 353

Figure 8.2: The
dialog box of the
RefList2 example used
in edit mode

note What happens internally when the user clicks on the OK or Cancel buttons of the dialog box? A
modal dialog box is closed by setting its ModalResult property, and it returns the value of this
property. You can indicate the return value by setting the ModalResult property of the button.
When the user clicks on the button, its ModalResult value is copied to the form, which closes
the form and returns the value as the result of the ShowModal function.

A Modeless Dialog Box

The second example of dialog boxes shows a more complex modal dialog box that
uses the standard approach as well as a modeless dialog box. The main form of the
DlgApply example has five labels with names, as you can see in Figure 8.3 and by
viewing the source code you’ve downloaded.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

354 - Chapter 8: Using Multiple Forms

Figure 8.3: The three
forms (a main form
and two dialog boxes)
of the DlgApply
example at run time.
Images from the
original book.

If the user clicks on a name, its color turns to red; if the user double-clicks on it, the
program displays a modal dialog box with a list of names to choose from. If the user
clicks on the Style button, a modeless dialog box appears, allowing the user to
change the font style of the main form’s labels. The five labels of the main form are
connected to two methods, one for the OnClick event and the second for the
OnDoubleClick event. The first method turns the last label a user has clicked on to
red, resetting to black all the others (which have the Tag property set to 1, as a sort
of group index). Notice that the same method is associated with all of the labels:

procedure TForm1.LabelClick(Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to ComponentCount - 1 do
 if (Components[I] is TLabel) and
 (Components[I].Tag = 1) then
 TLabel (Components[I]).Font.Color := clBlack;
 // set the color of the clicked label to red
 (Sender as TLabel).Font.Color := clRed;
end;

The second method common to all of the labels is the handler of the OnDoubleClick
event. The LabelDoubleClick method selects the Caption of the current label (indi-
cated by the Sender parameter) in the list box of the dialog and then shows the
modal dialog box. If the user closes the dialog box by clicking on OK and an item of
the list is selected, the selection is copied back to the label’s caption:

procedure TForm1.LabelDoubleClick(Sender: TObject);

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 355

begin
 with ListDial.Listbox1 do
 begin
 // select the current name in the list box
 ItemIndex := Items.IndexOf (Sender as TLabel).Caption);
 // show the modal dialog box, checking the return value
 if (ListDial.ShowModal = mrOk) and (ItemIndex >= 0) then
 // copy the selected item to the label
 (Sender as TLabel).Caption := Items [ItemIndex];
end;

note Notice that all the code used to customize the modal dialog box is in the LabelDoubleClick
method of the main form. The form of this dialog box has no added code.

The modeless dialog box, by contrast, has a lot of coding behind it. The main form
simply displays the dialog box when the Style button is clicked (notice that the but-
ton caption ends with three dots to indicate that it leads to a dialog box), by callings
its Show method. You can see the dialog box running in Figure 8.3 above.

Two buttons, Apply and Close, replace the OK and Cancel buttons in a modeless dia-
log box. (The fastest way to obtain these buttons is to select the bkOK or bkCancel
value for the Kind property and then edit the Caption.) At times, you may see a Can-
cel button that works as a Close button, but the OK button in a modeless dialog box
usually has no meaning. Instead, there might be one or more buttons that perform
specific actions on the main window, such as Apply, Change Style, Replace, Delete,
and so on.

If the user clicks on one of the check boxes of this modeless dialog box, the style of
the sample label’s text at the bottom changes accordingly. You accomplish this by
adding or removing the specific flag that indicates the style, as in the following
OnClick event handler:

procedure TStyleDial.ItalicCheckBoxClick(Sender: TObject);
begin
 if ItalicCheckBox.Checked then
 LabelSample.Font.Style :=
 LabelSample.Font.Style + [fsItalic]
 else
 LabelSample.Font.Style :=
 LabelSample.Font.Style - [fsItalic];
end;

When the user selects the Apply button, the program copies the style of the sample
label to each of the form’s labels, rather than considering the values of the check
boxes:

procedure TStyleDial.ApplyBitBtnClick(Sender: TObject);

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

356 - Chapter 8: Using Multiple Forms

begin
 Form1.Label1.Font.Style := LabelSample.Font.Style;
 Form1.Label2.Font.Style := LabelSample.Font.Style;
 ...

As an alternative, instead of referring to each label directly, you can look for it by
calling the FindComponent method of the form, passing the label name as a parame-
ter, and then casting the result to the TLabel type. The advantage of this approach is
that we can create the names of the various labels with a for loop:

procedure TStyleDial.ApplyBitBtnClick(Sender: TObject);
var
 I: Integer;
begin
 for I := 1 to 5 do
 (Form1.FindComponent (‘Label’ + IntToStr (I)) as TLabel).
 Font.Style := LabelSample.Font.Style;
end;

note The ApplyBitBtnClick method could also be written by scanning the Controls array in a
loop, as I’ve already done in other examples. I decided to use the FindComponent method,
instead, to show you a new technique.

This second version of the code is certainly slower, because it has more operations
to do, but you won’t notice the difference, because it is very fast anyway. Of course,
this second approach is also more flexible; if you add a new label, you only need to
fix the higher limit of the for loop, provided all the labels have consecutive num-
bers. Notice that when the user clicks on the Apply button, the dialog box does not
close. Only the Close button has this effect. Consider also that this dialog box needs
no initialization code because the form is not destroyed, and its components main-
tain their status each time the dialog box is displayed.

Windows Common Dialogs

Besides building your own dialog boxes, Delphi allows you to use some default dia-
log boxes of different kinds. Some are predefined by Windows, others are simple
dialog boxes (such as message boxes) displayed by a Delphi routine. The Delphi
Component Palette contains a page of dialog box components. Each of these dialog

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 357

boxes—known as Windows common dialogs—is defined in the system library
ComDlg32.DLL199.

I have already used some of these dialog boxes in several examples in the previous
chapters, so you are probably familiar with them. Basically, you need to put the cor-
responding component on a form, set some of its properties, run the dialog box
(with the Execute method, returning a Boolean value), and retrieve the properties
that have been set while running it. To help you experiment with these dialog boxes,
I’ve built the CommDlg test program. I won’t discuss the program in detail nor show
its simple but lengthy source code in the book. As always, you can find this code
among the downloaded files.

What I want to do is simply highlight some key and nonobvious features of the com-
mon dialog boxes, and let you study the source code of the example for the details:

· The Open Dialog Component200 can be customized by setting different file exten-
sions filters, using the Filter property, which has a handy editor and can be
assigned directly with a string like Text File (*.txt)|*.txt. Another handy
feature is to let the dialog check whether the extension of the selected file
matches the default extension, by checking the ofExtensionDifferent flag of the
Options property after executing the dialog. Finally, this dialog allows multiple
selections by setting its ofAllowMultiSelect option. In this case you can get the
list of the selected files by looking at the Files string list property.

· The SaveDialog component is used in similar ways and has similar properties,
although you cannot select multiple files, of course.

· The OpenPictureDialog and SavePictureDialog components provide similar fea-
tures but have a customized form, which shows a preview of an image. Of course,
it makes sense to use them only for opening or saving graphical files.

· The FontDialog component can be used to show and select from all types of
fonts, fonts useable on both the screen and a selected printer (wysiwyg), or only
TrueType fonts. You can show the portion related to the special effects or hide it,

199 Oddly, this is still the name of the library even in the 64-bit version of Windows. All of the
ideas and most of the code in this ebook should equally apply to the Win64 target that Delphi
offers today. For non-Windows targets, instead, you cannot use the VCL library, but have to
switch to the similar FireMonkey library.

200 There are new versions of these dialog boxes available in Windows. They can be enable in Del-
phi by using Windows themes (the default for new applications), however some of the ex-
tended features are available only when using the newer FileOpenDialog and FileSaveDialog
components. There is also a new TaskDialog now available in the VCL, mapped to another rel-
atively new Windows API.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

358 - Chapter 8: Using Multiple Forms

and obtain other different versions by setting its Options property. You can also
activate an Apply button simply by providing an event handler for its OnApply
event and using the fdApplyButton option. A Font dialog box with an Apply but-
ton (see Figure 8.4) behaves almost like a modeless dialog box (but isn’t one).

· The ColorDialog component is used with different options, to show the dialog
fully open at first or to prevent it from opening fully. These settings are the
cdFullOpen or cdPreventFullOpen values of the Options property.

Figure 8.4: The Font
selection dialog box
with an Apply button.
Image from the
original book.

· The Find and Replace dialog boxes are truly modeless dialogs, but you have to
implement the find and replace functionality yourself, as I’ve partially done in
the CommDlg example. The custom code is connected to the buttons of the two
dialog boxes by providing the OnFind and OnReplace events.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 359

A Parade of Message Boxes

The Delphi message boxes and input boxes are another set of predefined dialog
boxes. There are basically six Delphi procedures and functions you can use to dis-
play simple dialog boxes201:

· The MessageDlg function shows a customizable message box, with one or more
buttons and usually a bitmap. We have used this function quite often in previous
examples.

· The MessageDlgPos function is similar to the MessageDlg function. The differ-
ence is that the message box is displayed in a given position, not in the center of
the screen.

· The ShowMessage procedure displays a simpler message box, with the application
name as the caption, and just an OK button. The ShowMessageFmt procedure is a
variation of ShowMessage, which has the same parameters as the Format function.
It corresponds to calling Format inside a call to ShowMessage.

· The ShowMessagePos procedure does the same, but you also indicate the position
of the message box.

· The MessageBox method of the Application object allows you to specify both the
message and the caption; you can also provide various buttons and features. This
is a simple and direct encapsulation of the MessageBox function of the Windows
API, which passes as a main window parameter the handle of the Application
object. This handle is required to make the message box behave like a modal
window.

· The InputBox function asks the user to input a string. You provide the caption,
the query, and a default string.

The InputQuery function asks the user to input a string, too. The only difference
between this and the InputBox function is in the syntax. The InputQuery function
has a Boolean return value that indicates whether the user has clicked on OK or
Cancel.

To demonstrate some of the message boxes available in Delphi, I’ve written another
sample program, with a similar approach to the preceding CommDlg example. In
the MBParade example, you have a high number of choices (radio buttons, check
boxes, edit boxes, and spin edit controls) to set before you press one of the buttons

201 As already mentioned in a previous note, there is now also a TaskDialog component in the
VCL, mapped to a specific, relatively new, Windows API.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

360 - Chapter 8: Using Multiple Forms

that displays a message box. You can get a better idea of the program by looking at
its form in Figure 8.5.

Expandable Dialog Boxes

Some dialog boxes display a number of components for the user to work with. At
times, you can divide them into logical pages, which Delphi supports through the
PageControl component (discussed later in this chapter). At other times, you can
temporarily hide some dialog box controls to help first-time users of your applica-
tion. Another alternative is to increase the size of the dialog box to host new controls
when the user presses a More button202.

Figure 8.5: The main
form of the MBParade
example, with a sample
message box. Image
from the original book.

I’ll use this approach to create the simple dialog box in the More example. First of
all, we need to create the dialog box and add some simple controls, a More button
(see Figure 8.6), and two check boxes labeled italic and bold, which are in a panel
placed outside the design-time surface of the form. In practice, once you have added
the panel with some controls in it, you need to resize the dialog box so that the new
panel is outside the visible surface of the form and set the AutoScroll property of
the form to False. The panel is not visible, because I’ve removed its borders, and

202 I have to admin this UI style of expanding the size of a dialog box is way less frequent today.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 361

makes the program more flexible, as you can add more controls to the hidden por-
tion of the dialog without changing the source code: simply place them on the panel.

Figure 8.6: The
dialog box of the More
example at design
time. Some of the
components are
invisible because they
are beyond the border.
Image from the
original book.

The panel should be hidden; otherwise, the user might press the Tab key and move
onto its controls even if they are not visible. As an alternative, you might disable its
TabStop property. These properties (Visible or TabStop) are then set to True when
the form is enlarged.

Now, in addition to the standard code required to move values from the main form
to the dialog, we need to write some code to resize the form when a user clicks on
the More button. To prepare the resizing effect, we need a couple of fields in the
form (named OldHeight and NewHeight) to store the two different heights of the
client area of the form. We can set up their values when the form is first created:

procedure TConfigureDialog.FormCreate(Sender: TObject);
begin
 OldHeight := ClientHeight;
 NewHeight := PanelMore.Top + PanelMore.Height;
end;

I determined the new height by adding to the height of the panel its position. The
real dialog box resizing takes place when the More button is pressed. Here is a first
version:

procedure TConfigureDialog.btnMoreClick(Sender: TObject);
begin
 PanelMore.Visible := True;
 btnMore.Enabled := False;
 ClientHeight := NewHeight;
end;

The result it produces is shown in Figure 8.7. If you want a more spectacular effect,
you might increase the height a pixel at a time instead of setting the final value at
once. If you write a for loop, increasing the client height and repainting the form
each time, the new controls will appear with a nice effect, only a little slower. The
last line of the btnMoreClick method above becomes

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

362 - Chapter 8: Using Multiple Forms

for I := ClientHeight to NewHeight do
begin
 ClientHeight := I;
 Update;
end;

Each time the dialog box is activated (OnFormActivate event), we reset its height,
hide the panel (to avoid letting the user Tab to its controls), and enable the More
button:

procedure TConfigureDialog.FormActivate(Sender: TObject);
begin
 ClientHeight := OldHeight;
 btnMore.Enabled := True;
 PanelMore.Visible := False;
end;

This code is required so that each time the dialog box is displayed it starts in the
default small configuration.

Figure 8.7: The
dialog box of the More
example after it has
been resized. Image
from the original book.

About Boxes and Splash Screens

Windows applications usually have an About box, where you can display informa-
tion, such as the version of the product, a copyright notice, and so on. The simplest

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 363

way to build an About box is to use the MessageDlg function. With this method, you
can show only a limited amount of text and no special graphics.

Therefore, the usual method for creating an About box is to use a simple dialog box,
such as the one generated with one of the Delphi default templates. I say simple
because when you have designed the form with a logo and so on, you seldom need
much code. At most, some code might be required to display system information,
such as the version of Windows or the amount of free memory, or some user infor-
mation, such as the registered user name.

note In Chapter 19, we’ll see how to create extract the version information from an executable file,
which contains this type of Windows resources. This technique can be useful to build an About
box that includes the version information.

Building a Custom Hidden Screen

While we build our own About box, we can add a hidden credit screen, which Delphi
and many other applications have. You might want to add a hidden credit screen for
a number of reasons. If you work in a big company, this might be your way to prove
that you worked on that project, which might help you in finding a new job (if the
project was successful). At times, a hidden About box can be fun to see, and they
sometimes also provide a good occasion for making jokes about your competitors. A
more serious reason is that a hidden credit screen can be used to demonstrate who
wrote the program, as a sort of legal copyright.

I’ve written a simple example, showing how you might implement a hidden screen.
The dialog box has a Panel component containing two Label components. The panel
might contain any number of components to display graphics and text. Some of the
strings might even be computed at run time. The only added feature required to
show the hidden credits is a PaintBox component covering part of the form.

When the user makes a specific complex action (in this case, right-clicking on the
upper label while holding down the Shift key), the panel is hidden and something
appears on the screen. A simple solution is to have some text painted on the surface
of the form—that is, on its canvas:

procedure TAboutBox.Label1MouseDown(Sender: TObject;
 Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if (Button = mbRight) and (ssShift in Shift) then
 begin
 Panel1.Visible := False;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

364 - Chapter 8: Using Multiple Forms

 PaintBox1.Canvas.Font.Name := ‘Arial’;
 PaintBox1.Canvas.Font.Size := 20;
 PaintBox1.Canvas.TextOut (40, 50, ‘Author: Marco Cantù’);
 PaintBox1.Canvas.TextOut (40, 100, ‘Version 1.0’);
 end;
end;

To build a more spectacular hidden screen, we might scroll some text in a for loop,
as I’ve done in the final version of the Credits example. Notice that the position of
the lines depend on the height of the text, retrieved by calling the TextHeight
method of the Canvas of the PaintBox component:

Panel1.Visible := False;
LineH := PaintBox1.Canvas.TextHeight (‘0’);
for I := 0 to 100 + LineH * 10 do
 with PaintBox1.Canvas do
 begin
 // empty lines are used to delete descendants
 TextOut (40, 100 - I, ‘CREDITS example from:’);
 TextOut (40, 100 + LineH - I, ‘“Mastering Delphi”‘);
 TextOut (40, 100 + LineH * 2 - I, ‘ ‘);
 ...
 // wait 5 milliseconds
 Delay (0, 5);
 end;
Panel1.Visible := True;

To avoid a scrolling rate that’s too fast, particularly on faster computers, inside the
for loop I’ve added a call to a Delay procedure, which requires as parameters the
seconds and milliseconds you want to wait for. This Delay procedure simply checks
the current time and then waits in a while loop until the required seconds and mil-
liseconds have elapsed:

procedure Delay (Seconds, MilliSec: Word);
var
 TimeOut: TDateTime;
begin
 TimeOut := Now + EncodeTime (0,
 Seconds div 60, Seconds mod 60, MilliSec);
 // wait until the TimeOut time
 while Now < TimeOut do
 Application.ProcessMessages;
end;

Inside the loop I call the ProcessMessages method of the Application global object
to let Windows generate and dispatch the needed paint messages. This Delay proce-
dure is a fairly generic one, so you can use it in other applications quite easily.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 365

note Consider another aspect of the preceding example. We have written some code to draw on the
surface of a dialog box. Although it is not very common, dialog boxes can have graphical output
and respond to mouse input just like any other form. In fact, a dialog box is a form.

Building a Splash Screen

Another typical technique used in applications is to display an initial screen before
the main form is shown. This makes the application seem more responsive, because
you show something to the user while the program is loading, but it also makes a
nice visual effect. Sometimes, this same window is displayed as the application’s
About box.

For an example in which a splash screen is particularly useful, I’ve built a program
displaying a list box filled with prime numbers. The prime numbers are computed
on program start-up, so that they are displayed as soon as the form becomes visible:

procedure TForm1.FormCreate(Sender: TObject);
var
 I: Integer;
begin
 for I := 1 to 20000 do
 if IsPrime (I) then
 ListBox1.Items.Add (IntToStr (I));
end;

This method calls an IsPrime function I’ve added to the program. This function,
which you can find in the source code, computes prime numbers in a terribly slow
way; but I needed a slow form creation to demonstrate my point. The numbers are
added to a list box that covers the full client area of the form and allows multiple
columns to be displayed, as you can see in Figure 8.8.

As you can see by running the Splash0 example, the problem with this program is
that the initial operation, which takes place in the FormCreate method, takes a lot of
time. When you start the program, it takes several seconds (on a standard Pentium
machine203) to display the main form. If your computer is very fast or very slow, you
can change the upper limit of the for loop of the FormCreate method to make the
program faster or slower.

203 I know this sounds old, but that’s the type of CPU in use at the time this book was originally
written.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

366 - Chapter 8: Using Multiple Forms

Figure 8.8: The main
form of the Splash
example, with the
About box activated
from the menu. Image
from the original book.

This program has a simple dialog box with an image component, a simple caption,
and a bitmap button, all placed inside a panel taking up the whole surface of the
About box. This form is displayed when you select the Help About menu item. But
what we really want is to display this About box while the program starts. You can
see this effect by running the Splash1 and Splash2 examples, which show a splash
screen using two different techniques.

First of all, I’ve added a method to the TAboutBox class. This method, called
MakeSplash, changes some properties of the form to make it suitable for a splash
form. Basically it removes the border and caption, hides the OK button, makes the
border of the panel thick (to replace the border of the form), and then shows the
form, repainting it immediately (see Figure 8.9 for the effect):

procedure TAboutBox.MakeSplash;
begin
 BorderStyle := bsNone;
 BitBtn1.Visible := False;
 Panel1.BorderWidth := 3;
 Show;
 Update;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 367

Figure 8.9: The form
of the splash screen of
the Splash1 example is
slightly different than
the original About box
(shown in Figure 8.8).
Image from the
original book.

This method is called after creating the form in the project file of the Splash1 exam-
ple. This code is executed before creating the other forms (in this case only the main
form), and the splash screen is then removed before running the application. These
operations take place within a try-finally block. Here is the source code of the
main block of the project file for the Splash2 example:

var
 SplashAbout: TAboutBox;

begin
 Application.Initialize;

 // create and show the splash form
 SplashAbout := TAboutBox.Create (Application);
 try
 SplashAbout.MakeSplash;
 // standard code...
 Application.CreateForm(TForm1, Form1);
 // get rid of the splash form
 SplashAbout.Close;
 finally
 SplashAbout.Free;
 end;

 Application.Run;
end.

This approach makes sense only if your application’s main form takes a while to cre-
ate, to execute its start-up code (as in this case), or to open database tables. Notice
that the splash screen is the first form created, but because the program doesn’t use
the CreateForm method of the Application object, this doesn’t become the main
form of the application. In this case, in fact, closing the splash screen would termi-
nate the program!

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

368 - Chapter 8: Using Multiple Forms

An alternative approach is to keep the splash form on the screen a little longer and
use a timer to get rid of it after a while. I’ve implemented this second technique in
the Splash2 example. This example also uses a different approach for creating the
splash form: instead of creating it in the project source code, it creates the form at
the very beginning of the FormCreate method of the main form.

procedure TForm1.FormCreate(Sender: TObject);
var
 I: Integer;
 SplashAbout: TAboutBox;
begin
 // create and show the splash form
 SplashAbout := TAboutBox.Create (Application);
 SplashAbout.MakeSplash;
 // standard code...
 for I := 1 to 20000 do
 if IsPrime (I) then
 ListBox1.Items.Add (IntToStr (I));
 // get rid of the splash form, after a while
 SplashAbout.Timer1.Enabled := True;
end;

note This code works properly regardless of the form’s creation order, as indicated by the
OldCreateOrder property (discussed in Chapter 6).

The timer is enabled just before terminating the method. After its interval has
elapsed (in the example, 3 seconds) the OnTimer event is activated, and the splash
form handles it by closing and destroying itself:

procedure TAboutBox.Timer1Timer(Sender: TObject);
begin
 Close;
 Release;
end;

note The Release method of a form is similar to the Free method of objects, only the destruction of
the form is delayed until all event handlers have completed execution. Using Free inside a form
might cause an access violation, as the internal code, which fired the event handler, might refer
again to the form object.

There is one more thing to fix. The Main form will be displayed later and in front of
the splash form, unless you make this a topmost form. For this reason I’ve added
one line to the MakeSplash method of the About box in the Splash2 example:

FormStyle := fsStayOnTop;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 369

Multiple-Page Forms

When you have a lot of information and controls to display in a dialog box or a form,
you can use multiple pages. The metaphor is that of a notebook: Using tabs, a user
can select one of the possible pages.

There are two controls you can use to built a multiple-page application in Delphi204:

· You can use the Windows 95 PageControl component, which has tabs on one of
the sides and multiple pages (similar to panels) covering the rest of its surface.
As there is one page per tab, you can simply place components on each page to
obtain the proper effect both at design time and at run time.

· You can use the TabControl, which has only the tab portion but offers no pages to
host the information. In this case you’ll want to use one or more components to
mimic the page change operation.

A third related component, the TabSheet, represents a single page of the PageCon-
trol. This is not a stand-alone component and is not available on the Component
palette. You create a TabSheet at design time by using the local menu of the Page-
Control or at run time by using methods of the same control.

note Delphi still includes the Notebook, TabSet, and TabbedNotebook components introduced in ear-
lier versions. Use these components only if you need to create a 16-bit version of an application.
For any other purpose, the PageControl and TabControl components, which encapsulate Win32
common controls, provide a more modern user interface. Actually, in 32-bit versions of Delphi,
the TabbedNotebook component was reimplemented using the Win32 PageControl internally, to
reduce the code size and update the look.

PageControls and TabSheets

As usual, instead of duplicating the Help system’s list of properties and methods of
the PageControl component, I’ve built an example that stretches its capabilities and
allows you to change its behavior at run time. The example, called Pages, has a
PageControl with three pages. The structure of the PageControl and of the other key
components is listed below:

204 This is still true today, although Delphi 12 added a new metaphor for hosting MDI or regular
forms within a tab-based UI. The new component is called FormTabsBar and it offers a lot of
power while simplifying the coding required in VCL to host forms in tabs.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

370 - Chapter 8: Using Multiple Forms

object Form1: TForm1
 BorderIcons = [biSystemMenu, biMinimize]
 BorderStyle = bsSingle
 Caption = ‘Pages Test’
 OnCreate = FormCreate
 object PageControl1: TPageControl
 ActivePage = TabSheet1
 Align = alClient
 HotTrack = True
 Images = ImageList1
 MultiLine = True
 object TabSheet1: TTabSheet
 Caption = ‘Pages’
 object Label3: TLabel
 object ListBox1: TListBox
 end
 object TabSheet2: TTabSheet
 Caption = ‘Tabs Size’
 ImageIndex = 1
 object Label1: TLabel
 // other controls
 end
 object TabSheet3: TTabSheet
 Caption = ‘Tabs Text’
 ImageIndex = 2
 object Memo1: TMemo
 Anchors = [akLeft, akTop, akRight, akBottom]
 OnChange = Memo1Change
 end
 object BitBtnChange: TBitBtn
 Anchors = [akTop, akRight]
 Caption = ‘&Change’
 end
 end
 end
 object BitBtnPrevious: TBitBtn
 Anchors = [akRight, akBottom]
 Caption = ‘&Previous’
 OnClick = BitBtnPreviousClick
 end
 object BitBtnNext: TBitBtn
 Anchors = [akRight, akBottom]
 Caption = ‘&Next’
 OnClick = BitBtnNextClick
 end
 object ImageList1: TImageList
 Bitmap = {...}
 end
end

Notice that the tabs are connected to the bitmaps provided by an ImageList control
and that some controls use the Anchors property to remain at a fixed distance from

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 371

the right or bottom borders of the form. Even if the form doesn’t support resizing
(this would have been far too complex to set up with so many controls), the posi-
tions can change when the tabs are displayed on multiple lines (simply increase the
length of the captions) or on the left side of the form.

Each TabSheet object has its own Caption, which is displayed as the sheet’s tab. At
design time you can use the local menu to create new pages and to move between
pages. You can see the local menu of the PageControl component in Figure 8.10,
together with the first page. This page holds a list box and a small caption, and it
shares two buttons with the other pages.

If you place a component on a page, it is available only in that page. How can you
have the same component (in this case, two bitmap buttons) in each of the pages,
without duplicating it? Simply place the component on the form, outside of the
PageControl (or before aligning it to the client area) and then move it in front of the
pages, calling the Bring to Front command of the form’s local menu. The two but-
tons I’ve placed in each page can be used to move back and forth between the pages
and are an alternative to using the tabs. Here is the code associated with one of
them:

procedure TForm1.BitBtnNextClick(Sender: TObject);
begin
 PageControl1.SelectNextPage (True);
end;

Figure 8.10: The first
sheet of the
PageControl of the
Pages example, with its
local menu. Image
from the original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

372 - Chapter 8: Using Multiple Forms

The other button calls the same procedure, passing False as its parameter to select
the previous page. Notice that there is no need to check whether we are on the first
or last page, because the SelectNextPage method considers the last page to be the
one before the first and will move you directly between those two pages.

Now we can focus on the first page again. It has a list box, which at run time will
hold the names of the tabs. If a user clicks on an item of this list box, the current
page changes. This is the third method available to change pages (after the tabs and
the Next and Previous buttons). The list box is filled in the FormCreate method,
which is associated with the OnCreate event of the form and copies the caption of
each page (the Page property stores a list of TabSheet objects):

for I := 0 to PageControl1.PageCount - 1 do
 ListBox1.Items.Add (PageControl1.Pages.Caption);

When you click on a list item, you can select the corresponding page:

procedure TForm1.ListBox1Click(Sender: TObject);
begin
 PageControl1.ActivePage :=
 PageControl1.Pages [ListBox1.ItemIndex];
end;

The second page hosts two edit boxes (connected with two UpDown components),
two check boxes, and two radio buttons, as you can see in Figure 8.11. The user can
input a number (or choose it by clicking on the up and down buttons with the
mouse or pressing or while the corresponding edit box has the focus), check the
boxes and the radio buttons, and then press the Apply button to make the changes:

procedure TForm1.BitBtnApplyClick(Sender: TObject);
begin
 // set tab width, height, and lines
 PageControl1.TabWidth := StrToInt (EditWidth.Text);
 PageControl1.TabHeight := StrToInt (EditHeight.Text);
 PageControl1.MultiLine := CheckBoxMultiLine.Checked;
 // show or hide the last tab
 TabSheet3.TabVisible := CheckBoxVisible.Checked;
 // set the tab position
 if RadioButton1.Checked then
 PageControl1.TabPosition := tpTop
 else
 PageControl1.TabPosition := tpLeft;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 373

Figure 8.11: The
second page of the
example can be used to
size and position the
tabs. Here you can see
the tabs on the left of
the page control. Image
from the original book.

With this code, we can change the width and height of each tab (remember that 0
means the size is computed automatically from the space taken by each string),
choose to have either multiple lines of tabs or two small arrows to scroll the tab
area, and move them to the left side. The control also allows tabs to be placed on the
bottom or on the right; but our program doesn’t allow that, because it would make
the placement of the other controls quite complex.

You can also hide the last tab on the PageControl, which corresponds to the
TabSheet3 component. If you hide one of the tabs by setting its TabVisible property
to False, you cannot reach that tab by clicking on the Next and Previous buttons,
which are based on the SelectNextPage method. Instead, you should use the
FindNextPage function, as shown below in this new version of the Next button’s
OnClick event handler:

procedure TForm1.BitBtnNextClick(Sender: TObject);
begin
 PageControl1.ActivePage :=
 PageControl1.FindNextPage (
 PageControl1.ActivePage, True, False);
end;

The last page has a memo component, again with the names of the pages (added in
the FormCreate method). You can edit the names of the pages and press the Change
button to change the text of the tabs, but only if the number of strings matches the
number of tabs:

procedure TForm1.BitBtnChangeClick(Sender: TObject);
var
 I: Integer;
begin

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

374 - Chapter 8: Using Multiple Forms

 if Memo1.Lines.Count <> PageControl1.PageCount then
 MessageDlg (‘One line per tab, please’, mtError, [mbOK], 0)
 else
 for I := 0 to PageControl1.PageCount -1 do
 PageControl1.Pages [I].Caption := Memo1.Lines [I];
 BitBtnChange.Enabled := False;
end;

Finally the last button, Add Page, allows you to add a new tab sheet to the page con-
trol, although the program doesn’t add any components to it. The (empty) tab sheet
object is created using the page control as its owner, but it won’t work unless you
also set the PageControl property. Before doing this, however, you should make the
new tab sheet visible. Here is the code:

procedure TForm1.BitBtnAddClick(Sender: TObject);
var
 strCaption: string;
 NewTabSheet: TTabSheet;
begin
 strCaption := ‘New Tab’;
 if InputQuery (‘New Tab’, ‘Tab Caption’, strCaption) then
 begin
 // add a new empty page to the control
 NewTabSheet := TTabSheet.Create (PageControl1);
 NewTabSheet.Visible := True;
 NewTabSheet.Caption := strCaption;
 NewTabSheet.PageControl := PageControl1;
 PageControl1.ActivePage := NewTabSheet;
 // add it to both lists
 Memo1.Lines.Add (strCaption);
 ListBox1.Items.Add (strCaption);
 end;
end;

note Whenever you write a form based on a PageControl, remember that the first page displayed at run
time is the page you were in before the code was compiled. This means that if you are working on
the third page and then compile and run the program, it will start with that page. A common way
to solve this problem is to add a line of code in the FormCreate method to set the PageControl or
notebook to the first page. This way, the current page at design time doesn’t determine the initial
page at run time.

Frames and Pages

When you have a dialog box with many pages full of controls, the code underlying
the form becomes very complex because all the controls and methods are declared

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 375

in a single form. Also, creating all these components (and initializing them) might
result in a delay in the display of the dialog box.

The availability of frames in Delphi 5 (see Chapters 1 and 4) can solve both of these
issues. First, you can easily divide the code of a single complex form into one frame
per page. The form will simply host all of the frames in a PageControl. This certainly
helps you to have simpler and more focused units and makes it simpler to reuse a
specific page in a different dialog box or application. Reusing a single page of a
PageControl without using a frame or an embedded form, in fact, is far from simple.

As an example of this approach I’ve built the FramePag example, which has some
frames placed inside the three pages of a PageControl, as you can see in Figure 8.12.
All of the frames are aligned to the client area, using the entire surface of the tab
sheet (the page) hosting them205.

Actually two of the pages have the same frame, but the two instances of the frame
have some differences at design time. The frame, called Frame3 in the example, has
a list box that is populated with a text file at start up, has buttons to modify the
items in the list and saves them to a file. The filename is placed inside a label, so
that you can easily select a file for the frame at design time by changing the Caption
of the label.

Figure 8.12: Each
page of the FramePag
example contains a
frame, thus separating
the code of this
complex form into
more manageable
chunks. Images from
the original book.

205 The new component I mentioned earlier, FormTabsBar, offers a similar architecture based on
the use of regular forms, rather than frames. The result is similar in the two cases, although I
personally tend to prefer using forms for tabbed applications when possible, because forms
have a few extra methods and events that can be quite handy..

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

376 - Chapter 8: Using Multiple Forms

note Being able to use multiple instances of a frame is one of the reasons this technique was intro-
duced, and customizing the frame at design time is even more important. Because adding
properties to a frame and making them available at design time requires some customized and
complex code, it is nice to use a component to host these custom values. You have the option of
hiding these components (such as the label in our example) if they don’t pertain to the user inter-
face.

In the example, we need to load the file when the frame instance is created. Because
frames have no OnCreate event, our best choice is probably to override the
CreateWnd method. Writing a custom constructor, in fact, doesn’t work as it is exe-
cuted too early—before the specific label text is available. Here is the frame class
code:

type
 TFrame3 = class(TFrame)
 ...
 public
 procedure CreateWnd; override;

Within the CreateWnd method, we simply load the list box content from a file.

Multiple Frames with No Pages

Another approach is to avoid creating all of the pages along with the form hosting
them. This can be accomplished by leaving the PageControl empty and creating the
frames only when a page is displayed. Actually, when you have frames on multiple
pages of a PageControl, the windows for the frames are created only when they are
first displayed, as you can find out by placing a breakpoint in the creation code of
the last example.

As an even more radical approach, you can get rid of the page controls and use a
TabControl. Used this way, the tab has no connected tab sheets (or pages) but can
display only one information at a time. For this reason, we’ll need to create the cur-
rent frame and destroy the previous one or simply hide it by setting its Visible
property to False or by calling the BringToFront of the new frame. Although this
sounds like a lot of work, in a large application this technique can be worth it for the
reduced resource and memory usage you can obtain by applying it.

To demonstrate this approach, I’ve built an example similar to the previous one, this
time based on a TabControl and dynamically created frames. The main form, visible
at run time in Figure 8.13, has only a TabControl with one page for each frame:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 377

Figure 8.13: The first
page of the FrameTab
example at run time.
The frame inside the
tab is created at run
time. Image from the
original book.

object Form1: TForm1
 Caption = ‘Frame Pages’
 OnCreate = FormCreate
 object Button1: TButton...
 object Button2: TButton...
 object Tab: TTabControl
 Anchors = [akLeft, akTop, akRight, akBottom]
 Tabs.Strings = (
 ‘Frame2’
 ‘Frame3’)
 OnChange = TabChange
 end
end

I’ve given each tab a caption corresponding to the name of the frame, because I’m
going to use this information to create the new pages. When the form is created, and
whenever the user changes the active tab, the program gets the current caption of
the tab and passes it to the custom ShowFrame method. The code of this method,
listed below, checks whether the requested frame already exists (frame names in
this example follow the Delphi standard of having a number appended to the class
name), and then brings it to the front. If the frame doesn’t exist, it uses the frame
name to find the related frame class, creates an object of that class, and assigns a
few properties to it. The code makes extensive use of class references and dynamic
creation techniques (discussed in Chapter 3):

type
 TFrameClass = class of TFrame;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

378 - Chapter 8: Using Multiple Forms

procedure TForm1.ShowFrame(FrameName: string);
var
 Frame: TFrame;
 FrameClass: TFrameClass;
begin
 Frame := FindComponent (FrameName + ‘1’) as TFrame;
 if not Assigned (Frame) then
 begin
 FrameClass := TFrameClass (FindClass (‘T’ + FrameName));
 Frame := FrameClass.Create (Self);
 Frame.Parent := Tab;
 Frame.Visible := True;
 Frame.Name := FrameName + ‘1’;
 end;
 Frame.BringToFront;
end;

To make this code work, you have to remember to add a call to RegisterClass in
the initialization section of each unit defining a frame.

An Image Viewer with Owner-Draw Tabs

The use of the TabControl and of a dynamic approach, as described in the last exam-
ple, can also be applied in more general (and simpler) cases. Every time you need
multiple pages that all have the same type of content, instead of replicating the con-
trols in each page, you can use a TabControl and change its contents when a new tab
is selected.

This is what I’ll do in the multiple-page bitmap viewer I’ll show in the next example,
called TabOnly. The image that appears in the TabControl of this form, aligned to
the whole client area, depends on the selection in the tab above it (as you can see in
Figure 8.14).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 379

Figure 8.14: The
interface of the bitmap
viewer in the TabOnly
example. Notice the
owner-draw tabs.
Image from the
original book.

At the beginning, the TabControl has only a fake tab describing the situation (No
file selected). After selecting File Open, the user can choose a number of files in
the File Open dialog box, and the array of strings with the names of the files (the
Files property of the OpenDialog1 component) is used as the text for the tabs (the
Tabs property of TabControl1):

procedure TForm1.Open1Click(Sender: TObject);
begin
 if OpenDialog1.Execute then
 begin
 TabControl1.Tabs := OpenDialog1.Files;
 TabControl1.TabIndex := 0;
 TabControl1Change (TabControl1);
 end;
end;

After we display the new tabs, we have to update the image so that it matches the
first tab. To accomplish this, the program calls the method connected with the
OnChange event of the TabControl, which loads the file corresponding to the current
tab in the image component:

procedure TForm1.TabControl1Change(Sender: TObject);
begin
 Image1.Picture.LoadFromFile (
 TabControl1.Tabs [TabControl1.TabIndex]);
end;

The only special feature of the example is that the TabControl has the OwnerDraw
property set to True. This means that the control won’t paint the tabs (which will be
empty at design time) but will have the application do this, by calling the OnDrawTab

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

380 - Chapter 8: Using Multiple Forms

event. In its code, the program displays the text vertically centered, using the
DrawText API function. The text displayed is not the entire file path but only the file-
name. Then, if the text is not None, the program reads the bitmap the tab refers to
and paints a small version of it in the tab itself. To accomplish this, the program
uses the TabBmp object, which is of type TBitmap and is created and destroyed along
with the form. The program also uses the BmpSide constant to position the bitmap
and the text properly:

procedure TForm1.TabControl1DrawTab(Control: TCustomTabControl;
 TabIndex: Integer; const Rect: TRect; Active: Boolean);
var
 TabText: string;
 OutRect: TRect;
begin
 TabText := TabControl1.Tabs [TabIndex];
 OutRect := Rect;
 InflateRect (OutRect, -3, -3);
 OutRect.Left := OutRect.Left + BmpSide + 3;
 DrawText (Control.Canvas.Handle,
 PChar (ExtractFileName (TabText)),
 Length (ExtractFileName (TabText)),
 OutRect, dt_Left or dt_SingleLine or dt_VCenter);
 if TabText <> ‘None’ then
 begin
 TabBmp.LoadFromFile (TabText);
 OutRect.Left := OutRect.Left - BmpSide - 3;
 OutRect.Right := OutRect.Left + BmpSide;
 Control.Canvas.StretchDraw (OutRect, TabBmp);
 end;
end;

This example works, unless you select a file that doesn’t contain a bitmap. The pro-
gram will warn the user with a standard exception, ignore the file, and continue its
execution.

The User Interface of a Wizard

Just as you can use a TabControl without pages, you can also take the opposite
approach and use a PageControl without tabs. What I want to focus on now is the
development of the user interface of a wizard. In a wizard, you are directing the user
through a sequence of steps, one screen at a time, and at each step you typically
want to offer the choice of proceeding to the next step or going back to correct input
entered in a previous step. So instead of tabs that can be selected in any order, wiz-
ards typically offer Next and Back buttons to navigate. This won’t be a complex

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 381

example; its purpose is just to give you a few guidelines. The example is called Wiz-
ardUI.

The starting point is to create a series of pages in a PageControl and set the
TabVisible property of each TabSheet to False (while keeping the Visible property
set to True). Contrary to what happened with past versions, in Delphi 5 you can now
hide the tabs also at design time. In this case you’ll need to use the shortcut menu of
the page control or the combo box of the Object Inspector to move to a another
page, instead of the tabs. But why don’t you want to see the tabs at design time? So
you can place controls on the pages and then place extra controls in front of the
pages (as I’ve done in the example), without seeing their relative positions change at
run time. You might also want to remove the useless captions of the tabs, which take
up some space in memory and in the resources of the application.

In the first page, I’ve placed on one side an image and a bevel control and on the
other side some text, a check box, and two buttons. Actually, the Next button is
inside the page, while the Back button is over it (and is shared by all the pages). You
can see this first page at design time in Figure 8.15. The following pages look simi-
lar, with a label, check boxes, and buttons on the right side and nothing on the left.

Figure 8.15: The first
page of the WizardUI
example at design
time. Image from the
original book.

When you click the Next button on the first page, the program looks at the status of
the check box and decides which page is the following one. I could have written the
code like this:

procedure TForm1.btnNext1Click(Sender: TObject);
begin
 BtnBack.Enabled := True;
 if CheckInprise.Checked then
 PageControl1.ActivePage := TabSheet2
 else
 PageControl1.ActivePage := TabSheet3;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

382 - Chapter 8: Using Multiple Forms

 // move image and bevel
 Bevel1.Parent := PageControl1.ActivePage;
 Image1.Parent := PageControl1.ActivePage;
end;

After enabling the common Back button, the program changes the active page and
finally moves the graphical portion to the new page. Because this code has to be
repeated for each button, I’ve placed it in a method after adding a couple of extra
features. This is the actual code:

procedure TForm1.btnNext1Click(Sender: TObject);
begin
 if CheckInprise.Checked then
 MoveTo (TabSheet2)
 else
 MoveTo (TabSheet3);
end;

procedure TForm1.MoveTo(TabSheet: TTabSheet);
begin
 // add the last page to the list
 BackPages.Add (PageControl1.ActivePage);
 BtnBack.Enabled := True;
 // change page
 PageControl1.ActivePage := TabSheet;
 // move image and bevel
 Bevel1.Parent := PageControl1.ActivePage;
 Image1.Parent := PageControl1.ActivePage;
end;

Besides the code I’ve already explained, the MoveTo method adds the last page (the
one before the page change) to a list of visited pages, which behaves like a stack. In
fact, the BackPages object of the TList class is created as the program starts and the
last page is always added to the end. As the user presses the Back button, which is
not dependent on the page, the program extracts the last page from the list, deletes
its entry, and moves to that page:

procedure TForm1.btnBackClick(Sender: TObject);
var
 LastPage: TTabSheet;
begin
 // get the last page and jump to it
 LastPage := TTabSheet (BackPages [BackPages.Count - 1]);
 PageControl1.ActivePage := LastPage;
 // delete the last page from the list
 BackPages.Delete (BackPages.Count - 1);
 // eventually disable the back button
 BtnBack.Enabled := not (BackPages.Count = 0);
 // move image and bevel
 Bevel1.Parent := PageControl1.ActivePage;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 383

 Image1.Parent := PageControl1.ActivePage;
end;

With this code, the user can move back several pages until the list is empty, at which
point we disable the Back button. The complication we need to deal with is that
while moving from a particular page, we know which pages are its “next” and “previ-
ous,” but we don’t know which page we came from, because there can be multiple
paths to reach a page. Only by keeping track of the movements with a list can we
reliably go back.

The rest of the code of the program, which simply shows some Web site addresses,
is very simple. The good news is that you can reuse the navigational structure of this
example in your own programs and modify only the graphical portion and the con-
tent of the pages.

Docking to a PageControl

Another interesting feature of page controls is the specific support for docking. As
you dock a new control over a PageControl, a new page is automatically added to
host it, as you can easily see in the Delphi environment. To accomplish this, you
simply set the PageControl as a dock host and activate docking for the client con-
trols. This works best when you have secondary forms you want to host. Moreover,
if you want to be able to move the entire PageControl into a floating window and
then dock it back, you’ll need a docking panel in the main form.

This is exactly what I’ve done in the DockPage example, which has a main form with
the following settings:

object Form1: TForm1
 Caption = ‘Docking Pages’
 object Panel1: TPanel
 Align = alLeft
 AutoSize = True
 DockSite = True
 OnMouseDown = Panel1MouseDown
 object PageControl1: TPageControl
 ActivePage = TabSheet1
 Align = alClient
 DockSite = True
 DragKind = dkDock
 object TabSheet1: TTabSheet
 Caption = ‘List’
 object ListBox1: TListBox
 Align = alClient
 end

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

384 - Chapter 8: Using Multiple Forms

 end
 end
 end
 object Splitter1: TSplitter
 Cursor = crHSplit
 end
 object Memo1: TMemo
 Align = alClient
 end
end

Notice that the Panel has the UseDockManager property set to True and that the
PageControl invariably hosts a page with a list box, as removing all pages apparently
causes problems. Now the program has two other forms, with similar settings
(although they host different controls):

object Form2: TForm2
 Caption = ‘Small Editor’
 DragKind = dkDock
 DragMode = dmAutomatic
 object Memo1: TMemo
 Align = alClient
 end
end

You can drag these forms onto the page control to add new pages to it, with captions
corresponding with the form titles. You can also undock each of these controls and
even the entire PageControl. To do this, the program doesn’t enable automatic drag-
ging, which would make it impossible to switch pages anymore. Instead, the feature
is activated when the user clicks on the area of the PageControl that has no tabs—
that is, on the underlying panel:

procedure TForm1.Panel1MouseDown(Sender: TObject;
 Button: TmouseButton; Shift: TShiftState; X, Y: Integer);
begin
 PageControl1.BeginDrag (False, 10);
end;

You can test this behavior by running the DockPage example, although Figure 8.16
tries to depict it. Notice that when you remove the PageControl from the main form,

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 385

Figure 8.16: The
main form of the
DockPage example
after a form has been
docked to the page
control on the left.
Notice that another
form uses part of the
area of a hosting panel.
Image from the
original book.

you can directly dock the other forms to the panel and then split the area with other
controls. This is the situation captured by the figure.

Creating MDI Applications

Besides using dialog boxes, or secondary forms, and squeezing components into a
form, there is a third approach that used to be common in Windows applications:
MDI (Multiple Document Interface). An MDI application is made up of a number of
forms that appear inside a single main form206.

If you use Windows Notepad, you can open only one text document, because
Notepad isn’t an MDI application207. But with your favorite word processor, you can

206 The MDI has long been phased out of the modern UI toolkit and Microsoft has in practical
terms deprecated this model, as they’ve neglected fixing bugs in Windows when using MDI on
HighDPI screens. Given that MDI has remained fairly popular among Delphi developes, Del-
phi 12 added renewed support for it VCL styled applications and also HighDPI applications
(overcoming some of the platform issues). There was also the addition of the FormTabsBar
component to help modernize the UI of MDI applications with the addition of tabs.

207 Microsoft introduced a multi tab UI for Notepad, just recently.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

386 - Chapter 8: Using Multiple Forms

probably open a number of different documents, each in its own child window,
because they are MDI applications. All these document windows are usually held by
a frame, or application, window.

In Windows 3 and 3.1, Microsoft stressed the use of MDI. With the advent Windows
95, Microsoft had to acknowledge that many users were not comfortable with this
interface. Office 2000 is the first large applications suite that drops the MDI model
for the SDI (Single Document Interface) model used by Windows Resource
Explorer and the entire operating system. MDI isn’t dead and can be a useful model
at times, but multipage and dockable forms seems to be more popular now.

MDI in Windows: A Technical Overview

This section provides a short overview of MDI, in technical Windows terms. Just
forget Delphi for a moment, and I’ll try to give you an idea of what MDI really is (not
what an MDI application looks like). If you’ve never built an MDI application and
you want a quick start, you might consider skipping this section for now.

The MDI structure gives programmers a number of benefits automatically. For
example, Windows handles a list of the child windows in one of the pull-down
menus of an MDI application, and there are specific Delphi methods that activate
the corresponding MDI functionality, to tile or cascade the child windows. The fol-
lowing is the technical structure of an MDI application in Windows208:

· The main window of the application acts as a frame or a container. This window
requires a proper menu structure and some specific coding (at least when pro-
gramming with the API).

· A special window, known as the MDI client, covers the whole client area of the
frame window, providing some special capabilities. For example, the MDI client
handles the list of child windows. Although this might seem strange at first, the
MDI client is one of the Windows predefined controls, just like an edit box or a
list box. The MDI client window does not have the typical elements of the inter-
face of a window, such as a caption or border, but it is visible. In fact, you can
change the standard system color of the MDI work area (called the “Application
Background”) in the Appearance page of the Display Properties dialog box in
Windows.

208 This is still the case today. Most of the platform and Delphi MDI features have seen very lim-
ited changes over the years, until Delphi 12, as mentioned in an earlier footnote.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 387

· There are a number of child windows, of the same kind or of different kinds.
These child windows are not placed in the frame window directly, but each is
defined as a child of the MDI client window, which in turn is a child of the frame
window. (We might say that the child windows are the “grandchildren” of the
frame.)

When you program using the Windows API, some work is usually required to build
and maintain this structure, and other coding is needed to handle the menu prop-
erly. As you’ll see in the next section, these tasks become much easier with Delphi.

Frame and Child Windows in Delphi

Delphi makes the development of MDI applications easy, even without using the
MDI Application template available in Delphi (see the Applications page of the File
 New dialog box). You only need to build at least two forms, one with the
FormStyle property set to fsMDIForm and the other with the same property set to
fsMDIChild. That’s all, almost. Simply set these two properties in a simple program
and run it, and you’ll see the two forms nested in the typical MDI style.

Generally, however, the child form is not created at start-up, and you need to pro-
vide a way to create one or more child windows. This can be done by adding a menu
with a New menu item and writing the following code:

procedure TMainForm.New1Click(Sender: TObject);
var
 ChildForm: TChildForm;
begin
 ChildForm := TChildForm.Create (Application);
 ChildForm.Show;
end;

In the code fragment above, as well as in the program example I’ll discuss shortly,
I’ve named the two forms MainForm and ChildForm. Another important feature is to
add a “Window” pull-down menu and use it as the value of the WindowMenu property
of the form. This pull-down menu will automatically list all the available child win-
dows. Of course, you can choose any other name for the menu item, but “Window”
is the standard.

With these simple operations, you can build a simple MDI application. To make this
program work properly, we can add a number to the title of any child window when
it is created:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

388 - Chapter 8: Using Multiple Forms

procedure TMainForm.New1Click(Sender: TObject);
var
 ChildForm: TChildForm;
begin
 WindowMenu := Window1;
 Inc (Counter);
 ChildForm := TChildForm.Create (Self);
 ChildForm.Caption := ChildForm.Caption + ‘ ‘ +
 IntToStr (Counter);
 ChildForm.Show;
end;

You can also open a number of child windows, minimize or maximize each of them,
close them, and use the Window pull-down menu to navigate among them. If you
create more than nine child windows, a More Windows menu item is added to the
pull-down menu; when you select this menu item, you’ll see a dialog box (provided
by Windows, not part of your program) with a complete list of the child windows.

Now suppose that we want to close some of these child windows, to unclutter the
client area of our program. Click on the Close box of some of the child windows and
they are minimized! What is happening here? Remember that when you close a
window, you generally hide it from view. The closed forms in Delphi still exist,
although they are not visible. In the case of child windows, simply hiding them
won’t work, because the MDI Window menu and the list of windows will still list
existing child windows, even if they are hidden. For this reason, Delphi simply mini-
mizes the MDI child windows when you try to close them. To solve this problem, we
need to delete the child windows when they are closed, setting the Action reference
parameter of the OnClose event to caFree.

Building a Complete Window Menu

Our first task is to define a better menu structure for the example. Typically the
Window pull-down menu has at least three items, titled Cascade, Tile, and Arrange
Icons. To handle the menu commands, we can use some of the predefined methods
that are available in forms that have the fsMDIForm value for the FormStyle prop-
erty:

· The Cascade method cascades the open MDI child windows. The child forms are
arranged starting from the upper-left corner of the client area of the frame win-
dows and moving toward the lower-left corner. The windows overlap each other.
Iconized child windows are also arranged (see ArrangeIcons below).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 389

· The Tile method tiles the open MDI child windows. The child forms are
arranged so that they do not overlap. The client area of the frame windows is
divided into equal portions for the different windows, so that they can all be
shown on the screen, no matter how many windows there are. The Tile method
will also arrange iconized child windows. The default behavior is horizontal
tiling, although if you have several child windows, they will be arranged in sev-
eral columns. This default can be changed by using the TileMode property.

· The TileMode property determines how the Tile procedure should work. The
only two choices are tbHorizontal, for horizontal tiling, and tbVertical, for ver-
tical tiling. Some applications use two different menu commands for the two
tiling modes; other applications offer only one Tile menu command but check
whether the Shift key is pressed when the user selects it. This actually confuses
most users, so you’ll probably want to keep your application simple, with one
tiling option.

· The ArrangeIcons procedure arranges all the iconized child windows, starting
from the lower-left corner of the client area of the frame window, and moving to
the upper-right corner. Open forms are not moved.

These procedures and properties are useful for handling the Window menu of an
MDI application. For example, you can write the following code:

procedure TMainForm.Cascade1Click(Sender: TObject);
begin
 Cascade;
end;

As a better alternative, you can place an ActionList in the form and add to it a series
of predefined MDI actions. The related classes are TWindowArrange,
TWindowCascade, TWindowClose, TWindowTileHorizontal, TWindowTileVertical,
and TWindowMinimizeAll. The connected menu items will perform the correspond-
ing actions and will be disabled if no child window is available. The MdiDemo
example, which we’ll look at next, demonstrates the use of the MDI actions, among
other things.

There are also some other interesting methods and properties related strictly to
MDI in Delphi:

· ActiveMDIChild is a run-time and read-only property of the MDI frame form,
and it holds the active child window. The user can change this value by selecting
a new child window, or the program can change it using the Next and Previous
procedures.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

390 - Chapter 8: Using Multiple Forms

· The Next procedure activates the child window that follows the active one in the
internal order.

· The Previous procedure activates the child window preceding the active one in
the internal order.

· The ClientHandle property holds the Windows handle of the MDI client win-
dow, which covers the client area of the main form.

· The MDIChildCount property stores the current number of child windows.

· The MDIChildren property is an array of child windows. You can use this and the
MDIChildCount property to cycle among all of the child windows, for example
using a for loop. This can be useful for finding a particular child window or to
operate on each of them.

Note that the internal order of the child windows is the reverse order of activation.
This means that the last child window selected is the active window (the first in the
internal list), the second-to-last child window selected is the second, and the first
child window selected is the last. This order determines how the windows are
arranged on the screen. The first window in the list is the one above all others, while
the last window is below all others, and probably hidden away. You can imagine an
axis (the z-axis) coming out of the screen toward you. The active window has a
higher value for the z-coordinate and, thus, covers other windows. For this reason,
the Windows ordering schema is known as the z-order.

The MdiDemo Example

I’ve built a first example to demonstrate most of the features of a simple MDI appli-
cation. MdiDemo is actually a full-blown MDI text editor, because each child
window hosts a Memo component and can open and save text files. The child form
has a Modified property used to indicate whether the text of the memo has changed.
It is used by the file operations and when the form is closed. The file operations are
performed by a couple of extra methods, as you can see in the class declaration of
the form:

 type
 TChildForm = class(TForm)
 Memo1: TMemo;
 procedure FormClose(Sender: TObject; var Action: TCloseAction);
 procedure Memo1Change(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);
 private

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 391

 fModified: Boolean;
 procedure SetModified(const Value: Boolean);
 public
 procedure Load (FileName: string);
 procedure Save;
 property Modified: Boolean
 read FModified write SetModified;
 end;

note As discussed in Chapter 3, if you want to follow the rules of OOP and provide a good encapsula-
tion, always add properties to a form to export a field instead of making the field public. The Class
Completion feature of Delphi 4 makes it so fast to add a property to a form that there are no more
excuses not to do it.

The fModified flag is set to True in the handler of the memo’s OnChange event, and
it is set to False in the form’s OnCreate event handler. It is also set to False every
time a new file is loaded or saved, as you can see in the code of the two file methods:

procedure TChildForm.Load (FileName: string);
begin
 Memo1.Lines.LoadFromFile (FileName);
 Caption := FileName;
 fModified := False;
end;

procedure TChildForm.Save;
begin
 Memo1.Lines.SaveToFile (Caption);
 fModified := False;
end;

Notice that the child form uses the caption to store the filename, a shortcut I’ve
adopted instead of adding a second property to the form.

The fModified flag is checked when a child form is closed, as you can see in the fol-
lowing listing. Keep in mind that the OnCloseQuery method of the child forms is also
automatically activated when you close the main form:

procedure TChildForm.FormCloseQuery(Sender: TObject;
 var CanClose: Boolean);
begin
 CanClose := not fModified or (MessageDlg (‘Close without saving?’,
 mtConfirmation, [mbYes, mbNo], 0) = mrYes);
end;

As I’ve already mentioned, the main form of this example is based on an ActionList
component. The actions are available through some menu items and a toolbar, as

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

392 - Chapter 8: Using Multiple Forms

you can see in Figure 8.17. You can see the details of the ActionList in the source
code of the example.

Next, I want to focus on the code of the custom actions. Once more, this example
demonstrates that using actions makes it very simple to modify the user interface of
the program, without writing any extra code. In fact, there is no code directly tied to
the user interface.

Figure 8.17: The
MdiDemo program
uses a series of
predefined Delphi
actions connected to a
menu and a toolbar.
Image from the
original book.

One of the simplest actions is the ActionFont object, which has both an OnExecute
handler, which uses a FontDialog component, and an OnUpdate handler, which dis-
ables the action (and hence the associated menu item and toolbar button) when
there are no child forms:

procedure TMainForm.ActionFontExecute(Sender: TObject);
begin
 if FontDialog1.Execute then
 (ActiveMDIChild as TChildForm).Memo1.Font :=
 FontDialog1.Font;
end;

procedure TMainForm.ActionFontUpdate(Sender: TObject);
begin
 ActionFont.Enabled := MDIChildCount > 0;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 393

The action named New creates the child form and sets a default filename. The Open
action calls the ActionNewExcecute method prior to loading the file:

procedure TMainForm.ActionNewExecute(Sender: TObject);
var
 ChildForm: TChildForm;
begin
 Inc (Counter);
 ChildForm := TChildForm.Create (Self);
 ChildForm.Caption :=
 LowerCase (ExtractFilePath (Application.Exename)) +
 ‘text’ + IntToStr (Counter) + ‘.txt’;
 ChildForm.Show;
end;

procedure TMainForm.ActionOpenExecute(Sender: TObject);
begin
 if OpenDialog1.Execute then
 begin
 ActionNewExecute (Self);
 (ActiveMDIChild as TChildForm).Load (OpenDialog1.FileName);
 end;
end;

The actual file loading is performed by the Load method of the form. Likewise, the
Save method of the child form is used by the Save and Save As actions. Notice the
OnUpdate handler of the Save action, which enables the action only if the user has
changed the text of the memo:

procedure TMainForm.ActionSaveAsExecute(Sender: TObject);
begin
 // suggest the current file name
 SaveDialog1.FileName := ActiveMDIChild.Caption;
 if SaveDialog1.Execute then
 begin
 // modify the file name and save
 ActiveMDIChild.Caption := SaveDialog1.FileName;
 (ActiveMDIChild as TChildForm).Save;
 end;
end;

procedure TMainForm.ActionSaveUpdate(Sender: TObject);
begin
 ActionSave.Enabled := (MDIChildCount > 0) and
 (ActiveMDIChild as TChildForm).Modified;
end;

procedure TMainForm.ActionSaveExecute(Sender: TObject);
begin
 (ActiveMDIChild as TChildForm).Save;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

394 - Chapter 8: Using Multiple Forms

MDI Applications with Different
Child Windows

A common approach in complex MDI applications is to include child windows of
different kinds (that is, based on different child forms). We will build a new exam-
ple, called MdiMulti, to highlight some problems you may encounter with this
approach. For this example, we need to build two different types of child forms. The
first type will host a circle drawn in the position of the last mouse click, while the
second will contain a bouncing square. Another feature I’ll add to the main form is a
custom background obtained by painting a tiled image in it.

Child Forms and Menus

The first type of child form can display a circle in the position where the user clicked
one of the mouse buttons. Figure 8.18 shows an example of the output of the Mdi-
Multi program. The program includes a Circle menu, which allows the user to
change the color of the surface of the circle as well as the color and size of its border.
What is interesting here is that to program the child form, we do not need to con-
sider the existence of other forms or of the frame window. We simply write the code
of the form, and that’s all. The only special care required is for the menus of the two
forms.

If we prepare a main menu for the child form, it will replace the main menu of the
frame window when the child form is activated. An MDI child window, in fact, can-
not have a menu of its own. But the fact that a child window can’t have any menus
should not bother you, because this is the standard behavior of MDI applications.
You can use the menu bar of the frame window to display the menus of the child
window. Even better, you can merge the menu bar of the frame window and that of
the child form. For example, in this program, the menu of the child form can be
placed between the frame window’s File and Window pull-down menus. You can
accomplish this using the following GroupIndex values:

· File pull-down menu, main form: 1

· Window pull-down menu, main form: 3

Circle pull-down menu, child form: 2

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 395

Figure 8.18: The
output of the MdiMulti
example, with a child
window that displays
circles. Image from the
original book.

Using these settings for the menu group indexes, the menu bar of the frame window
will have either two or three pull-down menus. At start-up, the menu bar has two
menus. As soon as you create a child window, there are three menus, and when the
last child window is closed (destroyed), the Circle pull-down menu disappears. You
can see this in Figure 8.18, but you should also spend some time testing this behav-
ior by running the program.

The code of the child window simply draws a shape on its sources. (For a complete
discussion of this program, check out the Chapter 22, “Graphics in Delphi”). If you
look at the source code, it is interesting to notice how the menu commands of the
running program pertains to the two forms, and that in the source code, each form
handles its own commands, regardless of the existence of other elements.

The data of the child form, particularly the coordinates of the center of the circle,
must be declared using some fields of the form and not other variables declared
inside the unit. In fact, we need a specific memory location to store the center of the
circle for each child window.

The second type of child form shows a moving image. The square, a Shape compo-
nent, moves around the client area of the form at fixed time intervals, using a Timer
component, and bounces on the edges of the form, changing its direction. This turn-
ing process is determined by a fairly complex algorithm, which we don’t have space
to examine. The main point of the example, instead, is to show you how menu merg-
ing behaves when you have an MDI frame with child forms of different types. (You
can study the downloaded source code to see how it works.)

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

396 - Chapter 8: Using Multiple Forms

Changing the Main Form

Now we need to integrate the two child forms into an MDI application. The main
form must provide a menu command to create a child form of the selected kind and
to check the group indexes of the pull-down menus. The File pull-down menu here
has two separate New menu items, which are used to create a child window of either
kind. The code uses a single child window counter. As an alternative, you could use
two different counters for the two kinds of child windows. Again, the Window menu
uses the predefined MDI actions.

As soon as a form of this kind is displayed on the screen, its menu bar is automati-
cally merged with the main menu bar. When you select a child form of one of the
two kinds, the menu bar changes accordingly. Once all the child windows are closed,
the original menu bar of the main form is reset. By using the proper menu group
indexes, we let Delphi accomplish everything automatically, as you can see in Figure
8.19.

Figure 8.19: The
menu bar of the
MdiMulti Demo4
application changes
automatically to reflect
the currently selected
child window, as you
can see by comparing
the menu bar with that
of Figure 8.18. Image
from the original book.

I’ve added a few other menu items in the main form. One menu choice is used to
close every child window and another shows some statistics about them. The
method related to the Count command scans the MDIChildren array property to
count the number of child windows of each kind (using the RTTI operator is). Once

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 397

these values are computed, they are shown on the screen with the MessageDlg func-
tion:

procedure TMainForm.Count1Click(Sender: TObject);
var
 NBounce, NCircle, I: Integer;
begin
 NBounce := 0;
 NCircle := 0;
 for I := 0 to MDIChildCount - 1 do
 if MDIChildren is TBounceChildForm then
 Inc (NBounce)
 else
 Inc (NCircle);
 MessageDlg (
 Format (‘There are %d child forms.’#13 +
 ‘%d are Circle child windows and ‘ +
 ‘%d are Bouncing child windows’,
 [MDIChildCount, NCircle, NBounce]),
 mtINformation, [mbOk], 0);
end;

Subclassing the MdiClient Window

Finally, the program includes support for a background-tiled image. The bitmap is
taken from an Image component and should be painted on the form in the
wm_EraseBkgnd Windows message’s handler. The problem is that we cannot simply
connect the code to the main form, as its surface is covered by a separate window,
the MdiClient window described earlier in this chapter.

We have no corresponding Delphi form for this window, so how can we handle its
messages? We have to resort to a low-level Windows programming technique
known as subclassing. (In spite of the name, this has little to do with OOP inheri-
tance). The basic idea is that we can replace the window procedure, which receives
all the messages of the window, with a new one we provide. This can be done by
calling the SetWindowLong API function and providing the memory address of the
procedure, the function pointer.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

398 - Chapter 8: Using Multiple Forms

note A window procedure is a function receiving all the messages for a window. Every window must
have a window procedure and can have only one. Even Delphi forms have a window procedure;
although this is hidden in the system, it calls the WndProc virtual function, which you can use.
But the VCL has a predefined handling of the messages, which are then forwarded to the mes-
sage-handling methods of a form after some preprocessing. With all this support, you need to
handle window procedures explicitly only when working with non-Delphi windows, as in this
case. For a thorough description of this topic you can refer to Delphi Developer’s Handbook
(Sybex, 1998), among other books.209

Unless we have some reason to change the default behavior of this system window,
we can simply store the original procedure and call it to obtain a default processing.
The two function pointers referring to the two procedures (the old and the new one)
are stored in two local fields of the form:

private
 OldWinProc, NewWinProc: Pointer;
 procedure NewWinProcedure (var Msg: TMessage);

The form also has a method we’ll use as a new window procedure, with the actual
code used to paint on the background of the window. Because this is a method and
not a plain window procedure, the program has to call the MakeObjectInstance
method to add a prefix to the method and let the system use it as if it were a func-
tion. All this description is summarized by only two complex statements:

procedure TMainForm.FormCreate(Sender: TObject);
begin
 NewWinProc := MakeObjectInstance (NewWinProcedure);
 OldWinProc := Pointer (SetWindowLong (
 ClientHandle, gwl_WndProc, Cardinal (NewWinProc)));
 OutCanvas := TCanvas.Create;
end;

The window procedure we install calls the default one. Then, if the message is
wm_EraseBkgnd and the image is not empty, we draw it on the screen many times
using the Draw method of a temporary canvas. This canvas object is created when
the program starts (see the code above) and connected to the handle passed as
wParam parameter by the message. With this approach, we don’t have to create a
new TCanvas object for every background painting operation requested, thus saving
a little time in the frequent operation. Here is the code, which produces the output
already seen in Figure 8.19:

procedure TMainForm.NewWinProcedure (var Msg: TMessage);
var

209 That book is now hard to find. Restoring it would be another interesting project.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 8: Using Multiple Forms - 399

 BmpWidth, BmpHeight: Integer;
 I, J: Integer;
begin
 // default processing first
 Msg.Result := CallWindowProc (OldWinProc,
 ClientHandle, Msg.Msg, Msg.wParam, Msg.lParam);

 // handle background repaint
 if Msg.Msg = wm_EraseBkgnd then
 begin
 BmpWidth := MainForm.Image1.Width;
 BmpHeight := MainForm.Image1.Height;
 if (BmpWidth <> 0) and (BmpHeight <> 0) then
 begin
 OutCanvas.Handle := Msg.wParam;
 for I := 0 to MainForm.ClientWidth div BmpWidth do
 for J := 0 to MainForm.ClientHeight div BmpHeight do
 OutCanvas.Draw (I * BmpWidth,
 J * BmpHeight, MainForm.Image1.Picture.Graphic);
 end;
 end;
end;

What’s Next?

We have explored different ways to build applications that have several forms or
forms with multiple pages. We have seen how you can create a secondary modeless
form or a modal dialog box. Besides the basic examples, we have delved into some
advanced topics, such as dynamically building a number of forms; creating extensi-
ble dialog boxes, using the common dialogs and the Delphi message boxes; building
special About boxes, with hidden credits or used as a splash screen; as well as the
MDI technique.

There are many things we could do to further explore how to build applications with
multiple forms and extend their user interface. I’ve given equal coverage to various
techniques, although I have my preferences: fewer secondary forms, more dialog
boxes, MDI only for specific programs, notebooks, and docking whenever possible.

Now we can move forward to a very hot Delphi programming topic: building data-
base applications. This will take the next four chapters, which cover most of the
fundamental topics of Delphi database programming. It is possible to write a spe-
cific book about this, so the description won’t be exhaustive, but you should be able
to get a comprehensive overview of this key element of Delphi development.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

400 - Chapter 8: Using Multiple Forms

After these three database chapters, we’ll be able to start looking into Delphi behind
the scenes and focus on topics such as the construction of Delphi components and
ActiveX controls.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 401

Chapter 9: Writing

Database

Applications

Delphi’s support for database applications is one of the key features of the program-
ming environment. Many programmers spend most of their time writing data-
access code, which needs to be the most robust portion of a database application.
This chapter provides an overview of Delphi’s extensive support for database pro-
gramming. You can create very complex database applications, starting from a
blank form or one generated by Delphi’s Database Form Wizard210.

210 The Database Form Wizard is no longer available, but also a lot of the specific techniques de-
scribed in this chapter are not applicable any more. For one, the BDE data access library no
longer ships with Delphi, replaced by newer alternatives like FireDAC. Also using paradox ta-
bles, while technically possible, has long been deprecated and it no longer recommended (or
even suggested). In other words, the content of this chapter and the demos have severe limita-
tions, but some of the key concepts of the core DB.pas unit are still valid today.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

402 - Chapter 9: Writing Database Applications

What you won’t find here is a discussion of the theory of database design. I’m
assuming that you already know the fundamentals of database design and have
already designed the structure of a database. I won’t delve into database-specific
problems; my goal is to help you understand how Delphi supports this kind of pro-
gramming.

We’ll begin with an explanation of how data access works in Delphi, and then we’ll
review the database components that are available in Delphi. I won’t discuss the
simplest examples and techniques step by step, such as the use of the Database
Form Wizard, but instead I will focus on the foundations. Some of the topics cov-
ered in this chapter include an in-depth example of the TField components,
creating new tables with Delphi code, and using graphics. The following chapters
will provide information on many other more advanced database programming top-
ics.

Accessing Data with and without the
BDE

On a computer, permanent data—including database data—is always stored in files.
The two most common approaches are to store a whole database in what appears to
the file system as a single file or to store each table, index, and any other elements of
the database in separate files, usually on the same directory. Delphi supports both
approaches, depending on the database format you are using:

· Paradox and dBASE tables211 define databases as directories and each table as a
separate file (or actually multiple files if you include indexes and other support
files).

· Access, InterBase, and most SQL servers use a single file containing the entire
database, with all the tables and indexes.212.

211 This is a very old approach, not recommended today. For simple local data storage, a good re-
placement is to use memory tables (FDMemTable) and store their content to file. The differ-
ent, though, is that persistent tables can be loaded by one application at a time, while Paradox
and dBase accounted for access by multiple apps at the same time, with techniques explained
later in this chapter.

212 This is still generally true today.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 403

note The Borland Database Engine (BDE)213 uses an alias to refer to a database file or directory. You
can define new aliases for databases by using the Database Explorer or the Database Engine Con-
figuration utility. It is also possible to define them by writing code in Delphi that calls the
AddStandardAlias and AddAlias methods of the Session global object, followed by a call to
SaveConfigFile to make the alias persistent. The alternative is the low-level DbiAddAlias
BDE function.

Delphi database applications do not have direct access to the data sources they ref-
erence and cannot manipulate database files directly. Instead, they use an available
database engine, such as the Borland Database Engine (BDE) or Microsoft’s ActiveX
Data Objects (ADO)214.

The BDE has direct access to a number of data sources, including dBASE, Paradox,
ASCII, FoxPro, and even Access tables. The BDE can also interface with Borland’s
SQL Links, a series of drivers allowing access to a number of local and remote SQL
servers (available only in Delphi Enterprise). Database servers include Oracle,
Sybase, Informix, InterBase, and DB2215. If you need access to a different database
or data format, the BDE can interface with ODBC drivers, although in this case you
might want to use ADO instead. Notice, anyway that the BDE provides advanced
features (such as sophisticated caching and heterogeneous joins) that ADO doesn’t
offer.

ADO is Microsoft’s high-level interface216. ADO is implemented on Microsoft’s data
access OLE DB technology, which provides access to relational and non-relational
databases as well as e-mail and file systems and custom business objects. Applica-
tions built with Delphi 5’s ADO components don’t require the BDE libraries. Of
course, users need to have the ADO/OLE DB run time, which is distributed by
Microsoft and is part of the Windows 2000 operating system217. ADO will also need
to be configured on the user’s machine, even if it is already installed. Chapter 12 will
more fully cover ADO and related technologies.

213 As mentioned, the BDE no longer ships with Delphi, although it has remained available as a
separate download for some time. Needless to day the associated Database Explorer and Data-
base Engine Configuration tools are also no longer part of the Delphi installation.

214 Or FireDAC, or IBX, or the now deprecated dbExpress (DBX), or other third party database
access libraries.

215 FireDAC offers many more alternatives in terms of direct database support and it also includes
an ODBC gateeway.

216 Support for ADO ~(via the dbGo library) is still available in today’s Delphi, even if it’s not con-
sidered a top option as the underlying Microsoft library, while still available, has been ne-
glected in favor of ADO.NET.

217 The library is still part of Windows 11 and also of recent Windows Server editions.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

404 - Chapter 9: Writing Database Applications

Delphi Enterprise includes native components that access Borland’s own InterBase
server218 (available on the Delphi installation CD; see Chapter 11 for more details)
and the ClientDataSet component (see Chapter 21), which can be used for local or
remote data access. These technologies provide alternatives to the traditional use of
the BDE to access a database from Delphi applications. Figure 9.1 shows the alter-
native data-access techniques available in Delphi 5219, indicating that all the data-
access components inherit from a common base class, TDataSet.

If you choose the traditional BDE approach (as most of the examples in this chapter
do), you will need to install the BDE along with your applications on your clients’
computers. This is not difficult, because Delphi includes the “lite” version of a
widely used installation program (InstallShield) that can be used to prepare installa-
tion disks for the BDE, along with your own application. The BDE files are required
—your Delphi database applications won’t work without them—but you can distrib-
ute them freely.

Figure 9.1: The
alternative data access
technologies available in
Delphi 5. Image based
on a picture of the
original printed book.

218 InterBase Developer edition is an optional installation of todays’s Delphi, while the embedded
version of the database (IBLite/IBToGo) is installed automatically and is available for desktop
and mobile applications. See the InterBase section of Embarcadero web site for more details.

219 This image depicts what was available at the time, very different of what you can do today with
FireDAC and other alternatives.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 405

Delphi Database Components

Delphi includes a number of components related to databases. The Data Access
page220 of the Component Palette contains components used to interact with data-
bases in BDE-oriented applications. Most of them are non-visual components, since
they encapsulate database connections, tables, queries, and similar elements. Fortu-
nately, Delphi also provides a number of predefined components you can use to
view and edit database data. In the Data Controls page, there are visual components
used to view and edit the data in a form. These controls are called data-aware con-
trols221.

To access a database in Delphi, you generally need a data source, identified by the
DataSource component222. The DataSource component, however, does not indicate
the data directly; it refers to a DataSet component. This can be a table, the result of
a query, the result of a stored procedure, the data fetched from a remote server
(using the ClientDataSet component), ADO, InterBase, or some other custom
dataset.

As soon as you have placed a dataset component on the form, you can use the
DataSet property of the DataSource component to refer to it. For this property, the
Object Inspector lists the available datasets of the current form or of other forms
and data modules connected with the current one (using the File Use Unit com-
mand).

Tables and Queries

The simplest way to specify data access in Delphi is to use the Table component223. A
Table object simply refers to a database table. When you use a Table component,
you need to indicate the name of the database you want to use in its DatabaseName

220 The Data Access page still exists, but it hosts general purpose components only, not the BDE
ones, which are not in the product any more.

221 The VCL library still offers data-aware controls, but it also include Visual Live Bindings, the
primary technique used in FireMonkey to associated UI controls and data.

222 The role of the DataSource component hasn’t changed. It still refers to a TDataSet descendant,
exactly like in the early days of Delphi. The difference is that newer TDataSet descendants are
not available, like FireDAC datasets.

223 With this component missing, a good starting point is now the FDMemTable component,
which can be mapped to local data files. The alternative is to use the FDTable component, but
it requires the connection to a RDBMS to fetch any data.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

406 - Chapter 9: Writing Database Applications

property. You can enter an alias or the path of the directory with the table files. The
Object Inspector lists the available names, which depend on the aliases installed in
the BDE.

You also need to indicate a proper value in the TableName property224. The Object
Inspector lists the available tables of the current database (or directory), so you
should generally select the DatabaseName property.

A second data set available in Delphi is the Query component225. A query is usually
more complex than a table, because it requires a SQL language command. However,
you can customize a query using SQL more easily than you can customize a table (as
long as you know at least the basic elements of SQL, of course). The Query compo-
nent has a DatabaseName property like the Table component, but it does not have a
TableName property. The table is indicated in the SQL statement, stored in the SQL
property.

note SQL is a standard language for writing database queries and generally interacting with a data-
base. If you are not fluent in SQL, you can find a description of its basic commands in Chapter 11.
Delphi Enterprise includes a tool to create SQL queries, called SQL Builder226, and is discussed in
Chapter 11, as well.

For example, you can write a simple SQL statement like this

select * from Country

where Country is the name of a table, and the star symbol (*) indicates that you
want to use all of the fields in the table. If you are fluent in SQL, you might use the
Query component more often, but the efficiency of a table or a query varies depend-
ing on the database you are using. In general, we can say that the Table component
tends to be faster on local tables, while the Query component tends to be faster on
SQL servers, although this is just a very general rule, and in many cases you might
have the opposite effect. I’ll cover some efficiency issues in Chapters 10 and 11.

224 By contrast, FDMemTable only needs to refer to a local file.

225 The matching FireDAC component is called FDQuery.

226 This tool is also long gone, but FireDAC designers offer some help in creating queries and spe-
cific tools replacing the old query builder..

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 407

note The Country table mentioned above refers to the file COUNTRY.DB, which is part of the Delphi’s
demo database, installed by default in the C:\Program Files\Common Files\Borland Shared\Data
directory227. This directory is referenced by the DBDEMOS alias, set up by Delphi during the
installation. Many of my examples in the following chapters will use tables from this Delphi data-
base. In others, I’ll show you how to build new tables, but I’ll generally use that demo database, as
well.

The third component for data sets is StoredProc, which refers to stored procedures
of a SQL server database. You can run these procedures and get the results in the
form of a database table. Stored procedures can only be used with SQL servers.

The Status of a Data Set228

When you operate on a data set in Delphi, you can work in different states, indi-
cated by a specific State property, which can assume several different values:229

· dsBrowse indicates that the data set is in normal browse mode, used to look at
the data and scan the records.

· dsEdit indicates that the data set is in edit mode. A data set enters this state
when the program calls the Edit method or the DataSource has the AutoEdit
property set to True, and the user starts editing a data-aware control, such as a
DBGrid or DBEdit. When the changed record is posted, the data set exits the
dsEdit state.

· dsInsert indicates that a new record is being added to the data set. Again, this
might happen when calling the Insert method, moving to the last line of a
DBGrid, or using the corresponding command of the DBNavigator component.

· dsInactive is the state of a closed data set.

227 A similar directory under the demos folder (installed by default under the Windows users pub-
lic directory, C:\Users\Public\Embarcadero\xx.0) includes same of the same old Paradox ta-
bles converted to the format required by FireDAC’s FDMemTable.

228 The concept of Dataset status is still applicable and very important today, regardless of the
data access components used. The core idea remains the same and it’s very important to un-
derstand for Delphi database access.

229 Additional values compared to this list are dsBlockRead (used for reading data without chanc-
ing the current record), dsInternalCalc (similar to dsCalcFields, but for a modified version of
the calculated fields logic), and dsOpening (used to indicate the dataset is being opened, but it’
isn’t ready yet)

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

408 - Chapter 9: Writing Database Applications

· dsSetKey indicates that we are preparing a search on the data set. This is the
state between a call to the SetKey method and a call to the GotoKey or
GotoNearest methods (see the Search example later in this chapter).

· dsCalcFields is the state of a data set while a field calculation is taking place;
that is, during a call to an OnCalcFields event handler. Again, I’ll show this in an
example.

· dsNewValue, dsOldValue, and dsCurValue are the states of a data set when an
update of the cache is in progress.

· dsFilter is the state of a data set while setting a filter; that is, during a call to an
OnFilterRecord event handler.

In simple examples, the transitions between these states are handled automatically,
but it is important to understand them because there are many events referring to
the state transitions.

note We will use a simple state-transition event, the OnStateChange event of the DataSource compo-
nent, in the GridDemo example, the first example of this chapter.

Other Database Related Components

Along with the Table, Query, StoredProc, and DataSource, there are some other
components in the Data Access page of the Component palette, the BDE page. I’ll
cover these components in the next two chapters, but here is a short summary:

· The Database component is used for transaction control, security, and connec-
tion control230. It is generally used only to connect to remote databases in
client/server applications or to avoid the overhead of connecting to the same
database in several forms. The Database component is also used to set a local
alias used only inside a program. Once this local alias is set to a given path, the
Table and Query components of the application can refer to the local database
alias. This is much better than replicating the hard-coded path in each DataSet
component of the program.

230 In FireDAC, this is replaced by a combination of the FDConnection and FDTransaction com-
ponents.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 409

· The Session component231 provides global control over database connections for
an application, including a list of existing databases and aliases and an event to
customize database login.

· The BatchMove232 component is used to perform batch operations, such as copy-
ing, appending, updating, or deleting values, on one or more databases.

· The UpdateSQL233 component allows you to write SQL statements to perform
various update operations on the data set, when using a read-only query (that is,
when working with a complex query). This component is used as the value of the
UpdateObject property of tables or queries.

Delphi Data-Aware Controls

We have seen how it is possible to connect a data source to a database, using either
a table or query, but we still do not know how to view the data. For this purpose,
Delphi provides many components that resemble the usual Windows controls but
are data-aware. For example, the DBEdit component is similar to the Edit compo-
nent, and the DBCheckBox component corresponds to the CheckBox component.
You can find all of these components in the Data Controls page234 of the Delphi
Component Palette:

· DBGrid is a grid capable of displaying a whole table at once. It allows scrolling
and navigation, and you can edit the grid’s contents. It is an extension of the
other Delphi grid controls.

· DBNavigator is a collection of buttons used to navigate and perform actions on
the database. The buttons perform basic actions, so you can easily replace them
with your own toolbar.

· DBText displays the contents of a field that cannot be modified. It is a data-
aware Label graphical control.

231 The concept of Session was specific to the BDE. It has no match in other data access libraries.

232 FireDAC offers an extremely sophisticated “batch move” subsystem, based on FDBatchMove
but also many other specific components for reading and writing different data formats, from
database tables to XML, from JSON to CVS, from text files to other formats.

233 The same concept exists in FireDAC and other libraries, although FDUpdateSQL is only used
in very complex scenarios, as the core components like FDQuery offer automatic updates in
many cases.

234 These data-aware controls still exists aand are still frequently used. The only exception is the
DBCltrGrid, which is no longer very commonly used even if it’s still available.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

410 - Chapter 9: Writing Database Applications

· DBEdit lets the user edit a field (change the current value) using an Edit control.

· DBMemo lets the user see and modify a large text field, eventually stored in a
memo or BLOB (Binary Large OBject) field. It resembles the Memo component.

· DBImage is an extension of an Image component that shows a picture stored in a
BLOB field.

· DBListBox and DBComboBox let the user select a single value from a specified
set. If this set is extracted from another database table or is the result of another
query, you should use the DBLookupListBox or DbLookupComboBox compo-
nents instead.

· DBCheckBox can be used to show and toggle an option, corresponding to a Bool-
ean field, and extends the CheckBox component.

· DBRadioGroup provides a series of choices, with a number of exclusive selection
radio buttons, such as the RadioGroup control.

· DBRichEdit is a component that lets the user edit a formatted text file; it is based
on a Windows 95 RichEdit control.

· DBCtrlGrid is a multi-record grid, which can host a number of other data-aware
controls. These controls are duplicated for each record of the data set.

· DBChart235 is a data-aware business graphic component or the data-aware ver-
sion of the Chart component.

All of these components are connected to a data source using the corresponding
property, DataSource. Some of them relate to the entire data set, such as the
DBGrid and DBNavigator components, while the others refer to a specific field of
the data source, as indicated by the DataField property. Once you select the
DataSource property, the DataField property will have a list of values available in
the drop-down combo box of the Object Inspector.

235 This is tied to the Steema TeeChart add-on available in Delphi.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 411

Customizing a Database Grid

Our first database example, called GridDemo, uses the COUNTRY.DB236 table from
the DBDEMOS database, which lists New World countries, along with each one’s
capital and population. Simply place a Table, a DataSource, and a DBGrid compo-
nent on a form and connect them. If you set the Active property of the table to True,
the data will appear in the form at design time. (This technique is usually called
live-data design237.) When a grid displays live data, you can even use its scroll bars
to navigate through the records.

At this point, you can already run the program and even edit the data of the data-
base table, making permanent changes. This is possible because the DBGrid
component’s Options property includes the flag dgEditing and the ReadOnly prop-
erty is set to False. This program also allows you to insert a new record in a given
position by pressing the Insert key, to append a new record at the end by going to
the last record and pressing , and to delete the current record by pressing
Ctrl+Del.

note Try using this program for a while, testing how it works when you toggle the various flags of the
Options property of the grid on and off. These flags determine the behavior of the grid, which
can vary a lot. You can also see the description of the various options in Delphi’s help file.

Besides the Options property, you can customize the DBGrid component with the
easy-to-use yet very powerful Columns property. This property is a collection, so you
can choose one of the items in the list and then set its property in the Object Inspec-
tor, as you can see in Figure 9.2.

You can easily choose the fields of the table you want to see in the grid as columns
and then set a number of column properties (color, font, width, alignment, and so
on) for each field and title properties, such as the caption, font, and colors. This
allows you to customize a grid easily, in a number of ways. Some of the more
advanced properties, such as ButtonStyle and DropDownRows, can be used to pro-
vide custom editors for the cells of a grid or a drop-down list.

236 This table remains available in multiple format, including FireDAC’s FDMemTable native for-
mat (with .fds extension).

237 Nowadays, the feature is generally indicated as “live-data at design time” and, after all of
these years, Delphi remains one of the few dev tools offering this very handy feature.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

412 - Chapter 9: Writing Database Applications

Figure 9.2: You can
edit the properties of
the Columns of a
DBGrid by selecting
one of the columns in
the collection editor
and using the Object
Inspector. Image from
the original book.

In the GridDemo example, I’ve changed the caption of the first column and the font
of the first and third. I’ve also chosen a dark gray background and a white font color
for the first column. I’ve also entered the names of a few continents in the PickList
string list of the Continent field. You can see the result in Figure 9.3.

Figure 9.3: The
DBGrid of the
GridDemo example has
a few customized
Columns, including a
PickList for the
continents. Image from
the original book.

note Notice that once you have defined the Columns property of the DBGrid, you can size the columns
at design time simply by dragging the lines separating them. The same capability is optionally
available at run time, and it can be set along with many others using the Options property of the
grid.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 413

To summarize the features of this simple example, here is an extract of the form
description file:

object Form1: TForm1
 ActiveControl = DBGrid1
 Caption = ‘Grid Demo’
 object DBGrid1: TDBGrid
 Align = alClient
 DataSource = DataSource1
 Columns = <
 item
 Alignment = taRightJustify
 Color = clBtnShadow
 FieldName = ‘Name’
 Font.Style = [fsBold]
 ReadOnly = True
 Title.Alignment = taRightJustify
 Title.Caption = ‘Country’
 Title.Font.Style = [fsBold]
 end
 item
 FieldName = ‘Capital’
 end
 item
 Expanded = False
 FieldName = ‘Continent’
 Font.Style = [fsItalic]
 PickList.Strings = (
 ‘Africa’
 ‘Asia’
 ‘Australia’
 ‘Europe’
 ‘North America’
 ‘South America’)
 end
 item
 FieldName = ‘Area’
 end
 item
 FieldName = ‘Population’
 end>
 end
 object Table1: TTable
 Active = True
 DatabaseName = ‘DBDEMOS’
 TableName = ‘COUNTRY.DB’
 end
 object DataSource1: TDataSource
 DataSet = Table1
 OnStateChange = DataSource1StateChange
 end
end

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

414 - Chapter 9: Writing Database Applications

The Table State

There are many more things you can do to customize grids, and we’ll explore some
of them in the next chapter, where we will also discuss how to add graphics to a
grid. For the moment, I want to add an extra feature (and some code) to the exam-
ple. If you look at the caption of the form in Figure 9.3, you’ll notice something new:
the title of the form indicates the status of the Table component. How do we get this
information? Simply by handling the OnStateChange event of the DataSource com-
ponent. In this event handler, the DemoGrid example merely outputs the current
status, determined by using a simple case statement:

procedure TForm1.DataSource1StateChange(Sender: TObject);
var
 Title: string;
begin
 case Table1.State of
 dsBrowse: Title := ‘Browse’;
 dsEdit: Title := ‘Edit’;
 dsInsert: Title := ‘Insert’;
 else
 Title := ‘Other state’;
 end;
 Caption := ‘Grid Demo - ‘ + Title;
end;

The code considers only the three states the Table component238 of this program can
have as the user interacts with the corresponding DBGrid.

Field-Oriented Data-Aware Controls

The GridDemo example works well, but we want to try using other controls, such as
edit boxes, and we want to see specific information rather than all the data in our
database. Before we really look at the core of the VCL database structure, by exam-
ining the TField components, I want to cover the usage of some of the data-aware
controls you can use to see and edit the value of a database field. The starting point
is the use of edit boxes.

238 Given the State property is part of the TDataSet base class, the same logic and code would
work for any TDataSet descendant, including the FDMemTable component.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 415

Using DBEdit Controls

The next example, called EditDemo, uses some DBEdit components and some
labels, along with the table and the data source. We also need to add a brand-new
component, the DBNavigator. Figure 9.4 shows the form of the EditDemo example
at design time (with live data).

Again, we need to connect the three data-aware controls to the data source by set-
ting their DataSource property, and we must also indicate a specific field for each of
the three edit boxes in their DataField property (Name, Capital, and Continent are
the fields for this example). If you have already connected the data source to the
table and the edit boxes to the data source, you can simply select a field in the list
displayed by the Object Inspector for the DataField property. When this connection
is made, if the Active property of the Table is set to True the values of the first
record’s fields appear automatically in the edit boxes (see Figure 9.4).

Figure 9.4: The three
DBEdit and the
DBNavigator
components of the
EditDemo example,
with live data. Image
from the original book.

Another step we can take is to disable some of the buttons of the DBNavigator con-
trol, by removing some of the elements of the VisibleButtons set.

note If you turn on its ShowHint property, the navigator will show a different fly-by hint for every but-
ton. You can provide a customized description of each of them, using the Hints string list. The
strings you insert are used for the buttons in order: the first string is used for the first button, the
second for the second, and so on. If some buttons are not visible, you can provide an empty string
as a placeholder.

In the EditDemo program, I’ve used only some of the buttons, disabling the delete
and refresh operations. I’ve also aligned the navigator to the top of the form and set
its Flat property to True to activate the flat button style. You can run it to test
whether it works properly, and look at the caption again: I’ve copied to this program

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

416 - Chapter 9: Writing Database Applications

the OnStateChange event handler of the GridDemo program’s DataSource compo-
nent.

Notice that when the program is running at the beginning or when you jump to the
first or last record of the table, two of the navigator’s buttons will be disabled auto-
matically. However, if you move step-by-step to the first or last record, the buttons
are disabled only when you try to move beyond those records. The navigator (or the
dataset, to be more precise) only realizes at this point that there are no more records
in that direction. Other buttons are automatically enabled and disabled when you
enter or exit the edit state.

Creating a Database Table

Before we can move to some other data-aware controls, we need to do an extra step.
In the first two examples of this chapter, I’ve used existing tables of the DBDEMOS
database, but for the following ones I need to create a table with specific types of
fields. For this reason, I’ll introduce here a topic we’ll return to later on: the creation
of new database tables.

Starting with version 4, Delphi allows you to set the definition of the fields of a table
—its internal structure—at design time, using the collection editor of the FieldDefs
property. You can see the settings I’ve used for the DbAware example in Figure 9.5.

Figure 9.5: The editor
of the field definitions
collection. Images from
the original book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 417

Having defined the fields, you can now right-click the table component and select
the Create Table command239. This creates the new table at design time. In this spe-
cific example, there is no need to do this, since the program creates the table when it
starts, unless the table already exists:

procedure TForm1.FormCreate(Sender: TObject);
begin
 if not Table1.Exists then
 Table1.CreateTable;
 Table1.Open;
end;

To make this code work, the Table component must save the definition of the fields
in the DFM file along with the other properties. This is done only if you set the
StoreDefs property of the table to True. In Table 9.1, you can see the table field defi-
nitions, and the following listing shows the initial portion of the corresponding
definitions in the DFM file.

Table 9.1: The Fields of the Workers Database Table

NAME DATATYPE SIZE

LastName ftString 20

FirstName ftString 20

Department ftSmallint

Branch ftString 20

Senior ftBoolean

HireDate ftDate

object Table1: TTable
 FieldDefs = <
 item
 Name = ‘LastName’
 DataType = ftString

239 A very similar mechanism is available for the FDMemTable component, which offers design
time commands for creating a table or a CreateDataset method. The same approach of us-
ing FieldDefs described in the following paragraphs applies to FDMemTable and other
datasets.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

418 - Chapter 9: Writing Database Applications

 Size = 20
 end
 item
 Name = ‘Department’
 DataType = ftSmallint
 end

This new database table, called Workers, is intended to store some data about the
employees of a company. (Note that calling it “Employee” might have caused a
name conflict or confusion with one of the predefined tables.)

note The effect of the StoreDefs property is more complex than it seems at first. If you right-click the
form, you’ll notice that its local menu offers an Update Table Definition option, along with the
expected Delete Table and Rename Table. That is, you can store the field definitions locally, but if
the structure of the physical table changes, you should then update this definition, as well. In pre-
vious versions of Delphi, the field definitions were invariably loaded from the database table at
run time; now you can preload them, speeding up the table opening. However, if the local and the
actual table definitions do not match, you can get in trouble.

As we’ve seen, the DbAware example creates the table at start-up, unless it was
already created. The program then opens up the table. To avoid having you type in
data to start using the program, I’ve added to the program a simple AddRandomData
method:

const
 FirstNames : array [1..10] of string =
 (‘John’, ‘Paul’, ‘Mark’, ‘Joseph’, ‘Bill’,
 ‘Peter’, ‘Tim’, ‘Ralph’, ‘Bob’, ‘Gary’);
 LastNames : array [1..10] of string =
 (‘Ford’, ‘Osborse’, ‘White’, ‘MacDonald’, ‘Lee’,
 ‘Young’, ‘Parker’, ‘Reed’, ‘Gates’, ‘Green’);
 NoDept = 3;
 NoBranch = 30;
 NewRecords = 10;

procedure TDbaForm.AddRandomData;
var
 I: Integer;
begin
 Randomize;
 for I := 1 to NewRecords do
 Table1.InsertRecord ([
 LastNames [Random (High (LastNames)) + 1],
 FirstNames [Random (High (FirstNames)) + 1],
 Random (NoDept) + 1,
 DbComboBox1.Items [Random (NoBranch)],
 Boolean (Random (2)),
 Date - Random (1000)]);
 ShowMessage (IntToStr (NewRecords) + ‘ added’);

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 419

end;

AddRandomData calls the InsertRecord method of the table, which adds new data in
a direct way—without setting the table in insert mode, setting the value of the fields,
and then posting the data. In other examples, we’ll see alternative approaches for
adding data to a database table. Notice also that for the “branches” field I’ve used
the list of values available in the associated data-aware combo box.

Listing Alternative Values

Now that I’ve created the table I can use it for creating a simple demo application of
some of the other data-aware controls available in Delphi. For example, we can con-
nect the Boolean field, Senior, with a DBCheckBox control. This allows a user to
change the status of the field by clicking the control and setting or removing the
check mark.

While this is quite trivial, using the components that list alternative values requires
a little extra effort. There are basically three components with this capability: the
DBListBox, the DBComboBox, and the DBRadioGroup. In general, all the three
components provide a selection, which saves the user some typing and reduces the
chance of input errors. If the three components seem similar, providing a list of
strings in the Items property, they do have some differences:

· The DBListBox component allows selection of predefined items (“closed selec-
tion”), but not text input, and can be used to list many elements. Generally it’s
best to show only about six or seven items, to avoid using up too much space on
the screen.

· The DBComboBox component can be used both for closed selection and for user
input. It also uses a smaller area of the form because the drop-down list is usu-
ally displayed only on request.

· The DBRadioGroup component allows only a closed selection, should be used
only for a limited number of alternatives, and allows a mapping of the display
values to different internal values, through the Values string list.

In the DbAware example I’ve used the combo box for the selection of a country and
a radio group for the selection for the department. This is actually saved in the data-
base with a code, so I’ve mapped it as follows:

object DBRadioGroup1: TDBRadioGroup
 Caption = ‘Department’
 DataField = ‘Department’

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

420 - Chapter 9: Writing Database Applications

 DataSource = DataSource1
 Items.Strings = (
 ‘Sales’
 ‘Accounting’
 ‘Production’
 ‘Management’)
 Values.Strings = (
 ‘1’
 ‘2’
 ‘3’
 ‘4’)
end

You can see an example of this program in Figure 9.6. Notice that the program is
based on a page control: moving to the second page, you can see the database data
inside a DBGrid. This should help you understand the mapping done by the Radio-
Group control. The other element is that the main page doesn’t allow you to edit the
hire date, which is displayed in a read-only DBText control. We’ll see how to handle
dates in later examples.

Figure 9.6: The
output of the DbAware
demo, which uses
check box, combo box,
and radio group data-
aware controls. Image
from the original book.

Accessing the Data Fields

Before we try to build more attractive and complex application examples, there are a
few more technical elements we should explore. Up to now, we have included all of
the fields in the source database tables. Suppose that we want to remove a field or
add a new one, such as calculated fields? In trying to solve these problems, we face a

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 421

more general question: How do we access the values—the fields—of the current
record from a program? How can we change them without direct editing by the
user?

The answer to all of these questions lies in the concept of field. Field components
(instances of class TField or of one of its subclasses) are non-visual components
that are fundamental for every Delphi database application. Data-aware controls are
directly connected to these Field objects, which correspond to database fields.

In the examples we have built up to now, Delphi automatically created the TField
classes at run time240. This happens each time the program opens a data set compo-
nent. These fields are stored in the Fields array property of tables and queries,
which is an array of fields. We can access these values in our program by number
(accessing the array directly) or by name (using the FieldByName method or the
array notation):

Table1.Fields[0].AsString
Table1.FieldByName(‘LastName’).AsString
Table1 [‘LastName’].AsString

As an alternative, the field components can be created at design time, using the
Fields editor. In this case, you can also set a number of properties for these fields at
design time. These properties affect the behavior of the data-aware controls using
them, both for visualization and for editing. When you define new fields at design
time, they are listed in the Object Inspector, just like any other component.

note Although the Fields editor is similar to the editors of the collections used by Delphi, fields are not
part of a collection. They are components created at design time, listed in its published section of
the form class, and available in the drop-down combo box at the top of the Object Inspector.

To open the Fields editor for a table, select a Table object, activate its local menu
with a right-click, and choose the Fields Editor command. Double-clicking the table
component produces the same effect. An empty Fields editor appears. Now you
have to activate the local menu of this editor, to access its capabilities. The simplest
operation you can do is to select the Add command, which allows you to add any
other fields in the database table to the list of fields. Figure 9.7 shows the Add Fields
dialog box, which lists all the fields that are available in a table. These are the data-
base table fields that are not already present in the list of fields in the editor.

The Define command of the Fields editor, instead, lets you define a new calculated
field, a lookup field, or a field with a modified type. In this dialog box, you can enter

240 The concept of TField and the role of these objects in Delphi database application hasn’t
changed at all, even if some new features have been added over the years.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

422 - Chapter 9: Writing Database Applications

a descriptive field name, which might include blank spaces. Delphi generates an
internal name—the name of the field component—that you can further customize.
Next, select a data type for the field. If this is a calculated field or a lookup field, and
not just a copy of a field redefined to use a new data type, simply check the proper
radio button. We’ll see how to define a calculated field in the section “Adding a Cal-
culated Field” and a lookup field in the next chapter.

Figure 9.7: The Fields
editor with the Add
Fields dialog box.
Images from the
original book.

note A TField component has both a Name property and a FieldName property. The Name property
is the usual component name. The FieldName property is either the name of the column in the
database table or the name you define for the calculated field. It can be more descriptive than the
Name, and it allows blank spaces. The FieldName property of the TField component is copied
to the DisplayLabel property by default, but this field name can be changed to any suitable
text. It is used, among other things, to search a field in the FieldByName method of the
TDataSet class and when using the array notation.

All of the fields that you add or define are included in the Fields editor and can be
used by data-aware controls or displayed in a database grid. If a field of the original
database table is not in this list, it won’t be accessible. When you use the Fields edi-
tor, Delphi adds the declaration of the available fields to the class of the form, as
new components (much as the Menu Designer adds TMenuItem components to the
form). The components of the TField class, or more specifically its subclasses, are
fields of the form, and you can refer to these components directly in the code of your
program to change their properties at run time or to get or set their value, as in the
expression:

Table1LastName.AsString

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 423

In the Fields editor, you can also drag the fields to a different position to change
their order. Proper field ordering is particularly important when you define a grid,
which arranges its columns using this order.

note An even better feature of the Fields editor is that you can drag fields from this editor to the sur-
face of a form and have Delphi automatically create a corresponding data-aware control (such as
a DBEdit, a DBMemo, or a DBImage). The type of control created depends on the data type of the
field and on eventual definitions in the Data Dictionary (as discussed in the next chapter). This is
a very fast way to generate custom forms, and I suggest you try it out if you’ve never used it
before. This is my preferred way to build database-related forms, much better than using the
Database Form Wizard.

The Hierarchy of Field Classes

Before we look at an example, let’s go over the use of the TField class. The impor-
tance of this component should not be underestimated. Although it is often used
behind the scenes, its role in database applications is fundamental. As I already
mentioned, even if you do not define specific objects of this kind, you can always
access the fields of a table or a query using their Fields array property, the
FieldValues indexed property, or the FieldByName method. Both the Fields prop-
erty and the FieldByName function return an object of type TField, so you
sometimes have to use the as operator to downcast their result to its actual type
(like TFloatField or TDateField) before accessing specific properties of these sub-
classes.

The FieldAcc example is a simple extension of a form generated by the Database
Form Wizard. I’ve added to it three speed buttons in the toolbar panel, accessing
various Field properties at run time. The first button changes the formatting of the
population column of the grid. To do this, we have to access the DisplayFormat
property, a specific property of the TFloatField class. For this reason we have to
write:

procedure TForm2.SpeedButton1Click(Sender: TObject);
begin
 (Table1.FieldByName (‘Population’) as
 TFloatField).DisplayFormat := ‘###,###,###’;
end;

When you set field properties related to data input or output, the change applies to
every record in the table. When you set properties related to the value of the field,
instead, you always refer to the current record only. For example, we can output the
population of the current country in a message box by writing:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

424 - Chapter 9: Writing Database Applications

procedure TForm2.SpeedButton2Click(Sender: TObject);
begin
 ShowMessage (string (Table1 [‘Name’]) +
 ‘: ‘ + string (Table1 [‘Population’]));
end;

When you access the value of a field, you can use a series of As properties to handle
the current field value using a specific data type (if this is available, otherwise an
exception is raised):

AsBoolean: Boolean;
AsDateTime: TDateTime;
AsFloat: Double;
AsInteger: LongInt241;
AsString: string;
AsVariant: Variant;

These properties can be used to read or change the value of the field. Changing the
value of a field is possible only if the DataSet is in edit mode. As an alternative to the
As properties indicated above, you can access the value of a field by using its Value
property, which is defined as a Variant.

Most of the other properties of the TField component, such as Alignment,
DisplayLabel, DisplayWidth, and Visible, reflect elements of the field’s user inter-
face and are used by the various data-aware controls, particularly DBGrid. In the
FieldAcc example, clicking the third speed button changes the Alignment of every
field:

procedure TForm2.SpeedButton3Click(Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to Table1.FieldCount - 1 do
 Table1.Fields[I].Alignment := taCenter;
end;

This affects the output of the DBGrid, and of the DBEdit control I’ve added to the
toolbar, which shows the name of the country. You can see this effect, along with the
new display format, in Figure 9.8.

241 The type of AsInteger is now Integer.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 425

Figure 9.8: The
output of the FieldAcc
example after the
Center and Format
buttons have been
pressed. Image from
the original book.

There are several field class types in the VCL. Delphi automatically uses one of them
depending on the data definition in the database, when you open a table at run time
or when you use the Fields editor at design time. Table 9.2 shows the complete list
of subclasses of the TField class242.

Table 9.2: The Subclasses of TField (the field types in bold are new to Delphi 5 and
relate with ADO support)

SUBCLASS BASE CLASS DEFINITION

TADTField TObjectField An ADT (Abstract Data Type) field, corresponding to
an object field in an object relational database.

TAggregateField TField An aggregate field represents a maintained
aggregate. It is used in the ClientDataSet component
and discussed in Chapter 21.

TArrayField TObjectField An array of objects in an object relational database.

TAutoIncField TIntegerField Whole positive number connected with a Paradox
auto-increment field of a table, a special field
automatically assigned a different value for each
record. Note that Paradox AutoInc fields do not
always work perfectly, as discussed in the next
chapter.

242 There have been only a few additions to the list of TField descendant data types, including
TSQLTimeStampField and TFMTBCDField.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

426 - Chapter 9: Writing Database Applications

TBCDField TNumericField Real numbers, with a fixed number of digits after the
decimal point.

TBinaryField TField Generally not used directly. This is the base class of
the next two classes.

TBlobField TField Binary data and no size limit (BLOB stands for
Binary Large OBject). The theoretical maximum
limit is 2GB.

TBooleanField TField Boolean value.

TBytesField TBinaryField Arbitrary data with a large (up to 64K characters)
but fixed size.

TCurrencyField TFloatField Currency values, with the same range as the new
Real data type.

TDataSetField TObjectField An object corresponding to a separate table in an
object relational database.

TDateField TDateTimeField Date value.

TDateTimeField TField Date and time value.

TFloatField TNumericField Floating-point numbers (8 byte).

TGraphicField TBlobField Graphic of arbitrary length.

TGuidField TStringField A field representing a COM Globally Unique
Identifier, part of the ADO support.

TIDispatchField TInterfaceField A field representing pointers to IDispatch COM
interfaces, part of the ADO support.

TIntegerField TNumericField Whole numbers in the range of long integers (32
bits).

TInterfaceField TField Generally not used directly. This is the base class of
fields that contain pointers to interfaces
(IUnknown) as data.

TLargeIntField TIntegerField Very large integers (64 bit).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 427

TMemoField TBlobField Text of arbitrary length.

TNumericField TField Generally not used directly. This is the base class of
all the numeric field classes.

TObjectField TField Generally not used directly. The base class for the
fields providing support for object relational
databases.

TReferenceField TObjectField A pointer to an object in an object relational
database.

TSmallIntField TIntegerField Whole numbers in the range of integers (16 bits).

TStringField TField Text data of a fixed length (up to 8192 bytes).

TTimeField TDateTimeField Time value.

TVarBytesField TBytesField Arbitrary data, up to 64K characters. Very similar to
the TBytes-Field base class.

TVariantField TField A field representing a variant data type, part of the
ADO support.

TWideStringField TStringField A field representing a Unicode (16-bit per character)
string.

TWordField TIntegerField Whole positive numbers in the range of words or
unsigned integers (16 bits).

The availability of any particular field type, and the correspondence with the data
definition, depends on the database in use. For example, InterBase doesn’t support
BCD, so you’ll never get a BCDField for a table on the InterBase server. This is par-
ticularly true for the new field types that provide support for object relational
databases.

Adding a Calculated Field

Now that you’ve been introduced to TField objects and seen an example of their
run-time use, it is time to build a simple example based on the declaration of field
objects at design time using the Fields editor. We can start again from the first

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

428 - Chapter 9: Writing Database Applications

example we’ve built, GridDemo, and add a calculated field. The COUNTRY.DB data-
base table we are accessing has both the population and the area of each country, so
we can use this data to compute the population density.

To build the new example, named Calc, select the Table component in the form, and
open the Fields editor (using the form’s SpeedMenu). In this editor, choose the Add
command, and select some of the fields. (I’ve decided to include them all.) Now
select the Define command, and enter a proper name and data type (TFloatField)
for the new calculated field, as you can see in Figure 9.9243.

note It is obvious that as you create some field components at design time using the Fields editor, the
fields you skip won’t get a corresponding object. What might not be obvious is that the fields you
skip will not be available even at run time, with Fields or FieldByName. When a program
opens a table at run time, if there are no design-time field components, Delphi creates field
objects corresponding to the table definition. If there are some design-time fields, however, Del-
phi uses those fields without adding any extra ones.

Figure 9.9: The
definition of a
calculated field in the
Calc example. Image
from the original book.

Of course, we also need to provide a way to calculate the new field. This is accom-
plished in the OnCalcFields event of the Table component, which has the following
code (at least in a first version):

procedure TForm2.Table1CalcFields(DataSet: TDataSet);
begin

243 There is now a second flavor of calculated fields, called internally calculated fields and avail-
able for component with memory storage (like FDMemTable and ClientDataSet). The differ-
ence is that in this second case the calculated value is kept in memory and used for display.
Rather than calculating the value each time the record becomes active, the calculation is per-
formed only the first time or when one of the other fields of the same record changes.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 429

 Table1PopulationDensity.Value :=
 Table1Population.Value / Table1Area.Value;
end;

Everything fine? Not at all! If you enter a new record and do not set the value of the
population and area, or if you accidentally set the area to zero, the division will raise
an exception, making it quite problematic to continue using the program. As an
alternative, we could have handled every exception of the division expression and
simply set the resulting value to zero:

 try
 Table1PopulationDensity.Value :=
 Table1Population.Value / Table1Area.Value;
 except
 on Exception do
 Table1PopulationDensity.Value := 0;
 end;

However, we can do even better. We can check if the value of the area is defined—if
it is not null—and if it is not zero. It is better to avoid using exceptions when you can
anticipate the possible error conditions:

 if not Table1Area.IsNull and
 (Table1Area.Value <> 0) then
 Table1PopulationDensity.Value :=
 Table1Population.Value / Table1Area.Value
 else
 Table1PopulationDensity.Value := 0;

The code of the Table1CalcFields method above (in each of the three versions)
accesses some fields directly. This is possible because I used the Fields editor, and it
automatically created the corresponding field declarations, as you can see in this
excerpt of the interface declaration of the form:

type
 TCalcForm = class(TForm)
 Table1: TTable;
 Table1PopulationDensity: TFloatField;
 Table1Area: TFloatField;
 Table1Population: TFloatField;
 Table1Name: TStringField;
 Table1Capital: TStringField;
 Table1Continent: TStringField;
 procedure Table1CalcFields(DataSet: TDataset);
 ...

Each time you add or remove fields in the Fields editor, you can see the effect of
your action immediately in the grid present in the form. Of course, you won’t see the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

430 - Chapter 9: Writing Database Applications

values of a calculated field at design time; they are available only at run time,
because they result from the execution of compiled Pascal code.

Since we have defined some components for the fields, we can use them to custom-
ize some of the visual elements of the grid. For example, to set a display format that
adds a comma to separate thousands, we can use the Object Inspector to change the
DisplayFormat property of some field components to “###,###,###”. This change
has an immediate effect on the grid at design time.

note The display format I’ve just mentioned (and used in the previous example) uses the Windows
International Settings to format the output. When Delphi translates the numeric value of this field
to text, the comma in the format string is replaced by the proper ThousandSeparator charac-
ter. For this reason, the output of the program will automatically adapt itself to different
International Settings. On computers that have the Italian configuration, for example, the comma
is replaced by a period.

After working on the table components and the fields, I’ve customized the DBGrid
using its Columns property editor. I’ve set the Population Density column to read-
only and set its ButtonStyle property to cbsEllipsis, to provide a custom editor.
When you set this value, a small button with an ellipsis is displayed when the user
tries to edit the grid cell. Pressing the button invokes the OnEditButtonClick event
of the DBGrid:

procedure TCalcForm.DBGrid1EditButtonClick(Sender: TObject);
begin
 MessageDlg (Format (
 ‘The population density (%.2n)’#13 +
 ‘is the Population (%.0n)’#13 +
 ‘divided by the Area (%.0n).’#13#13 +
 ‘Edit these two fields to change it.’,
 [Table1PopulationDensity.AsFloat,
 Table1Population.AsFloat,
 Table1Area.AsFloat]),
 mtInformation, [mbOK], 0);
end;

Actually, I haven’t provided a real editor, but rather a message describing the situa-
tion, as you can see in Figure 9.10, which shows the values of the calculated fields.
To create an editor, you might build a secondary form to handle special data entries.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 431

Figure 9.10: The
output of the Calc
example. Notice the
Population Density
calculated column, the
ellipsis button, and the
message displayed
when you select it.
Image from the
original book.

Searching and Adding the Fields of a
Table

TField components can be used to access data and manipulate a table at run time.
We have seen only a limited example of direct data access; in the previous example,
we used the value of two fields to calculate a third one. Now we will build some sim-
ple examples that will allow us to use the fields to search elements in a table,
operate on the values, and access information about the tables of a database. There
are many more possible uses of field components, but this should give you an idea
of what can be done.

Looking for Records in a Table

For this example we need a new form, this time connected to EMPLOYEE.DB,
another of the sample Delphi tables. To prepare the form, you can use the Database

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

432 - Chapter 9: Writing Database Applications

Form Wizard or drag the fields from the Fields editor, an operation that will auto-
matically add the corresponding labels244.

note If you place the data-aware edit boxes inside a scroll box aligned to the client area, you can freely
resize the form without any problems. When the form becomes too small, scroll bars will appear
automatically in the area holding the edit boxes.

Instead of the default Delphi navigator component, we can add a standard Toolbar
control and connect the buttons to some of the predefined dataset actions available
in the ActionList component. I’ve simply added an ImageList to the form and con-
nected it to the ActionList, to let the image list receive the images for the standard
actions. Then I’ve added to the ActionList the predefined standard actions
TDataSetFirst, TDataSetLast, TDataSetNext, and TDataSetPrior, plus two normal
actions to host the custom search code.

Now you can simply connect the buttons of the toolbar with the corresponding
actions and add to the toolbar an edit box where the user can enter the name to
search for, as you can see in Figure 9.11. The buttons will carry out the proper action
when pressed, and they will be disabled when the data set is at its beginning or end.

The searching capabilities are activated by the two buttons connected with custom
actions. The first button is connected with the ActionGoto, used for an exact match,
and the second with ActionGoNear for a nearest search. In both cases, we want to
compare the text in the edit box with the LastName fields of the Employee table.

Figure 9.11: An
example of a best-
match search using the
Search application.
Image from the
original book.

244 In terms of the database form wizards, this has never been ported to recent data access li-
braries and is not available today. Notice, instead, that the ability to drag fields from the field
editor to the form to display a matching UI control is still available today. This is a very handy
and fast way to build a UI, but it’s little known and rarely used by Delphi developers. I’m really
not sure why, considering it can be configured (in code) including the UI controls mapping.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 433

The Table component has methods to accomplish this look up, such as GotoKey,
FindKey, GotoNearest, FindNearest, and Locate. The Locate method uses the opti-
mal access: if an index is available it uses the index for a faster search; otherwise, it
does a plain sequential search. To use the first group of search methods, you need to
set the IndexFieldNames property of the Table component to the proper value. (In
this case, you can directly select the string LastName;FirstName in the drop-down
list.)

The Find Methods

When the index is properly set, we can make the actual search. The simplest
approach is to use the FindNearest method for the approximate search and the
FindKey method to look for an exact match:

// goto
Table1.FindNearest ([EditName.Text]);

// go near
if not Table1.FindKey ([EditName.Text]) then
 MessageDlg (‘Name not found’, mtError, [mbOk], 0);

Both Find methods use as parameters an array of constants. Each array element
corresponds to an indexed field. In our case, we pass only the value for the first field
of the index, so the other fields will not be considered.

The Goto Methods

The FindNearest and FindKey methods are easy to use. To better understand how
they work, though, we can look at the usage of the GotoNearest and GotoKey meth-
ods. These last two methods, in fact, map very closely to the actual low-level BDE
calls. The simpler of the two is the best-guess search of the GotoNearest speed but-
ton:

// go near
Table1.SetKey;
Table1 [‘LastName’] := EditName.Text;
Table1.GotoNearest;

As you can see in this code, each search on a table is done in three steps: start up the
search state of the table, set a target value for each lookup field, and start the lookup
process, by moving the current record to the requested position.

The code used to call the other search method, using an exact-match algorithm, is
similar. The differences are in two statements:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

434 - Chapter 9: Writing Database Applications

// go to
Table1.SetKey;
Table1 [‘LastName’] := EditName.Text;
Table1.KeyFieldCount := 1;
if not Table1.GotoKey then
 MessageDlg (‘Name not found’, mtError, [mbOK], 0);

As I’ve mentioned before, this code requires a proper index for the table. Notice the
value set for the KeyFieldCount property, which indicates that I want to use just the
first of the two fields that contribute to the index. The second difference is that the
GotoNearest procedure always succeeds, moving the cursor to the closest match (a
closest match always exists, even if it is not very close). On the other hand, the
GotoKey method fails if no exact match is available, and you can check the return
value of this function, and eventually warn the user of the error.

FindKey performs exactly the same steps as the GotoKey version of the above code.
FindKey and GotoKey provide equivalent functionality, except that the former is eas-
ier to use and the latter provides for better error handling.

The Locate Method

If the table doesn’t have an index on the field you are searching for (at least for local
tables), you cannot use the two techniques above. A third, more general, technique
is to use the Locate method. This approach is very handy in any case, because if
there is an index on the field you are searching, Locate automatically uses it; other-
wise it does a plain (and slower) search.

Using Locate is quite simple: Just provide a first string with the fields you want to
search and a variant with the value or values you are searching for. To search for
multiple fields, you need an array of values. (You can create one with the
VarArrayCreate call.) Here is an example of its use, extracted again from the Search
program:

// goto
if not Table1.Locate (‘LastName’, EditName.Text, []) then
 MessageDlg (‘Name not found’, mtError, [mbOk], 0);

The Total of a Table Column

So far in our examples, the user can view the current contents of a database table
and manually edit the data or insert new records. Now we will see how we can
change some data in the table through the program code. The idea behind this
example is quite simple. The Employee table we have been using has a Salary field.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 435

A manager of the company could indeed browse through the table and change the
salary of a single employee. But what will be the total salary expense for the com-
pany? And what if the manager wants to give a 10 percent salary increase (or
decrease) to everyone?

These are the two aims of the Total example, which is an extension of the previous
program. The toolbar of this new example has two more buttons (and two related
actions) and a SpinEdit component. There are few other minor changes from the
previous example. I opened the Fields Editor of the table and removed the
Table1Salary field, which was defined as a TFloatField. Then I selected the New
Field command and added the same field, with the same name, but using the
TCurrencyField data type. This is not a calculated field; it’s simply a field converted
into a new (but equivalent) data type. Using this new field type the program will
default to a new output format, suitable for currency values.

Now we can turn our attention to the code of this new program. First, let’s look at
the code of the total action. This action lets you calculate the sum of the salaries of
all the employees, then edit some of the values, and compute a new total. Basically,
we need to scan the table, reading the value of the Table1Salary field for each
record:

begin
 Table1.First;
 while not Table1.EOF do
 begin
 Total := Total + Table1Salary.Value;
 Table1.Next;
 end;
end

This code works, as you can see from the output in Figure 9.12, but it has a number
of problems. One problem is that the record pointer is moved to the last record, so
the previous position in the table is lost. To avoid this problem, we need to store the
current position of the record pointer in the table and restore it at the end. This can
be accomplished using a table bookmark, a special variable storing the position of a
record in a database table. The traditional approach is to declare a variable of the
TBookmark data type, and initialize it while getting the current position from the
table:

var
 Bookmark: TBookmark;
begin
 Bookmark := Table1.GetBookmark;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

436 - Chapter 9: Writing Database Applications

Figure 9.12: The
output of the Total
program, showing the
total salaries of the
employees. Image from
the original book.

At the end of the ActionTotalExecute method, we can restore the position and
delete the bookmark with the following two statements:

Table1.GotoBookmark (Bookmark);
Table1.FreeBookmark (Bookmark);

As a better alternative, we can use the Bookmark property of the TDataset class,
which refers to a bookmark that is disposed of automatically. (This is technically
implemented as an opaque string, a structure subject to string lifetime manage-
ment, but it is not a string, so you’re not supposed to look at what’s inside it.) This is
how you can modify the code above:

var
 Bookmark: TBookmarkStr;
begin
 Bookmark := Table1.Bookmark;
 ...
 Table1.Bookmark := Bookmark;

Another side effect of the program is that, although we will restore the record
pointer to the initial position, we might see the records scrolling while the routine
browses through the data. This can be avoided by disabling the controls connected
with the table during browsing. The table has a DisableControls method we can
call before the while loop starts and an EnableControls method we can call at the
end, after the record pointer is restored.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 437

note Disabling the data-aware controls connected with a table during long operations not only
improves the user interface (since the output is not changing constantly), it also speeds up the
program considerably. In fact, the time spent to update the user interface is much greater than
the time spent performing the calculations. To test this, try commenting out the
DisableControls and EnableControls methods of the Total example, and see the speed dif-
ference.

Finally, we face some dangers from errors in reading the table data, particularly if
the program were reading the data from a server using a network. If any problem
occurs while retrieving the data, an exception takes place, the controls remain dis-
abled, and the program cannot resume its normal behavior. So we should use a try-
finally block. Actually, if you want to make the program 100 percent error-proof
you should use two nested try-finally blocks. Including this change and the two
discussed above, here is the resulting code:

procedure TSearchForm.ActionTotalExecute(Sender: TObject);
var
 Bookmark: TBookmarkStr;
 Total: Real;
begin
 Bookmark := Table1.Bookmark;
 try
 Table1.DisableControls;
 Total := 0;
 try
 Table1.First;
 while not Table1.EOF do
 begin
 Total := Total + Table1Salary.Value;
 Table1.Next;
 end;
 finally
 Table1.EnableControls;
 end
 finally
 Table1.Bookmark := Bookmark;
 end;
 MessageDlg (‘Sum of new salaries is ‘ +
 Format (‘%m’, [Total]), mtInformation, [mbOK], 0);
end;

I’ve written this code to show you an example of a loop to browse the contents of a
table, but keep in mind that there is an alternative approach based on the use of a
SQL query returning the sum of the values of a field.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

438 - Chapter 9: Writing Database Applications

note When you use a SQL server, the speed advantage of a SQL call to compute the total can be very
large, since you don’t need to move all the data of each field from the server to the client com-
puter. The server sends the client only the final result.

Editing a Table Column

The code of the increase action is similar to the one we have just seen. The
ActionIncreaseExecute method also scans the table, computing the total of the
salaries, as the previous method did. Although it has just two more statements,
there is a key difference. When you increase the salary, you actually change the data
in the table. The two key statements are within the while loop:

while not Table1.EOF do
begin
 Table1.Edit;
 Table1Salary.Value := Round (Table1Salary.Value *
 SpinEdit1.Value) / 100;
 Total := Total + Table1Salary.Value;
 Table1.Next;
end;

The first statement brings the table into edit mode, so that changes to the fields will
have an immediate effect. The second statement computes the new salary by multi-
plying the old one by the value of the SpinEdit component (by default, 105) and
dividing it by 100. That’s a 5 percent increase, although the values are rounded to
the nearest dollar. With this program, you can change salaries by any amount—even
double the salary of each employee—with the click of a button.

note Notice that the table enters the edit mode every time the while loop is executed. This is because
in a dataset, edit operations can take place only one record at a time. You must finish the edit
operation, calling Post or moving to a different record as in the code above. At that time, if you
want to change another record, you have to enter edit mode once more.

Database Application with Standard
Controls

Although it is generally faster to write Delphi applications based on data-aware con-
trols, this is certainly not required. When you need to have very precise control over

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 439

the user interface of a database application, you might want to customize the trans-
fer of the data from the field objects to the visual controls. My personal view is that
this is necessary only in very specific cases, as you can customize the data-aware
controls extensively by setting the properties and handling the events of the field
objects. However, trying to work without the data-aware controls should help you
understand the default behavior of Delphi, and it will help me introduce some of the
database-related events (discussed in the sections “Database Events” and “Field
Events”).

The development of an application not based on data-aware controls can follow two
different approaches. You can mimic the standard Delphi behavior in code, possibly
departing from it in specific cases, or you can go for a much more customized
approach. I’ll demonstrate the first technique in the NonAware example and the lat-
ter in the SendToDb example.

Mimicking Delphi Data-Aware Controls

If you want to build an application that doesn’t use data-aware controls but behaves
like a standard Delphi application, you can simply write event handlers for the oper-
ations that would be performed automatically by data-aware controls245. Basically
you need to place the data set in edit mode as the user changes the content of the
visual controls, and update the field objects of the data set as the user exits from the
controls, moving the focus to another element.

note This approach can be handy for integrating a control that’s not data-aware, such as a Date-
TimePicker component, into a standard application.

The other element of the NonAware example is another list of buttons correspond-
ing to some of those in the DBNavigator control. The five buttons are connected to
five methods of the table component: Next, Previous, Insert, Cancel, and Delete.
This is a summary of the Delphi form file:

object Form1: TForm1
 Caption = ‘Non Aware’
 // 5 labels omitted
 object EditName: TEdit
 Text = ‘EditName’
 OnExit = EditNameExit

245 The additional alternative available today is the use of Live Bindings to associated database
fields and regular (non data-aware) Ui controls.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

440 - Chapter 9: Writing Database Applications

 OnKeyPress = EditKeyPress
 end
 object EditCapital: TEdit...
 object EditPopulation: TEdit...
 object EditArea: TEdit...
 object ComboContinent: TComboBox
 Items.Strings = (
 ‘South America’
 ‘North America’
 ‘Europe’
 ‘Asia’
 ‘Africa’)
 Text = ‘ComboContinent’
 OnDropDown = ComboContinentDropDown
 OnExit = ComboContinentExit
 OnKeyPress = EditKeyPress
 end
 // 5 buttons omitted
 object StatusBar1: TStatusBar
 SimplePanel = True
 end
 object DataSource1: TDataSource
 DataSet = Table1
 OnStateChange = DataSource1StateChange
 OnDataChange = DataSource1DataChange
 end
 object Table1: TTable
 Active = True
 AfterInsert = Table1AfterInsert
 BeforePost = Table1BeforePost
 DatabaseName = ‘DBDEMOS’
 TableName = ‘COUNTRY.DB’
 // 5 field objects omitted
 end
end

As you can see in the listing above, the program has several event handlers we’ve
not used for past applications using data-aware controls. First of all, we have to
show the data of the current record in the visual controls (as in Figure 9.13), by han-
dling the OnDataChange event of the DataSource1 component:

procedure TForm1.DataSource1DataChange(Sender: TObject; Field:
TField);
begin
 EditName.Text := Table1Name.AsString;
 EditCapital.Text := Table1Capital.AsString;
 ComboContinent.Text := Table1Continent.AsString;
 EditArea.Text := Table1Area.AsString;
 EditPopulation.Text := Table1Population.AsString;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 441

Figure 9.13: The
output of the
NonAware example in
Browse mode. The
program manually
fetches the data every
time the current record
changes. Image from
the original book.

The handler of the OnStateChange event of the control, instead, uses some code
we’ve already seen in the GridDemo example. This time, the status of the table is
displayed in a status bar control. As the user starts typing in one of the edit boxes or
drops down the combo box list, the program sets the table in edit mode:

procedure TForm1.EditKeyPress(Sender: TObject; var Key: Char);
begin
 if not (Table1.State in [dsEdit, dsInsert]) then
 Table1.Edit;
end;

This method is connected with the OnKeyPress event of the five components and is
similar to the OnDropDown event handler of the combo box. As the user leaves one of
the visual controls, the handler of the OnExit event copies the data to the corre-
sponding field, as in this case:

procedure TForm1.EditCapitalExit(Sender: TObject);
begin
 if (Table1.State = dsEdit) or (Table1.State = dsInsert) then
 Table1Capital.AsString := EditCapital.Text;
end;

The operation takes place only if the table is in Edit mode; that is, only if the user
has typed in this or another control. This is not really ideal, because extra operations
are done even if the text of the edit box didn’t change, but the extra steps happen
fast enough not to be a concern. For the first edit box, we check the text before copy-
ing it, raising an exception if the edit box is empty:

procedure TForm1.EditNameExit(Sender: TObject);
begin

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

442 - Chapter 9: Writing Database Applications

 if (Table1.State = dsEdit) or (Table1.State = dsInsert) then
 if EditName.Text <> ‘’ then
 Table1Name.AsString := EditName.Text
 else
 begin
 EditName.SetFocus;
 raise Exception.Create (‘Undefined Country’);
 end;
end;

An alternative approach for testing the value of a field is to handle the BeforePost
event of the data set (with the effect shown in Figure 9.14). Keep in mind that in this
example the posting operation is not handled by a specific button but takes place as
soon as a user moves to a new record or inserts a new one:

procedure TForm1.Table1BeforePost(DataSet: TDataSet);
begin
 if Table1Area.Value < 100 then
 raise Exception.Create (‘Area too small’);
end;

In each of these cases, an alternative to raising an exception is to set a default value.
However, if a field has a default value it is better to set it up front, so that a user can
see which value will be sent to the database. To accomplish this, you can handle the
AfterInsert event of a data set, which is fired immediately after a new record has
been created (we could have used the OnNewRecord event, as well):

procedure TForm1.Table1AfterInsert(DataSet: TDataSet);
begin
 Table1Continent.Value := ‘Asia’;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 443

Figure 9.14: The
error message
displayed when the
value of the area is too
small. Image from the
original book.

Sending Requests to the Database

You can further customize the user interface of your application if you decide not to
handle the same sequence of editing operations as in standard Delphi data-aware
controls. This allows you complete freedom, although there might be some side
effects (such as limited ability to handle concurrency, which is something I’ll discuss
in the next chapter).

For this new example, I’ve replaced the first edit box with another combo box, and
replaced all the buttons related to table operations (which corresponded to DBNavi-
gator buttons) with two custom ones, used to get the data from the database and
send an update to it. To underline the difference of this example, I’ve even removed
the DataSource component.

The GetData method, connected with the corresponding button, simply gets the
fields corresponding to the record indicated in the first combo box:

procedure TForm1.GetData;
begin
 Table1.FindNearest ([ComboName.Text]);
 ComboName.Text := Table1Name.AsString;
 EditCapital.Text := Table1Capital.AsString;
 ComboContinent.Text := Table1Continent.AsString;
 EditArea.Text := Table1Area.AsString;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

444 - Chapter 9: Writing Database Applications

 EditPopulation.Text := Table1Population.AsString;
end;

This method is called whenever the user presses the button, selects an item of the
combo box, or presses the Enter key while in the combo box:

procedure TForm1.ComboNameClick(Sender: TObject);
begin
 GetData;
end;

procedure TForm1.ComboNameKeyPress(Sender: TObject; var Key: Char);
begin
 if Key = #13 then
 GetData;
end;

To make this example work smoothly, at start-up the combo box is filled with all the
names of the countries of the table:

procedure TForm1.FormCreate(Sender: TObject);
begin
 // fill the list of names
 Table1.Open;
 while not Table1.Eof do
 begin
 ComboName.Items.Add (Table1Name.AsString);
 Table1.Next;
 end;
end;

With this approach, the combo box becomes a sort of selector of the record, as you
can see in Figure 9.15. Notice that thanks to this selection, the program doesn’t need
navigational buttons.

Finally, the user can change the values of the controls and press the Send button.
The code to be executed depends on whether the operation is an update or an insert.
We can determine this by looking at the name (although with this code, a wrong
name cannot be modified any more):

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 445

Figure 9.15: In the
SendToDb example,
you can select the
record you want to see
in a combo box. Image
from the original book.

procedure TForm1.SendData;
begin
 // raise an exception if there is no name
 if ComboName.Text = ‘’ then
 raise Exception.Create (‘Insert the name’);

 // check if the record is already in the table
 if Table1.FindKey ([ComboName.Text]) then
 begin
 // modify found record
 Table1.Edit;
 Table1Capital.AsString := EditCapital.Text;
 Table1Continent.AsString := ComboContinent.Text;
 Table1Area.AsString := EditArea.Text;
 Table1Population.AsString := EditPopulation.Text;
 Table1.Post;
 end
 else
 begin
 // insert new record
 Table1.InsertRecord ([ComboName.Text,
 EditCapital.Text, ComboContinent.Text,
 EditArea.Text, EditPopulation.Text]);
 // add to list
 ComboName.Items.Add (ComboName.Text)
 end;

Before sending the data to the table, you can do any sort of validation test on the
values. In this case, it doesn’t make much sense to handle the events of the database
components, because we have full control on when the update or insert operation is
done.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

446 - Chapter 9: Writing Database Applications

Database Events

To further illustrate how you can use the events of a database application, I’ve writ-
ten a simple program that logs all the events being fired. This program handles all of
the events of a table and a data source component (although some of these events
won’t actually be executed, unless you add some extra code, as described later). For
each event, I simply send its description to a list box, with the effect you can see in
Figure 9.16.

Figure 9.16: The
output of the DbEvts
program, which logs all
the events related to
database components.
Image from the
original book.

Most of the event handlers simply display the name of the component and that of
the event, as in

procedure TForm1.Table1AfterEdit(DataSet: TDataset);
begin
 AddToList (‘Table: AfterEdit’);
end;

The field events are slightly more complex, but they use a single handler for the var-
ious field components:

procedure TForm1.FieldChange(Sender: TField);
begin
 AddToList (‘Field ‘ + Sender.FieldName + ‘: OnChange’);
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 447

The form’s AddToList method adds a new item to the list box and selects it, auto-
matically scrolling the list if required:

procedure TForm1.AddToList(Str: string);
begin
 // add item and select it
 Listbox1.ItemIndex := Listbox1.Items.Add (Str);
end;

Finally, the program has a pop-up menu connected to the list box to clear the list or
save the items to a file. The menu also has a command you can use to add a blank
line, thus separating blocks of events. This operation is also done automatically by a
timer, which adds a blank line to the list box unless the last item is already an empty
string. This makes the output more readable, as you can see in Figure 9.16.

It is very important to study the output of this program as well as its code. You can
try doing all the various operations on the table using the DBGrid, such as inserting,
editing, and deleting records, and see the corresponding effect in terms of events
fired by the VCL components. To see even more events, you can set the Filtered
property of the table to True, define a calculated field, try to cause errors (for exam-
ple, by duplicating the value of the name field), add a check box to open or close the
table, and so forth.

Field Events

The DbEvts program shows the calls to the OnChange and OnValidate events of the
field objects. Two other events, OnSetText and OnGetText, are not shown, because
the handlers of these events are not simply called to indicate that an operation
occurred. On the contrary, their event handler must perform the operation of get-
ting data from or setting it to the corresponding field objects.

These two events are quite special, and their use is not as simple as it might seem at
first sight. For this reason, they require a separate example, named FldText. This is
only a slight revision of the DbAware example described earlier in this chapter,
replacing the DBRadioGroup control with a DBListbox control. The problem is that
a DBListBox control directly connects with a string field, while I want to connect it
with an integer field, with each value indicating an option. Of course, I don’t want a
user to see or select a number, so I have to map the numbers stored in the database
to the strings visible on the screen. In the earlier example, the DBRadioGroup con-
trol provided that mapping. Now I have to use an alternative approach.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

448 - Chapter 9: Writing Database Applications

In the FldText example, the Department field has two handlers for the OnGetText
and OnSetText events. In the OnGetText event handler you can extract the numeric
value of the Sender field and set the value of the Text reference parameter:

procedure TDbaForm.Table1DepartmentGetText(Sender: TField;
 var Text: String; DisplayText: Boolean);
begin
 case Sender.AsInteger of
 1: Text := ‘Sales’;
 2: Text := ‘Accounting’;
 3: Text := ‘Production’;
 4: Text := ‘Management’;
 else
 Text := ‘[Error]’;
 end;
end;

note In the code of the OnGetText event handler you cannot refer to the text of the field, for example,
using the DisplayText property or the GetData method, since they would call the OnGetText
event, in an infinite recursion.

In the OnSetText event handler you can examine the string and decide the value of
the field, according to the conversion rule, in this case a simple mapping of values
done with an if-then-else statement:

procedure TDbaForm.Table1DepartmentSetText(Sender: TField;
 const Text: String);
begin
 if Text = ‘Sales’ then
 Sender.Value := 1
 else if Text = ‘Accounting’ then
 Sender.Value := 2
 else if Text = ‘Production’ then
 Sender.Value := 3
 else if Text = ‘Management’ then
 Sender.Value := 4
 else
 raise Exception.Create (
 ‘Error in Department field conversion’);
end;

The effect is that not only is the value visible in the DBListBox (as you can see in
Figure 9.17), it also shows up in the DBGrid. By contrast, in the DbAware example,
the grid displayed the numeric value.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 449

Figure 9.17: The
output of the FldText
example, which
demonstrates the use
of the OnGetText and
OnSetText events of
the field objects. Image
from the original book.

Editing Dates with a Calendar

As a final example of the use of non–data-aware controls, the DbDates application
shows how to use a MonthCalendar component to handle dates with a nice graphi-
cal component instead of a plain edit box. This example is based on the Events table
from the DBDemos database, which lists Olympic events.

This example uses (for the first time) a DBImage control, with the following settings
(whose effect is illustrated in Figure 9.18):

object DBImage1: TDBImage
 DataField = ‘Event_Photo’
 DataSource = DataSource1
 Stretch = True
end

note Graphic, memo, and BLOB fields in Delphi are handled exactly like other fields. Just connect the
proper editor or viewer, and most of the work is done behind the scenes by the system.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

450 - Chapter 9: Writing Database Applications

Figure 9.18: The
selection of a date with
the monthly calendar.
Image from the
original book.

Although the DBImage control works with no extra effort on our part, we must con-
nect the MonthCalendar control with the corresponding field by handling two
events of the DataSource control:

procedure TForm1.DataSource1DataChange(Sender: TObject; Field:
TField);
begin
 MonthCalendar1.Date := Table1Event_Date.Value;
end;

procedure TForm1.DataSource1UpdateData(Sender: TObject);
begin
 Table1Event_Date.Value := MonthCalendar1.Date;
end;

Besides copying the data back and forth, with the code listed above, the program
must also put the table into edit mode as the user clicks the calendar control. The
most obvious approach is to write a handler for the OnClick event of the control:

procedure TForm1.MonthCalendar1Click(Sender: TObject);
begin
 Table1.Edit;
end;

However, this code doesn’t work properly. As you set the table in edit mode, the
OnDataChange event is executed once more, resetting the selection in the calendar.
The overall effect is that the user’s first click doesn’t change the selection. To avoid
this problem we can set a flag in the OnClick event handler and test it in the

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 451

OnDataChange event handler, or we can temporarily disconnect the second event
handler. In the following code, I’ve taken the second approach:

procedure TForm1.MonthCalendar1Click(Sender: TObject);
begin
 // disconnect handler
 DataSource1.OnDataChange := nil;
 // set table in edit mode
 Table1.Edit;
 // reconnect handler
 DataSource1.OnDataChange := DataSource1DataChange;
end;

Exploring the Tables of a Database

In our examples so far, we have always accessed a database table by setting its name
at design time. But what if you do not know which table your program will be con-
nected to? At first, you might think that if you do not know the details of the
database at design time, you won’t be able to create forms and operate on the table.
This is not true. Setting everything at design time is certainly easier. Changing
almost anything at run time requires you to write more code. This is what I’ve done
in the next example, called Tables, which demonstrates how to access the list of
databases available to the Borland Database Engine246, how to access the list of the
tables for each database, and how to select which fields to view from a specific table.

Choosing a Database and a Table at Run Time

For the Tables example, I’ve prepared a form with a combo box you can use to select
a database and a list box you can use to select a table of that database. The form also
hosts a DBGrid, which can be connected with the selected database table. You can
see the output of this program in Figure 9.19.

When the program starts, it fills the combo box, fills the list box (forcing the selec-
tion of the first item of the combo box), and then shows a table in the DBGrid
(simulating the selection of the first item of the list box):

246 Something similar could be done by picking a stored FireDAC table file to use with the FD-
MemTable component.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

452 - Chapter 9: Writing Database Applications

procedure TMainForm.FormCreate(Sender: TObject);
begin
 Session.GetDatabaseNames (ComboBox1.Items);
 // force an initial list in the listbox
 ComboBox1.Text := ‘DBDEMOS’;
 ComboBox1Change (Self);
 // force an initial selection in the DBGrid
 ListBox1.ItemIndex := 0;
 ListBox1Click (Self);
end;

Figure 9.19: The
output of the Tables
program, which shows
the data of a table
selected at run time.
Image from the
original book.

The key element is the call to the GetDatabaseNames procedure of the Session global
object247. An object of class TSession is automatically defined and initialized by each
Delphi database application (even if you don’t define one), and to access its meth-
ods, you only need to refer to the DBTables unit in the uses statement. When the
combo box is filled, the program immediately selects one of the databases and then
triggers the ComboBox1Change event handler, which uses another method of the
TSession class, GetTableNames. This method has five parameters: the name of a
database, a filter string, two Boolean values indicating whether to include the table
file extensions (for local tables only) and whether to include system tables in the list
(for SQL databases only), and the TStringList that will be filled with the names of
the tables. Here is the code the program executes when the user selects an item in
the combo box:

procedure TMainForm.ComboBox1Change(Sender: TObject);

247 This isn’t available any more, as it was specific to the BDE.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 453

begin
 Session.GetTableNames (ComboBox1.Text, ‘’,
 True, False, ListBox1.Items);
end;

In the FormCreate method, a further step is automatically executed at start-up; the
program fills the DBGrid as if a list box item had been selected:

procedure TMainForm.ListBox1Click(Sender: TObject);
begin
 Table1.Close;
 Table1.DatabaseName := ComboBox1.Text;
 Table1.Tablename := Listbox1.Items [Listbox1.ItemIndex];
 Table1.Open;
 Caption := Format (‘Table: %s - %s’,
 [Table1.DatabaseName, Table1.Tablename]);
end;

Viewing Multiple Tables

The program allows a user to see the content of any table. As a further extension,
when the user double-clicks the list box, the program displays the grid in a separate
form. This allows the user to open multiple modeless forms and see different tables
at once, as you can see in Figure 9.20.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

454 - Chapter 9: Writing Database Applications

Figure 9.20: The
Tables program can be
used to open two or
more grid-based table
viewers. Images from
the original book.

When the user double-clicks the list box in the main form, the code creates a
TGridForm object, connects the Table1 component of this form to the proper data-
base and table, and shows the form:

procedure TMainForm.ListBox1DblClick(Sender: TObject);
var
 GridForm: TGridForm;
begin
 GridForm := TGridForm.Create (Self);
 {connect the table component to the selected
 table and activate it}
 GridForm.Table1.DatabaseName := ComboBox1.Text;
 GridForm.Table1.TableName :=
 Listbox1.Items [Listbox1.ItemIndex];
 try
 GridForm.Table1.Open;
 GridForm.Show;
 except
 GridForm.Close;
 end;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 455

note Notice that the code above simply creates the form and never destroys it. It is the responsibility of
the form to delete itself in its OnClose event handler by setting the Action reference parameter
to caFree.

When the secondary form is created, the program fills a combo box with the names
of the fields of the table. However, this code can’t go in the OnCreate event of the
form, because the form is created before its Table1 component is properly set up.
Instead of adding a custom method and calling it, I’ve used the OnShow event han-
dler, which also sets the caption of the form using the name of the table and the
database:

procedure TGridForm.FormShow(Sender: TObject);
var
 I: Integer;
begin
 Caption := Format (‘Table: %s - %s’,
 [Table1.DatabaseName, Table1.TableName]);

 // fill the combo box with the names of the fields
 ComboBox1.Items.Clear;
 for I := 0 to Table1.FieldCount - 1 do
 ComboBox1.Items.Add (Table1.Fields[I].FieldName);
end;

note A possible extension to this program would be to generate a form based on data-aware controls,
chosen depending on the type of field. You can find a Database Form Wizard capable of generat-
ing similar forms on my Web site, www.marcocantu.com.

What is the purpose of this combo box? Each time a user selects an element, the
corresponding field is either shown or hidden, depending on its current state:

procedure TGridForm.ComboBox1Change(Sender: TObject);
begin
 // toggle the visibility of the field
 Table1.FieldByName (ComboBox1.Text).Visible :=
 not Table1.FieldByName (ComboBox1.Text).Visible;
end;

Notice the use of the FieldByName method to retrieve the field using the current
selection of the combo box and the use of the Visible property. Once a field
becomes invisible, it is immediately removed from the grid associated with the
table. Therefore, by simply setting this property, we change the grid automatically.

The combo box I’ve placed in the toolbar of the GridForm works, but if you need to
select several fields in a big table, it is slow and error-prone. As an alternative, I’ve

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

456 - Chapter 9: Writing Database Applications

created a field-editor form, which is used both by the main and by the secondary
form. This is the third form of the Tables example, named FieldsForm.

This form is displayed as a modal dialog box, so we can use a single global object
every time. The new form has no code of its own. When the form is activated, its
multiple-selection list box is filled with the names of the fields of the table. At the
same time, the code selects the list box items corresponding to visible fields, as you
can see in Figure 9.21.

Figure 9.21: The list
box can be used to
select the table fields to
show in the grid. Image
from the original book.

The user can toggle the selection of each item in this list box while the modal form is
active. When it is closed, the other form retrieves the values of the selected items
and sets the Visible property of the fields accordingly. Here is the complete code of
this method:

procedure TGridForm.SpeedButton1Click(Sender: TObject);
var
 I: Integer;
begin
 FieldsForm.FieldsList.Clear;
 for I := 0 to Table1.FieldCount - 1 do
 begin
 FieldsForm.FieldsList.Items.Add (
 Table1.Fields [I].FieldName);
 if Table1.Fields [I].Visible then
 FieldsForm.FieldsList.Selected [I] := True;
 end;
 if FieldsForm.ShowModal = mrOK then
 for I := 0 to Table1.FieldCount - 1 do
 Table1.Fields.Visible [I] :=
 FieldsForm.FieldsList.Selected [I];
 FieldsForm.FieldsList.Clear;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 457

This code ends the description of this example. We have seen that you can write
database applications that do most of the work at run time, although this approach
is slightly more complex.

A Multi-Record Grid

So far we have seen that you can either use a grid to display a number of records of a
database table or build a form with specific data-aware controls for the various
fields, accessing the records one by one. There is a third alternative: use a multi-
record object (a DBCtrlGrid248), which allows you to place many data-aware controls
in a small area of a form and automatically duplicate these controls for a number of
records.

Here is what we can do to build the Multi1 example. Create a new blank form, place
a Table component and a DataSource component in it, and connect them to the
COUNTRY.DB table. Now place a DBCtrlGrid on the form, set its size and the num-
ber of rows and columns, and place two edit components connected with the Name
and Capital fields of the table. To place these DBEdit components, you can also open
the Fields editor and drag the two fields to the control grid. At design time, you sim-
ply work on the active portion of the grid (see Figure 9.22, on the right), and at run
time, you can see these controls replicated a number of times (see Figure 9.22, on
the left).

Figure 9.22: The
DBCtrlGrid of the
Multi1 example at
design time (on the
right) and at run time
(on the left). Images
from the original book.

Here are the most important properties of the DBCtrlGrid object and the other com-
ponents of this example:

248 As mentioned early in this chapter, this component still exists but it’s not commonly used.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

458 - Chapter 9: Writing Database Applications

object Form1: TForm1
 Caption = ‘Multi Record Grid’
 object DBCtrlGrid1: TDBCtrlGrid
 ColCount = 2
 DataSource = DataSource1
 RowCount = 2
 object DBEdit1: TDBEdit
 DataField = ‘Name’
 DataSource = DataSource1
 end
 object DBEdit2: TDBEdit...
 end
 object Table1: TTable
 Active = True
 DatabaseName = ‘DBDEMOS’
 TableName = ‘COUNTRY.DB’
 end
 object DataSource1: TDataSource
 DataSet = Table1
 end
end

Actually, you can simply set the number of columns and rows. Then each time you
resize the control, the width and height of each panel are set accordingly. What is
not available is a way to align the grid automatically to the client area of the form.

Moving Control Grid Panels

To improve the last example, we might resize the grid using the FormResize
method. We could simply write the following code (in the Multi2 example):

procedure TForm1.FormResize(Sender: TObject);
begin
 DBCtrlGrid1.Height := ClientHeight - Panel1.Height;
 DBCtrlGrid1.Width := ClientWidth;
end;

This works, but it is not what I want. I’d like to increase the number of panels, not
enlarge them. To accomplish this, we can define a minimum height for the panels
and compute how many panels can fit in the available area each time the form is
resized. For example, in Multi2, I’ve added one more statement to the FormResize
method above, which now becomes

procedure TForm1.FormResize(Sender: TObject);
begin
 DBCtrlGrid1.RowCount :=
 (ClientHeight - Panel1.Height) div 100;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 459

 DBCtrlGrid1.Height := ClientHeight - Panel1.Height;
 DBCtrlGrid1.Width := ClientWidth;
end;

Instead of doing the same for the columns of the control grid component, I’ve added
a TrackBar component to a panel. When the position of the trackbar changes (the
range is from 2 to 10), the program sets the number of columns of the control grid
and resizes it. In fact, if you simply set the number of columns, they’ll have the same
width as before. Here is the code of the trackbar’s OnChange event handler:

procedure TForm1.TrackBar1Change(Sender: TObject);
begin
 LabelCols.Caption := Format (
 ‘%d Columns’, [TrackBar1.Position]);
 DBCtrlGrid1.ColCount := TrackBar1.Position;
 DBCtrlGrid1.Width := ClientWidth;
end;

This code and the FormResize method above allow you to change the configuration
of the control grid at run time in a number of ways. You can see an example of a
crammed version of the form in Figure 9.23.

Figure 9.23: The
output of the Multi2
example, with an
excessive number of
columns. Image from
the original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

460 - Chapter 9: Writing Database Applications

Database Charts

Another interesting component you can use in database applications is the data-
aware version of the TeeChart control built by David Berneda and available in the
Professional and Enterprise versions of Delphi249. This component is very easy to
use, particularly if your version of Delphi includes the corresponding TeeChart Wiz-
ard (found in the Business page of the File New dialog box).

To demonstrate the use of the DBChart control, I’ve added this component to the
GridDemo example. The new application, called ChartDB, shows a DBGrid in the
upper portion and a pie chart with the surface of each country at the bottom, as you
can see in Figure 9.24.

The program has almost no code, as all the settings can be done using the specific
component editor, which has a number of options but is quite easy to use. Here are
some of the key properties of the component, taken from the form description:

object DBChart1: TDBChart
 Legend.Visible = False
 Align = alClient
 object Series1: TPieSeries
 Marks.ArrowLength = 8
 Marks.Visible = True
 DataSource = Table1
 XLabelsSource = ‘Name’
 ExplodeBiggest = 3
 OtherSlice.Style = poBelowPercent
 OtherSlice.Text = ‘Others’
 OtherSlice.Value = 2
 PieValues.ValueSource = ‘Area’
 end
end

249 The light version of the component is still available in Delphi as an extra installer opotion.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 9: Writing Database Applications - 461

Figure 9.24: The
output of the ChartDb
example, which is
based on the TDbChart
control. Image from
the original book.

note To understand these properties and the structure of the charts and the series, you can refer to the
examples of the Chart component in the Chapter 22 “Graphics in Delphi”. This same chapter
shows also how to dynamically export from a Web server application the graph produced by the
DBChart, after converting it to a JPEG image.

What I’ve done was to show the area field as the data source for the pie chart (the
PieValues.ValueSource property of the series), use the name field for the labels
(the XLabelsSource property of the series), and condense all the countries with a
value below 2 percent in a single section indicated as ‘Others’ (the OtherSlide sub-
properties).

As a minor addition to the code, I’ve added two radio buttons you can use to toggle
between the area and the population. The code of the two radio buttons simply sets
the source of the series, after casting it to the proper series type, as in:

procedure TForm1.RadioPopulationClick(Sender: TObject);
begin
 DBChart1.Title.Text [0] := ‘Population of Countries’;
 (DBChart1.Series [0] as TPieSeries).
 PieValues.ValueSource := ‘Population’;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

462 - Chapter 9: Writing Database Applications

What’s Next?

In this chapter, we have seen a number of examples of database access from Delphi
programs. I have covered the basic data-aware components as well as the develop-
ment of database applications based on standard controls. We’ve explored the
internal architecture of the field objects, created brand-new database tables at
design time and at run time, and worked though many examples.

In particular, besides looking at the use of the data-aware controls, we’ve also used a
couple of different manual approaches. You might wonder when the harder and
lower-level approach might make sense. The short answer is to use the data-aware
controls unless you need to do something unusual that conflicts with the default
behavior of the data-aware controls. A typical example is the use of particular tech-
niques for concurrency in multi-user applications, as we’ll see in the next two
chapters.

Is this all there is to say about Delphi database programming? Not at all. Delphi
database support is very extensive and complete. The purpose of this chapter has
been to give you an idea of what you can do, concentrating on the use of the Table
component for database access. In the next chapter, we’ll focus on the Query com-
ponent, on working with multiple database tables (with joins and with master-detail
and lookup structures), and on many other advanced features. We’ll also cover the
use of the new Data Module Designer in Delphi 5.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 463

Chapter 10:

Advanced

Database Access

In the previous chapter we saw how Delphi makes it easy to create database applica-
tions. All of the sample programs were based on a single table and used the Table
component to access it. Moreover, all the code related to the user interface was
mixed with the code related to database access; using data modules, we’ll be able to
keep the two functional areas separate.

These are just few of the topics explored in this chapter, which is devoted to slightly
more advanced database techniques250: the Data Dictionary, BDE calls, table joins
through SQL, master/detail connections, and lookup fields. Then, in Chapters 11
and 12, we’ll move on to client/server programming and ADO components.

250 Some of these are not applicable any more in today’s Delphi.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

464 - Chapter 10: Advanced Database Access

First, however, we start this chapter by discussing one of the most important inno-
vations Delphi 5 provides to database programmers, the data module Designer. This
tool allows a new visual approach to structuring database applications, significantly
extending Delphi’s traditional data modules.

The Delphi 5 Data Module Designer251

In the previous chapter we placed both the data-access controls and the data-aware
controls in forms. This is handy for a simple program, but having the user interface
and the data access and data model in a single (often large) unit is far from a good
idea. Delphi has since version 2 used the idea of a data module, a container of non-
visual components.

At design time a data module is similar to a form, but at run time it exists only in
memory. The TDataModule class derives directly from TComponent, so it is com-
pletely unrelated to the Windows concept of a window. And unlike a form, a data
module has just a few properties and events. For this reason, it’s useful to think of
data modules as components and method containers in memory.

However, data modules are similar to forms in many respects. Like a form, a data
module is related to a specific Object Pascal unit for the definition of its class and to
a form definition (DFM) file that list the components included in the module and
their properties. Here is some code from the DFM file of a data module:

object DataModule2: TDataModule2
 Height = 159
 Width = 196
 object Table1: TTable...
 object DataSource1: TDataSource...
end

Also, the structure of the Delphi unit for a data module is very similar to that of a
form. The key difference is in the parent class:

type
 TDataModule2 = class (TDataModule)

251 The “Designer” portion of the data module has long been removed form the Delphi IDE. The
data module itself, though, it still a foundation of Delphi development. This is an area with
very significant changes and I’ll highlight them in notes, as usual.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 465

Another thing forms and data modules have in common is that they can both be cre-
ated either when the application starts or later. In fact, data modules are even listed
in the Forms page of the Project Options.

There are several reasons to use data modules. The simplest one is to share data-
access components among multiple forms, as I’ll demonstrate in the TwoViews
example. This technique works in conjunction with visual form linking, the ability to
access components of another form or data module at design time (with the File
Use Unit command). The second reason is to separate the data from the user inter-
face, improving the structure of an application. In fact, Delphi allows you to further
extend this model to a full three-tier system, using the MIDAS252 technology (which
will be briefly introduced in Chapter 20).

In Delphi 5, the Data Module Designer adds even more reasons to use data mod-
ules. You can select components and connect them in an easier way, using the Tree
View, and you can see the overall design of a database application (or part of it) and
even connect properties and components graphically, using the Data Diagram
view253. The Data Module Designer is an extension of the data module. Every time
you create a new data module (by using File New and selecting Data Module in
the resulting New Items dialog box) or open an existing one, you will see the new
designer.

The left side of the Data Module Designer hosts a tree of the components on the
container, organized in a logical hierarchy. The right side has two pages, which
show the Components view or the Data Diagram, depending on the selected tab.
The Components view corresponds to the original data modules in earlier versions
of Delphi; initially, it is an empty white window, where you can add components
(but not controls).

The Tree View

The Tree view of the Data Module Designer starts with a single node, the data mod-
ule itself254. You can select a component from the palette (let’s say a Table), move
the mouse over the tree, and drop it. The designer will start organizing the informa-
tion logically, adding two extra nodes to the tree: a BDE session and a database
alias, as you can see in Figure 10.1. The session is simply the default session, which

252 This is the technology later renamed DataSnap and it still exists today.

253 The Data Diagram is the feature that’s no longer available.

254 This feature has been folded (or better, expanded) into today’s Structure View, which offers a
similar view of the logical relationship among data components.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

466 - Chapter 10: Advanced Database Access

is a Delphi global object rather than a specific component. For some purposes you
might replace it with a TSession component having specific properties255. The sec-
ond node (under the session) is an alias. You cannot edit it directly but you can
change it by assigning a value to the Database property of the table.

These two nodes correspond to “fake” or “dummy” components, and for this reason
their icons are grayed. Technically, gray icons are used for components that do not
have design-time persistence. They are real components (at design time and at run
time), but because they are default objects constructed at run time and have no per-
sistent data that can be edited at design time, the Data Module Designer does not
allow you to edit their properties.

Figure 10.1: The Data
Module Designer of a
new data module after
you add a table
component to it. Image
from the original book.

There are many operations you can do within Tree view. For example, after setting
the alias you can drag another table component under it to hook it up directly with
the database. In a similar way, you can drop a data source component below a table
to connect the two. You can also perform these dragging operations with compo-
nents that are already in the Tree view—for example, to change the data set a data
source refers to.

Note that this is a major aspect of the new designer—it saves you from the tedium of
having to manually “wire up” the Session, Database, Table, and DataSource compo-
nents using properties. In fact, the relationship you see in the tree generally relates
a component to its “parent context,” which used to be set up by assigning a property.
Now you can determine a parent context or a container relationship by dragging
items in the tree. For example, Session components are the context in which one or
more Database components operate, Tables and Queries operate within the context
of a Database, and Field objects live inside Tables and Queries.

255 As mentioned in the previous chapter, this TSession component is specific to the BDE li-
brary and no matching concept exists today.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 467

Right-clicking any element of the Tree view displays a shortcut menu similar to the
component menu you get when the component is in a form (and in both cases case
the shortcut menu may include items related to the custom component editors).
You can even delete items from the tree; if an item has sub-items, Delphi will
prompt for confirmation before destroying them.

The Data Diagram View256

If the Tree view provides a few extra features compared to the traditional data mod-
ule, what’s completely new in Delphi 5 is the Data Diagram view. This view shows
dependencies among components, including master/detail relationships, lookup
connections, linked properties, and generic relationships. You can even add your
comments in text blocks linked to specific components. Note that even though it is
part of a data module, this view is not limited to database-related components; it
works with any non-visual component (menus, actions, and so on).

The Data Diagram view is not built automatically. You have to drag components
from the Tree view to the diagram, although it displays the connections directly if
you have already set them up. What’s nice is that you can create connections and set
properties by simply drawing arrows among the components. For example, after
moving a table and a data source to the Data Diagram view, you can select the Prop-
erty connector icon, click the data source, and drag the mouse cursor over the table.
When you release it the designer will set up the property relationship, as you can see
in Figure 10.2. The arrow will automatically show the name of the property used to
hook the two components, in this case Dataset. As you can see, setting properties is
directional: if you drag the property relationship line from the table to the data
source you end up using the data source for the MasterSource property of the table,
hooking up the two components in the opposite way.

That’s not all. You can also drag specific fields to the view, and they will be con-
nected to the table with a child relationship, marked by a white arrow. You can even
move an ActionList to the tree, and drag it to the diagram. The actions will be shown
as child items, and if they relate to a dataset they may be connected to the data
source. To produce Figure 10.3, I’ve taken these steps, added a comment, added
some text to it by double clicking it, and hooked the comment to a component with a
custom relationship. Besides database components, you can use any non-visual
component in the Data Module Designer, including the ActionList, menus, Internet

256 As mentioned already, this view doesn’t exist any more. It was dropped when moving to the
new IDE architecture with Delphi 2007. There is now a totally different concept, the Live
Binding designer, which has a different role: associating data with UI controls.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

468 - Chapter 10: Advanced Database Access

producer and dispatcher components, MIDAS connections, decision cube compo-
nents, and even application servers.

Figure 10.2: A
property relationship
between two
components in the
Data Diagram view.
Image from the
original book, as this
feature no longer
exists.

Figure 10.3: A
diagram showing
complex relationships
among database and
non-database
components (such as
actions). Image from
the original book.

Although you can use the Data Diagram view, usually in a large window, to set up
relationships, its main role is to document your design. For this reason it is impor-
tant to be able to print the content of this view, but it is nice also to be able to print
the Tree view, particularly when it is too long to fit on the screen. To make more
tables fit in the diagram you can always toggle the list of fields inside them by click-
ing the minimize/maximize icon in the top-right corner of the box.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 469

The information in the Data Diagram view is saved in a separate design-time infor-
mation (DTI) file, not as part of the DFM file. DTI files have a similar structure to
INI files, and are obviously useless at run time (it makes no sense to include them in
the compilation of the executable file).

A Data Module for Multiple Views

As I mentioned earlier, one of the traditional uses of a data module is to provide dif-
ferent views of the same data and to keep the views in synch. This is what I’ve done
in the TwoViews example. Later on, I’ll extend this example by adding data rules
and filtering capabilities to the program. In the TwoViews example, I’ve created two
forms and a data module257. The data module includes a table related to the CUS-
TOMER.DB file of the DBDEMOS database and a data source. I’ve also created
TField components for each of the fields of the table. You can see the resulting data
module in Figure 10.4 (which shows the final structure of the data module, includ-
ing a field and the related index).

Figure 10.4: The data
module of the
TwoViews example.
Image from the
original book.

257 The core concepts are still fully applicable, if you ignore the visual representation of the com-
ponents relationships.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

470 - Chapter 10: Advanced Database Access

I’ve also built a toolbar for the main form of the program, using a panel aligned to
the top, a speed button, and a DBNavigator. The speed button has an appropriate
icon and is used to show the secondary form. The rest of the main form is filled with
a DBGrid control. After connecting the data module to the form, with the File Use
Unit menu command, you can set the DataSource property of both the DBNavigator
and the DBGrid to DataModule2.DataSource1.

note Before you use another unit in a form, you should properly name the unit to which you want to
refer. In fact, if you use a unit (for example, Unit2) and then rename it when you first save the file,
the connection will be lost, and you’ll need to replace all the references to the renamed unit manu-
ally. This happens even if Delphi built those uses statements automatically or with the File Use
Unit command.

The second view is based on a form with many DBEdit components, one for each
field of the database table except the last. Instead of placing a number of DBEdit
components and connecting each of them, you can open the Fields editor of the
Table component, add all the fields, select all of them except the last, and then drag
the selected fields to the secondary form. With this simple operation, you have Del-
phi arrange all the proper DBEdit and Label components on the form at once. I’ve
actually set the Visible property of the secondary form to True, so that it becomes
immediately visible when the program starts, as you can see in Figure 10.5.

Figure 10.5: The
TwoViews program at
run time, with the two
synchronized forms
referring to the same
record. Image from the
original book.

If you display both forms, they are kept in sync. Using either form’s navigator
affects both forms. In fact, the navigator is connected to neither of them: it is con-
nected to the data source in the data module, and the visual components of both
forms are affected by any change in the common data access components. Edit one

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 471

form, and the other will be updated as soon as you accept the changes. Add a new
record, and the action will take place on both forms.

Note that you can also navigate through the records at design time. While you scroll
the grid, the data in the secondary form will change, allowing you to size the DBEdit
components if any field of the current record is too long to fit in the available space,
for example.

Setting Field Properties and Initial Values

Using a data module to keep two forms in synch can be handy and is quite simple.
We want to add to the program some more capabilities related to the data itself, not
to the specific viewer. For example, in the data module we can edit the properties of
the fields, using a special value for the EditMask properties of the Table1Phone and
Table1FAX field components. This customization will affect the output and the edit-
ing of these fields in both forms at the same time.

To accomplish something a little more complex, we can introduce a rule in the table
or at least a suggestion to the users. We want to automatically provide a new unique
value for the customer number and make it the current highest value plus one for
this field. I’ve accomplished this by adding some code to the data module.

Basically, we want to set the proper value of the Table1CustNo field each time the
user adds a new record to the table. To accomplish this we can handle the
OnNewRecord event of the table as follows:

procedure TDataModule2.Table1NewRecord(DataSet: TDataSet);
begin
 Table1CustNo.Value := Max + 1;
end;

How do we compute the Max value? We can simply browse the table, as we did in the
last chapter, and check for the highest value of the CustNo field. However, we can-
not do this in the event handler above, because this will put the table back in
tsBrowse mode from the tsInsert mode. An alternative is to recompute the highest
value each time the user inserts a new record, using the BeforeInsert event:

procedure TDataModule2.Table1BeforeInsert(DataSet: TDataSet);
begin
 ComputeMax;
end;

This ComputeMax procedure might scan the table looking for the maximum value,
with code like this:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

472 - Chapter 10: Advanced Database Access

Max := 0;
try
 Table1.First;
 while not Table1.EOF do
 begin
 if Table1CustNo.AsInteger > Max then
 Max := Table1CustNo.AsInteger;
 Table1.Next;
 end;

An alternative is to add a second TTable component, indexed on the CustNo field.
The ComputeMax code would then simply look at the end of the table for the highest
value of CustNo:

procedure TDataModule2.ComputeMax;
begin
 Table2.Last;
 Max := Table2CustNo.AsInteger;
end;

By adding some methods to the data module, we move toward the structure of a
three-tier application. This code, in fact, is completely independent from the user
interface (the two views). The code of this example is very simple, but it is meant to
highlight this important idea.

note An alternative to the code above, which computes the maximum identifier used by a table, is to
use an auto-increment field, at least if you are using a Paradox table258. This would be better in a
multi-user environment or a multi-threaded program, where the approach just shown might lead
to problems in case of two concurrent requests.

Standard Table Filtering

Now we want to add to the application the capability of filtering the records in both
views (again using the data module). The simplest filtering capability in Delphi
tables is to set a range of values for an indexed field. For example, I’ve ordered the
TwoViews program’s table using the ByCompany secondary index (just select this
value for the IndexName property). Then I’ve chosen all records between two values
supplied by the user, by writing the following:

Table1.SetRange ([‘Abacus’], [‘Custom’]);

258 Relational databases often include a mechanism like sequences and generators to obtain a
similar result to auto increment fields. This is a more complex topic than I can cover here.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 473

As an alternative you can set key values as in the GotoKey method, calling the
SetRangeStart, SetRangeEnd, and ApplyRange methods in sequence. Usually it is
much simpler to call SetRange and pass it two arrays of values, with the same num-
ber of items (and the same order) as the fields in the current index. When you want
to stop applying the range, simply call the CancelRange method.

Actually, in the TwoViews program I didn’t indicate a fixed range of values, as sug-
gested above; instead, I added to the data module the ChooseRange method, which
is going to be called by the two views. As the data module has no visual interface by
itself, it uses a dialog box to ask the user for the initial and final values of the range.
I could have used the toolbar of the main form, instead of a dialog box, but I wanted
to relate the code used to set the range to the data module itself, not to a specific
form used to view the data. Another approach is to dock the modeless dialog to the
side of the main form, as shown in Figure 10.6. You can see in the figure that the
secondary form has more components, which we’ll use later to customize table fil-
tering. Also notice the effect of the range on the table (and the grid) content.

Figure 10.6: The
secondary form used to
set a range and a filter
on the table can be
docked to a panel on
the side of the main
form. Image from the
original book.

The ChooseRange method simply displays the FormRange form (as a modeless form).
The form has an Apply button you can use to activate the new settings in the data
module:

procedure TFormRange.BitBtn1Click(Sender: TObject);
begin
 with DataModule2.Table1 do
 begin
 if CheckBoxRange.Checked then
 SetRange ([Edit1.Text], [Edit2.Text])
 else

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

474 - Chapter 10: Advanced Database Access

 CancelRange;
 end;
end;

Custom Table Filtering

Besides giving the Table component a range of values to work on, we can set a cus-
tom filtering algorithm. Simply set the Filtering property of the Table component
to True, and for each record the OnFilterRecord event will be called. In the method
connected to this event, we can set a custom filter. Here is an example:

procedure TDataModule2.Table1FilterRecord(
 DataSet: TDataSet; var Accept: Boolean);
begin
 if (Table1Country.Value = ‘US’) or
 (Table1Country.Value = ‘US Virgin Islands’) or
 (Table1State.Value = ‘Jamaica’) then
 Accept := True
 else
 Accept := False;
end;

Again, connecting this filtering rule to the data module will affect each of the two
views. Besides writing a fixed rule, as in the case above, we can allow the user to
build his or her own rule, with the components added to the lower portion of the
range dialog box; namely, another check box and two list boxes, as shown in Figure
10.6. The lists are filled with the names of the countries and the states when the
form is created:

procedure TFormRange.FormCreate(Sender: TObject);
begin
 with DataModule2 do
 begin
 Table1.First;
 while not Table1.EOF do
 begin
 // add unique values
 if not Table1Country.IsNull and
 (ListBoxCountries.Items.IndexOf (
 Table1Country.AsString) < 0) then
 ListBoxCountries.Items.Add (Table1Country.AsString);
 if not Table1State.IsNull and
 (ListBoxStates.Items.IndexOf (
 Table1State.AsString) < 0) then
 ListBoxStates.Items.Add (Table1State.AsString);
 Table1.Next;
 end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 475

 // reset the table
 Table1.First;
 end;
end;

This code checks to see whether the value of the current record is null or is already
present in the list box. If it is not, the value is added to the proper list box. These two
lists should be updated each time a new record is added to the database table, or
whenever an existing record changes. I’ve omitted this capability, but it should be
quite simple for you to implement it by handling the AfterPost event of the table
and writing two lines of code, similar to the body of the while loop above, referring
to the new or updated record.

Once the program has filled the list boxes, they are displayed along with the range
options. The Apply button also sets the filters and refreshes the table:

with DataModule2.Table1 do
 begin
 ...
 Filtered := CheckBoxFiltering.Checked;
 Refresh;

The Refresh call is necessary because if the rules change when table filtering is
already active, Delphi will not automatically recompute the current active records.
The most important piece of the filtering code is the handler of the OnFilterRecord
events, which checks if the country or state of the current record is one of the
selected items of the two list boxes (which allow multiple selection). Here is the
code:

procedure TDataModule2.Table1FilterRecord(
 DataSet: TDataSet; var Accept: Boolean);
begin
 {if the item corresponding to the country in the
 listbox is active, then view the record}
 with FormRange.ListBoxCountries do
 Accept := Selected [Items.IndexOf (Table1Country.AsString)];
 with FormRange.ListBoxStates do
 if Selected [Items.IndexOf (Table1State.AsString)] then
 Accept := True;
end;

Notice that in the second if statement, the value of Accept should be added to the
previous one with an or statement. Actually, we can simply set it to True regardless
of the previous value (since an or with True always returns True) or let it maintain
its current value (since an or with False keeps the existing value).

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

476 - Chapter 10: Advanced Database Access

An MDI Application with Independent Views

The TwoViews example is an SDI application, with two separate forms floating on
the screen. This is not always the best user interface; as discussed in Chapter 8, an
alternative is to use the MDI approach. Another limitation of the program so far is
that the two views always share the same current record. It would be nice to build
an application in which each view could have a different active record. And so it
would also be reasonable to create multiple record and grid views. This is what I’ve
done in the following example, called MdiView.

Since we need to have forms that each show a different current record, you might be
tempted to remove the data module altogether and place the database-related com-
ponents in the forms. That might work in this simple example, but in general it is
better to keep the logical separation and the designer provided by the data modules.
The alternative solution to the problem, in fact, is to keep the data modules in the
program and simply create a new copy for each form to connect.

note If you place a TDatabase component in a data module, you cannot create multiple instances of
the data module unless you set the HandleShared property to True. If you fail to do so, the pro-
gram generates the exception “Name not unique in this context,” as the two database components
in the same database session cannot have the same name.

The main form of the MdiView application has the fsMdiFrame value for the
FormStyle property. It is the only form created at startup, so that it is displayed
empty. The child forms are created using the commands of the File menu and they
create the data modules automatically. For this reason I’ve not only removed the
child forms and the data module from the list of the automatically created forms in
the project options, I’ve even removed the global variables referring to these objects.

note Again, removing the global variables for forms that will have multiple instances is generally a
good idea, so that you don’t confuse one of the instances of the form (referenced by the global
variable) with the class itself.

The code for creating child forms is quite simple. There is no need to keep track of
the forms created, as the Windows MDI support does this automatically for us:

procedure TFrameForm.NewRecordView1Click(Sender: TObject);
begin
 with TRecordForm.Create (Application) do
 Show;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 477

As the view is created, it generates a data module and hooks it to a local DM field,
declared inside each form. Then the program connects all the data aware controls to
the data source of the newly created data module:

procedure TRecordForm.FormCreate(Sender: TObject);
var
 I: Integer;
begin
 DM := TCustomerDM.Create (self);
 // connect the navigator
 DBNavigator1.DataSource := DM.DataSource1;
 // connect all DBEdit controls
 for I := 0 to ControlCount - 1 do
 if Controls [i] is TDBEdit then
 TDBEdit (Controls [I]).DataSource :=
 DM.DataSource1;
end;

The only other code for the two child forms is the closing code, which destroys the
form, setting the Action parameter of the OnClose event handler to caFree.

The data module has almost no code, as I’ve removed the calculation of the maxi-
mum ID used in this chapter’s earlier examples. The only operation done by the
data module is changing the title of the connected form to reflect the current record.
This is useful, as the list of MDI child windows becomes meaningless if all the win-
dows of the same type have the same title. To accomplish this I’ve used a trick—
storing the Hint property of each form (which is not used) as the first part of the
caption, followed by the Company field of the current record:

procedure TCustomerDM.DataSource1DataChange(
 Sender: TObject; Field: TField);
begin
 (Owner as TForm).Caption :=
 (Owner as TForm).Hint + ‘ - ‘ + Table1Company.AsString;
end;

You can see an example of the output of this program in Figure 10.7, with three
child forms open and few more minimized. Notice that the different captions we’ve
set for each form are reflected in the Windows menu; this is handled automatically
by the MDI support.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

478 - Chapter 10: Advanced Database Access

Figure 10.7: The
output of the MdiView
program, which
connects a different
data module object to
each view. Image from
the original book.

Using a Query

All the database examples up to this point used a Table component. The next exam-
ple accesses the data using a Query component, instead, and is called DynQuery—or
dynamic query. I’ve connected the query to the usual DBDEMO database alias and
entered the text of a simple SQL statement:

select * from Country

Simply activate the Query component and the values of the fields of the first record
should appear in the edit boxes as usual. Of course, this happens only if the SQL
statement you have inserted is correct. Otherwise, Delphi will issue an error mes-
sage, and the query won’t be activated. If you want to change the current SQL
statement of a query at run time, you need to set the Active property to False first.
After changing the text of the query you can then activate it again.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 479

note In the Enterprise edition of Delphi, you can build queries using a graphical query builder called
SQL Builder259. This is a two-way tool, which can interpret queries you’ve written in text and show
them graphically. You’ll see examples of the use of the SQL Builder in Chapter 11.

Of course, this example won’t be particularly interesting. Why use the Query com-
ponent instead of the Table component if all we want is to select an entire table? We
can take advantage of the Query component by adding some radio buttons to select
different queries at run time. I decided to add four different options.

The first radio button is used to select the default SQL statement, and it is checked
at startup. The second and third buttons can be used to choose only the records that
have a specific value for their Continent field, adding a where clause to the SQL
statement. The last radio button allows a user to enter the text of the where SQL
statement directly in an edit box.

Letting a user type in a statement is dangerous, since entering the wrong text can
cause an error, but Delphi’s exception-handling support can help us to withstand
this risk. Here is the code associated with the first radio button:

procedure TNavigForm.RadioButton1Click(Sender: TObject);
begin
 Query1.Close;
 Query1.Sql.Clear;
 Query1.Sql.Add (‘select * from Country’);
 Query1.Open;
end;

Notice that the SQL property is not a string, but a list of strings. This can be used to
build very long queries (the text limit for an array of strings is high) and to define
different portions of the query in different places of the code and merge them. The
second and third radio buttons share the same code, which uses their Caption prop-
erty to build the text of the SQL statement:

Query1.Sql.Clear;
Query1.Sql.Add ('select * from Country');
Query1.Sql.Add ('where Continent = "' +
 (Sender as TRadioButton).Caption + '"');

note In the SQL statements above I’ve used a double quotation mark for strings. It is also possible to
use single quotation marks. However, to have a single quotation mark inside a Pascal string, you
have to use two consecutive single quotation marks. For this reason, in the code above, we would
have had triple and even quadruple quotation marks, certainly a confusing situation.

259 Also this tool, SQL Builder, doesn’t exist any more.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

480 - Chapter 10: Advanced Database Access

For the last radio button, we only need to merge the default statement with the text
of the edit box, handling a possible exception:

procedure TQueryForm.RadioButton4Click(Sender: TObject);
begin
 Query1.Close;
 if (Edit1.Text <> '') then
 begin
 Query1.Sql.Clear;
 Query1.Sql.Add ('select * from Country');
 Query1.Sql.Add ('where ' + Edit1.Text);
 end;
 try
 Query1.Open;
 except
 on EDatabaseError do
 ShowMessage ('Invalid condition:'#13 + Edit1.Text);
 end;
end;

This code is executed any time the edit box is not empty. It includes a test to make
sure that the text is a correct SQL statement and displays a custom error message if
it is not. To improve the program slightly, the last radio button is automatically dis-
abled each time the edit box has no text. This check takes place in the OnChange
event of the Edit component.

When the user presses Enter while in the edit box, the new condition is automati-
cally activated, either by checking the radio button (to visually indicate the selection
and make it trigger the event handler) or by calling the handler (because selecting a
button that’s already active doesn’t fire its event handler):

procedure TQueryForm.Edit1KeyPress(Sender: TObject; var Key: Char);
begin
 if Key = #13 then
 begin
 if RadioButton4.Checked then
 RadioButton4Click (self)
 else
 RadioButton4.Checked := True;
 Key := #0;
 end;
end;

note The Edit1KeyPress method sets the Enter key to a null key, to avoid the beep produced by
default when you press the Enter key in an edit box.

When you run this program, you can choose any of the four buttons and immedi-
ately see the effect on the list of records in the DBGrid. Figure 10.8 shows two

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 481

examples of the use of the edit box for customizing the SQL query at run time. One
example shows a single country of the database selected, and the other shows the
result of selecting a population range.

note By default, you cannot edit the result of a query. In order to do that, you must first set the
RequestLive property of the Query to True. This makes the data fully editable only when some
given conditions determined by the BDE are met. Simple queries referring to a single database
table can generally be “live,” while complex queries joining several tables generally cannot. The
TUpdateSQL component and the cached updates technology allow you to make complex queries
live, as we’ll see in the next chapter.

As an alternative to the use of where SQL statements, you can use a table and set a
range of records you want to consider or use the Filtered property, as demon-
strated in the last example. Filters are also available for queries, but the natural way
to filter a query is to use an SQL statement, so that the database engine or the SQL
server elaborates the query instead of our program. This method is particularly
appropriate if the database engine or the SQL server elaborating the request is on a
different computer than the one originating the query, because it will split the effort
between the two machines and often reduce network traffic, as we’ll see in the next
chapter.

A Query with Parameters

All of the queries in the DynQuery example were very similar. Instead of building a
new query each time, we can write a query with a parameter and simply change the
value of the parameter. If we decide to choose the countries of a continent, for
example, we can write the following statement:

select * from Country where Continent = :Continent

In this SQL clause, :Continent is a parameter. We can set its data type and startup
value, using the editor of the Params property collection of the Query component.
When the Parameters collection editor is open, as shown in Figure 10.9, you see a
list of the parameters defined in the SQL statement and set the data type and the
initial value of these parameters.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

482 - Chapter 10: Advanced Database Access

Figure 10.8: Two
copies of the DynQuery
program, each using a
different custom SQL
Where clause. Image
from the original book.

Figure 10.9: Editing
the collection of
parameters of a Query
component. Image
from the original book.

The form displayed by this new program, ParQuery, uses a list box instead of the
radio button for the selection. Instead of preparing the items of the list box at design
time, we extract the different available continents from the database as the program
starts. This is accomplished using a second query component, with this SQL state-
ment:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 483

select distinct Continent from Country

After activating this query, the program scans its result set, extracting all the values
and adding them to the list box:

procedure TQueryForm.FormCreate(Sender: TObject);
begin
 // get the list of continents
 Query2.Open;
 while not Query2.EOF do
 begin
 ListBox1.Items.Add (Query2.Fields [0].AsString);
 Query2.Next;
 end;
 ListBox1.ItemIndex := 0;

 // open the first query
 Query1.Params[0].Value := ListBox1.Items [0];
 Query1.Open;
end;

Before opening the query, the program selects as its parameter the first item of the
list box, which is also activated by setting the ItemIndex property to 0. When the list
box is selected, the program closes the query and changes the parameter:

procedure TQueryForm.ListBox1Click(Sender: TObject);
begin
 Query1.Close;
 Query1.Params[0].Value :=
 ListBox1.Items [Listbox1.ItemIndex];
 Query1.Open;
end;

This displays the countries of the selected continent in the list box, as you can see in
Figure 10.10. The final refinement is that when the user enters a record with a new
continent, it is added automatically to the list box. Instead of refreshing the entire
list, with the same code executed in the FormCreate method, we can do this by han-
dling the BeforePost event and adding the continent to the list if it is not already
there:

procedure TQueryForm.Query1BeforePost(DataSet: TDataSet);
var
 StrNewCont: string;
begin
 // add the continent, if not already in the list
 StrNewCont := Query1.FieldByName (‘Continent’).AsString;
 if ListBox1.Items.IndexOf (StrNewCont) < 0 then
 ListBox1.Items.Add (StrNewCont);
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

484 - Chapter 10: Advanced Database Access

Figure 10.10: The
ParQuery example at
run time. Image from
the original book.

We can add a little extra code to this program to take advantage of a specific feature
of parameterized queries. To react faster to a change in the parameters, these
queries can be optimized, or prepared. Simply call the Prepare method before the
program first opens the query (after setting the Active property of the Query com-
ponent to False at design time) and call Unprepare once the query won’t be used
anymore:

procedure TQueryForm.FormCreate(Sender: TObject);
begin
 ...
 // prepare and open the first query
 Query1.Prepare;
 Query1.Params[0].Value := ListBox1.Items [0];
 Query1.Open;
end;

procedure TQueryForm.FormDestroy(Sender: TObject);
begin
 Query1.Close;
 Query1.Unprepare;
end;

note Prepared parameterized queries are very important when you work on big tables and a complex
query. In fact, to optimize such a query, many databases create temporary indexes. Instead of cre-
ating an index each time you open it, a prepared query can set up this optimization only once at
the beginning, saving a lot of time when a parameter changes.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 485

Using Multiple Tables

In the database programs we’ve written so far, we’ve invariably used only one data-
base table. In the real world, however, programs usually access multiple tables.
There might be a main table with the names of the customers and a secondary table
with the orders the customers have made. There can be a table with company sites
and another with the employees, with a numeric ID for the site where each
employee works. There are countless examples of relationships among database
tables.

The important thing to focus on in this short introduction to the topic is that you
can use several approaches in Delphi to connect different tables:

· The master/detail relationship between tables or queries allows you to select in
the secondary data set only the records related to the current element of the mas-
ter data set. For example, you can select a customer in the main table and see all
the orders made by that customer in the secondary table.

· A lookup field in one table (or query) displays the value of another field in a cor-
responding record of a related table. For example, in a Purchase Orders table,
the ID of the customer who placed a given order might be a lookup field display-
ing the customer’s name from the Customers table.

· A join specified inside a SQL query can define many other types of relationships
among tables.

Because a join in a SQL query is executed on the server, while the master/detail and
lookup relationships are computed on the client, SQL queries make more sense in a
client/server environment, and the master/detail and lookup connections can pro-
vide the best performance when accessing local tables. These last two approaches,
however, improve the user interface by far, and for this reason can be used also in a
client/server architecture.

Master/Detail with Tables

Delphi provides several simple ways to create a master/detail structure. Perhaps the
simplest is to use the Database Form Wizard, selecting a master/detail form in the
first page. (As noted in Chapter 9, the Database Form Wizard is actually so easy to
use that it doesn’t need to be demonstrated in this book.) Almost as easy is a new
approach we can use in Delphi 5 to accomplish the same task—using the Data Dia-

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

486 - Chapter 10: Advanced Database Access

gram view of a data module. We’ll do that in the next example, the MastDet pro-
gram.

Since we’re using the sample tables available in Delphi, there are not many choices
for building a master/detail form. Our example will use the Customer and Order
tables, which are used also by some Delphi sample programs. Simply place two table
components in a data module, connect them with the DBDEMOS alias, and connect
them with the two tables. Now you can drag the tables to the Diagram view, select
the Master Detail connection, and drag it from the Customer table to the Orders
table. The Data Module Designer will display the Field Link Designer dialog box260,
shown in Figure 10.11, where you define how to connect the tables.

Figure 10.11: The
Field Link Designer
dialog box of the Data
Module Designer is
activated when you
build a master/detail
relationship. Once
you’ve defined such a
relationship, you can
modify it at any time
by choosing Edit in the
Data Module Designer.
Image from the
original book.

In Figure 10.12 you can see an example of the main form of the MastDet program at
run time. I’ve placed data-aware controls related to the master table in the upper
portion, and I’ve placed a grid connected with the detail table in the lower portion of
the form. This way, for every master record, you immediately see the list of the con-
nected detail record, in this case all the orders done by the current client. Each time
you select a new customer, the grid below displays only the orders pertaining to that
customer.

260 This doesn’t exist any more, of course, given the entire designer is unavailable. FireDAC and
other components offer properties to define master details relationship and even specific prop-
erty editors to help you set up the connection.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 487

Figure 10.12: The
MastDet example at
run time. Image from
the original book.

How does this program work? The answer is very simple. If you open the data mod-
ule and look at the properties of the two Table components in the Object Inspector,
you can see the following values:

object Table1: TTable
 DatabaseName = 'DBDEMOS'
 TableName = 'customer.db'
end
object Table2: TTable
 DatabaseName = 'DBDEMOS'
 TableName = 'orders.db'
 IndexFieldNames = 'CustNo'
 MasterFields = 'CustNo'
 MasterSource = DataSource1
end

The second table has a master source (the data source connected to the first table),
and it relates to a specific field, which provides the cross-reference.

A Master/Detail Structure with Queries

The previous example used two tables to build a master/detail form. As an alterna-
tive, you can define this type of join using a SQL statement.

For this example, I’ve joined the ORDERS.DB table with ITEMS.DB, which
describes each item in each order. The two tables can be joined using the OrderNo
field. When you generate the code, the program, named Orders, behaves exactly like
the previous one. This time, however, the trick is in the SQL statements of the sec-
ond query object:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

488 - Chapter 10: Advanced Database Access

select
 items.”OrderNo”,
 items.”ItemNo”,
 items.”PartNo”,
 items.”Qty”
from
 items
where
 “items”.”OrderNo” = :”OrderNo”

As you can see, this SQL statement uses a parameter, OrderNo. This parameter is
connected directly to the first query, because the DataSource property of Query2 is
set to DataSource1, which is connected to Query1. In other words, the second query
is considered to be a data control connected to the first data source. Each time the
current record in the first data source changes, the Query2 component is updated,
just like any other component connected to DataSource1. The field used for the con-
nection, in this case, is the field having the same name as the query parameter.

Using a Lookup Combo Box

If you build a standard form for Orders, you need to work with the customer num-
ber of the order, which is not the most natural way—most users will prefer to work
with customer names. However, in the database, the names of the customers are
stored in a different table, to avoid duplicating the customer data for each order by
the same customer. To get around working with customer numbers, I placed a new
component in the form: a DBLookupComboBox control. This component can be
connected to two data sources at the same time, one source containing the actual
data and a second one containing the display data. Basically, we want to connect it
with the CustNo value of DataSource1, the master query, but let it show the infor-
mation extracted from another table, CUSTOMER.DB.

To accomplish this, I removed the standard DBEdit component connected to the
customer number and replaced it with a DBLookupComboBox component and a
DBText component. DBText is a sort of label, or text that can’t be edited. Then I
added a new data source (DataSource3) connected to a table (Table1), which relates
to the CUSTOMER.DB file. For the program to work, you need to set several proper-
ties of the DBLookupComboBox1 component. Here is a list of the relevant values:

object DBLookupComboBox1: TDBLookupComboBox
 DataField = 'CustNo'
 DataSource = DataSource1
 KeyField = 'CustNo'
 ListField = 'Company'

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 489

 ListSource = DataSource3
end

The first two properties determine the main connection, as usual. The other three
properties determine the secondary source (ListSource), the field used for the join
(KeyField), and the information to display (ListField). Besides entering the name
of a single field, you can provide multiple fields. Only the first field is displayed as
combo box text, but if you set a large value for the DropDownWidth property, the pull-
down list of the combo box will include multiple columns of data. You can see this
output in Figure 10.13.

Figure 10.13: The
output of the Orders
example, with the
DBLookupComboBox
showing multiple fields
in its drop-down list.
Image from the
original book.

note If you set the index of the table connected with the DBLookupComboBox to the Company field,
the drop-down list will show the companies in alphabetical order instead of customer-number
order. This is what I’ve done in the example.

What about the code of this program? Well, there is none. Everything works just by
setting the correct properties. The three joined data sources do not need custom
code. This demonstrates that using master/detail and lookup connections can be
very fast to set up and very efficient. The only real drawback is that these tech-
niques, particularly the lookup, cannot be used when the number of records
becomes too large, particularly in a networked or client/server environment. Mov-
ing hundreds of thousands of records just to make a nice-looking lookup combo box
probably won’t be very effective.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

490 - Chapter 10: Advanced Database Access

A Lookup in a Grid

As an alternative to placing a DBLookupComboBox component in a form, we can
also add a drop-down lookup list in a DBGrid component. To add a fixed selection
to a DBGrid we can simply edit the PickList subproperty of the Columns property.
To customize the grid with a live lookup, we have to define a lookup field using the
Fields editor.

As an example, I’ve taken the MastDet program discussed earlier and turned it into
the MastDet2 version. In the original program, the grid displayed the code number
of the employee who took the order. Why not show the employee name, instead, and
let the user choose it from a drop-down list of employees?

To accomplish this, I added to the data module two components: a Table and a
DataSource, referring to the EMPLOYEE.DB database table. Then I opened the Fields
editor for the ORDERS table and added all the fields. I selected the EmpNo field and set
its Visible property to False, to remove it from the grid (we cannot remove it alto-
gether, because it is used to build the cross-reference with the corresponding field
of the Employee table).

Now it is time to define the lookup field. If you’ve followed the preceding steps, you
can go to the Data Diagram tab and drag a lookup relationship from the ORDERS
table to the EMPLOYEE table, connecting the two in the resulting dialog box (see Fig-
ure 10.14). You can activate a similar dialog box by using the New Field command of
the Fields editor.

Figure 10.14: The
New Lookup Field
dialog box is activated
by dragging a lookup
link between two data
sets of the Data
Diagram. Image from
the original book.

The values you specify in the New Lookup Field dialog box will affect the properties
of a new TField added to the table, as demonstrated by the DFM description of the
field corresponding to the settings shown in Figure 10.14:

object Table2Employee: TStringField
 FieldKind = fkLookup

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 491

 FieldName = ‘Employee’
 LookupDataSet = Table3
 LookupKeyFields = ‘EmpNo’
 LookupResultField = ‘LastName’
 KeyFields = ‘EmpNo’
 FixedChar = False
 Size = 30
 Lookup = True
end

This is all that is needed to make the drop-down list work (see Figure 10.15) and to
view the value of the cross-references field at design time, too. Notice that there is
no need to customize the Columns property of the grid, because the drop-down but-
ton and the value of seven rows are taken by default. This doesn’t mean you cannot
use this property to further customize these and other visual elements of the grid.

Figure 10.15: The
output of the MastDet2
example, with the
drop-down list inside
the grid displaying
values taken from
another database table.
Image from the
original book.

The new master/detail relationship will be clearly visible in the Data Diagram view
of the Data Module Designer261. If you add to this view the lookup field, its layout
will be even more detailed, as you can see in Figure 10.16.

261 Again, nothing like this exists today in the Delphi IDE.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

492 - Chapter 10: Advanced Database Access

Figure 10.16: The
master/detail
relationship in the
Data Diagram view.
Notice the connections
of the lookup field.
Image from the
original book.

Advanced Use of the DBGrid Control

We’ve used the DBGrid control in many examples in this chapter and the previous
one, simply because it provides a very handy way of showing information about
multiple fields and multiple records at a time. Unlike most other data-aware con-
trols, which are quite simple to use, the DBGrid control has many options and is
more powerful than you might think.

The next few sections explore some of the advanced operations you can do using a
DBGrid control. A first example shows how to draw in a grid, a second one shows
how to clone the behavior of a check box for a Boolean selection inside a grid, and a
final example shows how to use the multiple-selection feature of the grid.

Painting a DBGrid

There are many reasons you might want to customize the output of a grid. A good
example is to highlight specific fields or records. Another is to provide some form of
output for fields that usually don’t show up in the grid, such as BLOB, graphic, and
memo fields.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 493

To thoroughly customize the drawing of a DBGrid control, you have to set its
DefaultDrawing property to False and handle its OnDrawColumnCell event. In fact,
if you leave the value of DefaultDrawing set to True, the grid will display the default
output before the method is called. This way, all you can do is add something to the
default output of the grid, unless you decide to draw over it, which will take extra
time and cause flickering.

The alternative approach is to call the DefaultDrawColumnCell method of the grid,
perhaps after changing the current font or restricting the output rectangle. In this
last case you can provide an extra drawing in a cell and let the grid fill the remaining
area with the standard output. This is what I’ve done in the DrawData program.

The DBGrid control in this example, which is connected to the commonly used
BIOLIFE table262 of the DBDEMOS database, has the following properties:

object DBGrid1: TDBGrid
 Align = alClient
 DataSource = DataSource1
 DefaultDrawing = False
 Font.Height = -16
 Font.Name = ‘MS Sans Serif’
 Font.Style = [fsBold]
 TitleFont.Height = -11
 TitleFont.Name = ‘MS Sans Serif’
 TitleFont.Style = []
 OnDrawColumnCell = DBGrid1DrawColumnCell
end

The OnDrawColumnCell event handler is called once for every cell of the grid and has
several parameters, including the rectangle corresponding to the cell, the index of
the column we have to draw, the column itself (with the field, its alignment, and
other subproperties), and the status of the cell. How can we set the color of specific
cells to red? We can simply change it in the special cases:

procedure TForm1.DBGrid1DrawColumnCell(Sender: TObject;
 const Rect: TRect; DataCol: Integer; Column: TColumn;
 State: TGridDrawState);
begin
 // red font color if length > 100
 if (Column.Field = Table1Lengthcm) and
 (Table1Lengthcm.AsInteger > 100) then
 DBGrid1.Canvas.Font.Color := clRed;

 // default drawing
 DBGrid1.DefaultDrawDataCell (Rect, Column.Field, State);
end;

262 The table still exists today in multiple format, including .FDS for FireDAC FDMemTable.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

494 - Chapter 10: Advanced Database Access

The next step is to draw the memo and the graphic fields. For the memo we can
simply implement the memo field’s OnGetText and OnSetText events. In fact, the
grid will even allow editing on a memo field if its OnSetText event is not nil. Here is
the code of the two event handlers. I’ve used Trim to remove trailing nonprinting
characters, which make the text appear to be empty when editing:

procedure TForm1.Table1NotesGetText(Sender: TField;
 var Text: String; DisplayText: Boolean);
begin
 Text := Trim (Sender.AsString);
end;

procedure TForm1.Table1NotesSetText(Sender: TField;
 const Text: String);
begin
 Sender.AsString := Text;
end;

For the image, the simplest approach is to create a temporary TBitmap object, assign
the graphics field to it, and paint the bitmap to the Canvas of the grid. As an alterna-
tive, I’ve removed the graphic field from the grid, by setting its Visible property to
False, and added the image to the fish name, with the following extra code in the
OnDrawColumnCell event handler:

var
 Bmp: TBitmap;
 OutRect: TRect;
 BmpWidth: Integer;
begin
 // default output rectangle
 OutRect := Rect;

 if Column.Field = Table1Common_Name then
 begin
 // draw the image
 Bmp := TBitmap.Create;
 try
 Bmp.Assign (Table1Graphic);
 BmpWidth := (Rect.Bottom - Rect.Top) * 2;
 OutRect.Right := Rect.Left + BmpWidth;
 DBGrid1.Canvas.StretchDraw (OutRect, Bmp);
 finally
 Bmp.Free;
 end;
 // reset output rectangle, leaving space for the graphic
 OutRect := Rect;
 OutRect.Left := OutRect.Left + BmpWidth;
 end;

 // red font color if length > 100 (omitted — see above)

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 495

 // default drawing
 DBGrid1.DefaultDrawDataCell (OutRect, Column.Field, State);

As you can see in the code above, the program shows the image in a small rectangle
on the left of the grid cell and then changes the output rectangle to the remaining
area before activating the default drawing. You can see the effect in Figure 10.17.

Note In the example I’ve used a large font to increase the height of each row of the cell. It would be nice
to be able to customize the row heights, but that is not very simple. Delphi Developer’s Handbook
(Sybex, 1998) describes the development of an extended DBGrid component with variable-height
rows, and it lists the component’s source code263. You can download the compiled version of this
component on my Web site.

Figure 10.17: The
DrawData program
displays a grid that
includes the text of a
memo field and the
ubiquitous Borland
fishes. Image from the
original book.

A Check Box Cell

Another common extension of the DBGrid control, found in many third-party com-
ponents, is the use of check boxes to select the status of Boolean field values. A
simple way to do this is to place a DBCheck box control in front of the grid when the
user selects the corresponding item. I’ve done this in an extension of the FldText
example from the last chapter.

The form displayed by the new program, called CheckDbg, contains only the grid
and the check box and is based on a custom database table you can fill with data

263 As mentioned, that book is hard to find today.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

496 - Chapter 10: Advanced Database Access

using the DBAware example from the last chapter. This is a summary of the textual
description of the form:

object DbaForm: TDbaForm
OnCreate = FormCreate
 object DBGrid1: TDBGrid
 Align = alClient
 DataSource = DataSource1
 OnColEnter = DBGrid1ColEnter
 OnDrawColumnCell = DBGrid1DrawColumnCell
 OnKeyPress = DBGrid1KeyPress
 end
 object DBCheckBox1: TDBCheckBox
 Caption = ‘Senior’
 DataField = ‘Senior’
 DataSource = DataSource1
 ValueChecked = ‘True’
 ValueUnchecked = ‘False’
 Visible = False
 end
 object Table1: TTable
 DatabaseName = ‘DBDEMOS’
 TableName = ‘Workers’
 end
end

Notice that the check box is initially hidden and that the program handles several
events of the DBGrid control. The first is the OnDrawColumnCell event, which is not
used to customize the drawing (the DefaultDrawing property is set to True), but
only to compute the position of the check box when a cell of the corresponding field
is selected:

procedure TDbaForm.DBGrid1DrawColumnCell(Sender: TObject;
 const Rect: TRect; DataCol: Integer; Column: TColumn;
 State: TGridDrawState);
begin
 if (gdFocused in State) and
 (Column.Field = Table1Senior) then
 begin
 DBCheckBox1.SetBounds (
 Rect.Left + DBGrid1.Left + 1,
 Rect.Top + DBGrid1.Top + 1,
 Rect.Right - Rect.Left,
 Rect.Bottom - Rect.Top);
 end;
end;

The check box itself is displayed or hidden as the user enters or exits the corre-
sponding column, by the handler of the OnColEnter event. Note that we cannot refer to
the column by position, since a user can move the columns:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 497

procedure TDbaForm.DBGrid1ColEnter(Sender: TObject);
begin
 if DBGrid1.Columns [DBGrid1.SelectedIndex].
 Field = Table1Senior then
 DBCheckBox1.Visible := True
 else
 DBCheckBox1.Visible := False;
end;

Finally, as an extra extension, when the check box is visible (that is, when the user
has activated the corresponding field) the program intercepts the keyboard input in
the grid, toggling the selection of the check box instead of accepting the input:

procedure TDbaForm.DBGrid1KeyPress(Sender: TObject; var Key: Char);
begin
 if DBCheckBox1.Visible and (Ord (Key) > 31) then
 begin
 Key := #0;
 Table1.Edit;
 DBCheckBox1.Checked := not
 DBCheckBox1.Checked;
 DBCheckBox1.Field.AsBoolean :=
 DBCheckBox1.Checked;
 end;
end;

To make this work we must not only toggle the status of the check box, but also go
into edit mode and update the data of the field. You can see an example of the out-
put of this program in Figure 10.18.

Figure 10.18: The
grid of the CheckDbg
example uses a check
box for selecting the
value of a Boolean
field. Image from the
original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

498 - Chapter 10: Advanced Database Access

A Grid Allowing Multiple Selection

The third and last example of customizing the DBGrid control relates to multiple
selection. You can set up the DBGrid so that a user can select multiple rows (that is,
multiple records). This is very easy, since all you have to do is toggle the
dgMultiSelect element of the Options property of the grid. Once you’ve selected
this option, a user can keep the Ctrl key pressed and click with the mouse to select
multiple rows of the grid, with the effect you can see in Figure 10.19.

Since the database table can have only one active record, what information is stored
in the grid for the selected items? The grid simply keeps a list of bookmarks to the
selected records. This list is available in the SelectedRows property, which is of type
TBookmarkList. Besides accessing the number of objects in the list with the Count
property, you can get to each bookmark with the Items property, which is the
default array property. Each item of the list is on a TBookmarkStr type, which repre-
sents a bookmark pointer you can assign to the Bookmark property of the table.

Figure 10.19: The
MltGrid example has a
DBGrid control that
allows the selection of
multiple rows. Image
from the original book.

note The TBookmarkStr is a string type for convenience, but its data should be considered “opaque”
and volatile. You shouldn’t rely on any particular structure to the data you may find if you peek at
a bookmark’s value, and you shouldn’t hold on to the data too long or store it in a separate file.
Bookmark data will vary with database driver and index configuration, and it may be rendered
unusable when rows are added to or deleted from the dataset (by you or by other users of the
database).

To summarize the steps, here is the code of the MltGrid example, activated by press-
ing the button to move the Name field of the selected records to the list box:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 499

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
 BookmarkList: TBookmarkList;
 Bookmark: TBookmarkStr;
begin
 // store the current position
 Bookmark := Table1.Bookmark;
 try
 // empty the list box
 ListBox1.Items.Clear;
 // get the selected rows of the grid
 BookmarkList := DbGrid1.SelectedRows;
 for I := 0 to BookmarkList.Count - 1 do
 begin
 // for each, move the table to that record
 Table1.Bookmark := BookmarkList[I];
 // add the name field to the listbox
 ListBox1.Items.Add (Table1.FieldByName (
 ‘Name’).AsString);
 end;
 finally
 // go back to the initial record
 Table1.Bookmark := Bookmark;
 end;
end;

The Data Dictionary264

It is very common to use fields with a similar layout (for example, the same display
mask) throughout a single application or in different applications. If you use integer
numbers, decimal numbers, percent values, phone and fax numbers (possibly the
same number with different extensions), and other standard fields, it is extremely
tedious to set each one of them from scratch. For this reason, Delphi includes a Data
Dictionary. This is a sort of database that stores the properties of fields. You can
define the properties of these standard fields using the Dictionary, or you can sim-
ply copy them from existing fields (of course, you can also use the existing entries in
the Data Dictionary without further work).

264 This is another database related feature that was dropped quite some time ago and naver
made a migration form the BDE to modern data access libraries. The concept was quite inter-
esting, though.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

500 - Chapter 10: Advanced Database Access

In a client/server environment (with several Delphi programmers working on a
project), the Data Dictionary can reside on a remote server for additional sharing of
information.

note The default Data Dictionary is implemented using a Paradox table, but you can define a new one
based on a SQL server table.

The Data Dictionary and the Fields Editor

Most of the operations involving the Data Dictionary take place in the Fields editor
of a table or query component265. The local menu of the Fields editor, in fact, has five
commands related to the use of the Data Dictionary (see Figure 10.20).

Figure 10.20: The
local menu of the
Fields editor, with the
menu commands used
to interact with the
Data Dictionary. Image
from the original book.

Operation Meaning

Associate Attributes This command is used to associate an attribute set with a
given field. In practice, you can select one of the attribute
sets from the Dictionary to use with the current field. When
you associate a field with an attribute set from the Data Dic-
tionary, the attributes will be copied to the properties of the
field.

265 These options have been removed fomr the Fields Editor, when the Data Dictionary was re-
moved form the IDE.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 501

Unassociate Attributes This command is the reverse of the Associate Attributes
operation. It breaks the association between the field and
the attribute set.

Retrieve Attributes This command is used to get the current values from the
related attribute set. It can be used only while the field is
associated with an attribute set. You can think of this as a
loading command.

Save Attributes This command is the reverse of the Retrieve Attributes
operation. It copies the values of the properties of the cur-
rent field to the associated attribute set. If no attribute set is
associated, it will prompt you for a new name, as does the
Save Attributes As command below.

Save Attributes As This command is used to associate the field with a new
attribute set, for which you have to provide a name in the
dialog box that appears.

These commands should be quite intuitive, and I suggest that you work with the
Data Dictionary to learn how to use them. You’ll get used to the Dictionary quickly.
Defining an association between an attribute type and one or more fields of the
tables of a database forces Delphi to use the proper attributes every time you use a
table with one of those fields in an application. For example, all the “Phone” fields
(such as phone number and fax number) of a table can be associated with a specific
attribute set, so that every time you use that table in a program, Delphi will auto-
matically set the proper input mask of the field object, as well as other attributes.
This also works if the field is retrieved as part of a query, but only if you create the
field objects at design time.

What’s in an Attribute Set?

In the previous section, I used the term attribute set several times. An attribute set
is an entry (a record) of the Data Dictionary266. An attribute set refers to several
properties of a TField object, but also includes other general properties. Many of
the properties of the attribute set correspond to properties of the various TField
sub-classes; these should be quite simple to understand. Here is an alphabetical list
of these properties:

266 Again, not applicable today.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

502 - Chapter 10: Advanced Database Access

Alignment EditMask
BlobType MaxValue
Currency MinValue
DisplayFormat Precision
DisplayLabel ReadOnly
DisplayValues Required
DisplayWidth Transliterate
EditFormat Visible

Of course, if you set a property as Precision (a value used only for floating-point
numbers) and then associate the attribute set with a TStringField, the value will be
ignored.

A few other values of the attribute set define the general behavior of a field and are
used to determine how to create a new field object for a given field of a table or
query:

Attribute Usage

TField Class Indicates the type of field (the TField subclass) to create
when a field is added to a dataset.

TControl Class Determines the type of data-aware component Delphi will
create when you drag a field from the Fields editor to a
form. If no value is provided, Delphi will use a standard
approach, which depends on the type of the field object.

Based On This is a value you are asked to provide when you save an
attribute set with a new name. It indicates the attribute set
upon which the current one is based. This means that if you
make a change to an attribute of the original set and this
attribute is not overridden by the current set, the change
will affect the current set, too. The analogy that comes to
mind to explain this is that of styles in word processing pro-
grams, which can be based on other similar styles. Of
course, this resembles a sort of inheritance, too.

Exploring the Data Dictionary267

You can easily define a new attribute set by saving the attributes of a current field
from the Fields editor, as I’ve mentioned before. However, you can also define new
attribute sets, or simply view them using the SQL Explorer (called Database

267 You might want to skip this section as this feature has long been dropped.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 503

Explorer in the Professional version of Delphi). Just open this tool, select the Dictio-
nary tab above the left pane, and you’ll see the Default Data Dictionary (DefaultDD),
based on the BDESDD Paradox table. If you’ve added new Data Dictionaries, you’ll
see them all. Under the Dictionary entry, you’ll find two subtrees, Databases and
Attribute Sets, as you can see in Figure 10.21.

Under Attribute Sets, you’ll find a list of these sets, each one with the values of its
properties. There are also lists of database tables using each set and of the other
attribute sets based on the sets. You can also use the SQL Explorer to create new
attribute sets or modify existing sets.

The associations between fields of the database tables and the attribute sets can also
be seen and modified by exploring the second subtree, Databases. Once you have
selected a field of a table, a combo box will allow you to associate it with one of the
available attribute sets in the Data Dictionary.

Figure 10.21: The
Data Dictionary seen in
the SQL Explorer.
Image from the
original book.

On the whole, when you are starting a new project and you have planned its data-
base tables, I suggest that you start setting up some attribute sets and their
associations before starting to work in Delphi. If your plan is not so well defined,
though, you should simply use the Fields editor to build up your Data Dictionary
along with your tables and then use the Explorer to revise the current situation and
document your changes.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

504 - Chapter 10: Advanced Database Access

Handling Database Errors268

Another important element of database programming is handling database errors in
custom ways. Of course, you can let Delphi show an exception message each time a
database error occurs, but you might want to try to correct the errors or simply show
more details. There are basically three approaches you can use to handle database-
related errors:

· You can wrap a try-except block around risky database operations, such as a
call to the Open method of a Query or to the Post method of a dataset. This is not
possible when the operation is generated by the interaction with a data-aware
control.

· You can install a handler for the OnException event of the global Application
object or use the ApplicationEvents component, as described in the next exam-
ple.

· You can handle specific events of the datasets related to errors, as OnPostError,
OnEditError, OnDeleteError, and OnUpdateError. These events will be discussed
later on in the example.

While most of the exception classes in Delphi simply deliver an error message, with
database exceptions you see a list of errors, showing local BDE error codes and also
the native error codes of the SQL server you are connected with. Besides the
Message property, the EDBEngineError class269 has two more properties, ErrorCount
and Errors. This last property is a list of errors:

property Errors[Index: Integer]: TDBError;

Each item within this list is an object of the class TDBError, which has the following
properties:

type
 TDBError = class
 ...
 public
 property Category: Byte read GetCategory;
 property ErrorCode: DBIResult read FErrorCode;
 property SubCode: Byte read GetSubCode;
 property Message: string read FMessage;

268 This core ideas and error handling alternatives are still relevant today, even if some of the spe-
cific details are tied to the BDE and it’s error management classes.

269 This is a BDE specific class, other data access libraries offer similar implementations, though.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 505

 property NativeError: Longint read FNativeError;
 end;

I’ve used this information to build a simple database program showing the details of
the errors in a memo component. To handle all of the errors, the DBError example
installs a handler for the OnException event of an ApplicationEvents component.
The event handler simply calls a specific method used to show the details of the
database error, in case it is an EDBEngineError:

procedure TForm1.ApplicationEvents1Exception (Sender: TObject; E:
Exception);
begin
 Beep;
 if E is EDBEngineError then
 ShowError (EDBEngineError (E))
 else
 ShowMessage (E.Message);
end;

I decided to separate the code used to show the error to make it easier for you to
copy this code and use it in different contexts. Here is the code of the ShowError
method, which outputs all of the available information to the Memo1 component that
I’ve added to the form:

procedure TForm1.ShowError(E: EDBEngineError);
var
 I: Integer;
begin
 Memo1.Lines.Add(‘‘);
 Memo1.Lines.Add(‘Error: ‘ + (E.Message));
 Memo1.Lines.Add(‘Number of errors: ‘ +
 IntToStr(E.ErrorCount));
 // iterate through the Errors records
 for I := 0 to E.ErrorCount - 1 do
 begin
 Memo1.Lines.Add(‘Message: ‘ +
 E.Errors[I].Message);
 Memo1.Lines.Add(‘ Category: ‘ +
 IntToStr(E.Errors[I].Category));
 Memo1.Lines.Add(‘ Error Code: ‘ +
 IntToStr(E.Errors[I].ErrorCode));
 Memo1.Lines.Add(‘ SubCode: ‘ +
 IntToStr(E.Errors[I].SubCode));
 Memo1.Lines.Add(‘ Native Error: ‘ +
 IntToStr(E.Errors[I].NativeError));
 Memo1.Lines.Add(‘‘);
 end;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

506 - Chapter 10: Advanced Database Access

Besides this error-handling code, the program has a table and a query, along with
the error-related event handlers. As already mentioned, you can install an event
handler related to specific errors of a dataset. The three events OnPostError,
OnDeleteError, and OnEditError have the same structure. Their handlers receive as
parameters the dataset, the error itself, and an action you can request from the sys-
tem; this can be set to daFail, daAbort, or daRetry:

procedure TForm1.Table1PostError(DataSet: TDataSet; E: EDatabaseError;
 var Action: TDataAction);
begin
 Memo1.Lines.Add (‘ -> Post Error: ‘ + E.Message);
end;

If you don’t specify an action, as in the code above, the default daFail is used, and
the exception reaches the global handler. Using daAbort, instead, stops the excep-
tion and can be used if your event handler already displays a message. Finally, if you
have a way to determine the cause of the error and fix it, you can use the daRetry
action.

note The fourth error event, OnUpdateError, has a different structure and is used along with cached
updates as the information is sent back from the local cache to the database. This handler is
important for handling update conflicts among different users as described in the next example.

The example has also a DBGrid connected with the table. You can use the DBGrid to
perform some illegal operations, such as adding a new record with the same key as
an existing one or trying to execute illegal SQL queries. Pressing the four buttons on
the left of the memo generate errors, as you can see in Figure 10.22.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 507

Figure 10.22: The
third button of the
DBError form
generates an exception
with 17 database
errors! Image from the
original book.

Multi User Paradox Applications270

Up to now we’ve seen the development of applications running on a stand-alone
computer. In Chapter 11 we’ll see how to use SQL servers, which allow you to create
applications for a large number of users. An in-between solution, when you have a
limited number of users (usually no more than a dozen) working on a set of data at
the same time, is to use local Paradox or Access files shared on a network.

In the final part of this chapter I’ll cover a few techniques you can use when sharing
Paradox data in a multiuser environment. As part of this discussion I’ll cover a few
related techniques, such as packing tables, the BDE callback function, crash recov-
ery, and concurrency.

270 This entire section is also specifically tied to Paradox pessimistic locking logic (not available in
relational databases) and low level BDE calls. Not really applicable to today Delphi.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

508 - Chapter 10: Advanced Database Access

Low-Level BDE

Before we proceed, we need to focus on the role of the BDE and on some of its low-
level features, which are not available within Delphi components. As mentioned in
the last chapter, the Borland Database Engine is the means for accessing database
data in Delphi (unless you use a custom dataset). This engine takes the requests
from your Delphi programs and, using an appropriate driver, translates them into
commands recognized by the specific database you are using.

The BDE is actually a set of DLLs (which must be installed along with the applica-
tions) that collectively offer a low-level API to programmers, better known as IDAPI
(Independent Database Application Programming Interface). Of course, Delphi pro-
grammers usually don’t call the functions of this API (just as they usually don’t call
the Windows API directly), but use components that wrap the most common calls,
such as the TTable, TQuery, TDatabase, and TSession components, to name just a
few. Only the data-aware components are part of the VCL and do not relate directly
to the BDE.

At times, however, you might need to use some low-level features of the BDE that
aren’t available in Delphi components, exactly as happens with Windows API func-
tions. We’ll use a few low-level BDE functions in the final part of this chapter. To be
able to use them, you need to understand at least the foundations of the BDE and
the terms used in its API and help file.

note The BDE help file is installed along with the BDE and is now linked with the rest of the Delphi
help file. If you cannot find it there, you can look in the Program Files/Borland/Common Files/
BDE directory (or in the directory where you’ve installed the BDE).

Every application accessing the BDE is considered a client, with a separate connec-
tion to the BDE. This connection is often described as a session; and the global
Session component inside the VCL provides you with a default connection, so you
generally don’t have to care about this. Technically the global Session component
calls the DbiInit function to accomplish this.

The BDE handles the requests from each client, each session, using a separate con-
text. A single application might even ask for multiple independent connections by
using multiple TSession components. This is generally required for multithreaded
database access, as you’ll see in Chapter 16, because if the BDE doesn’t create a sep-
arate context it can get confused when it gets two simultaneous requests (which can
happen only in a multithreading application).

In low-level BDE calls, several parameters (in the form of custom handles, unre-
lated to the Windows handles) are commonly required. Here is a short list:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 509

· The database handle (HDBIDB) is the handle to the current database the applica-
tion is working with. You can get the value of this handle using the DBHandle
property of the dataset components or the Handle property of the TDatabase
component.

· The cursor handle (HDBICur) is the handle to the result set, the view of the data of
the table or query. As the term cursor indicates, you can scroll through the data
of this view, since access to the data of the cursor takes place one record at a
time. You can get the value of this handle using the Handle property of the Table
and Query components.

note The use of a cursor to access database data is typical in SQL servers. The BDE, however, also
applies the same technique to Paradox and other local tables, to provide uniform access to all
databases. Traditionally Paradox, dBase, and other local formats were intended for a record-ori-
ented approach.

Every time you call a BDE function, it will return an error code. Checking these
error codes (and if necessary raising an exception) is important; you can accomplish
this easily by calling the Check function of the VCL (defined in the DBTables unit).
In theory, it is even possible to create a complete Delphi database application using
direct BDE calls instead of using the data-access components, but except for very
peculiar situations, this is a lot of extra work with little or no benefit.

Packing a Local Table

A simple and common example of the direct use of local BDE calls is the packing of
a table, the operation that physically removes the deleted records. Delphi’s Table
component doesn’t have this feature built in, probably because the feature is
required only by some local databases (it makes no sense in the client/server
world).

Packing tables is very important in dBase, where deleted records are kept in the
table until it is packed. In Paradox it is usually less important, because the database
engine can reuse physical locations of the deleted records for new ones. To pack a
dBase table you can simply use the DbiPackTable function, as in the following code,
extracted by the PackDBaseTable procedure of the DbPAck example:

Table.Close;
// reopen in exclusive mode
Table.Exclusive := True;
Table.Open;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

510 - Chapter 10: Advanced Database Access

// pack the table
Check (DBIPackTable (Table.DBHandle,
Table.Handle, nil, nil, True));
// remove the exclusive mode
Table.Close;
Table.Exclusive := False;

As you can see in the code above, before calling this function you have to open the
table in exclusive mode, which may require closing it beforehand. As an alternative
to passing the cursor handle as the second parameter, you can also set it to nil and
pass the table name as the third parameter and the constant szDBase as the fourth
parameter.

note To call the BDE functions within a program, you need to add a uses statement referring to the
BDE unit. Delphi still provides unit aliases for BDE, so if you need Delphi 1 compatibility you can
still refer to the units DbiTypes, DbiProcs, and DbiErrs.

While the BDE provides a specific function for packing a dBase table, there isn’t a
corresponding function for Paradox files. As an alternative, you can restructure the
table; this forces the BDE to update the actual data in it, removing the records
marked for deletion. This restructuring operation can be done with the
DbiDoRestructure function, which is quite complex to use, because it is a generic,
multipurpose function.

The function requires as parameters one or more table descriptors, of type
CRTblDesc (passed as the third parameter), and the number of descriptors (passed
as the second parameter). Here is a sample code excerpt, from the PackPdoxTable
procedure of the DbPack example, that uses DbiDoRestructure:

var
 TableDesc: CRTblDesc;
 hDatabase: hDbiDB;
begin
 // get the database handle and close the table
 hDatabase := Table.DBHandle;
 Table.Close;
 // fill the table descriptor
 FillChar (TableDesc, SizeOf (CRTblDesc), 0);
 with TableDesc do
 begin
 StrPCopy (szTblName, Table.TableName);
 StrPCopy (szTblType, szParadox);
 bPack := True;
 end;
 // restructure the table, packing it
 if hDatabase <> nil then
 Check (DBIDoRestructure (hDatabase, 1,

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 511

 @TableDesc, nil, nil, nil, False));

As you can see, most of the fields of the table descriptor and most of the parameters
of the function are actually not used; a real restructuring operation would require
quite a lot of code. The only real point in the listing above is setting the bPack
parameter of the table descriptor to True, to force the packing operation during the
restructuring.

You can find the complete source code of the two routines I’ve just discussed in the
DbPack example. The program simply lists all the Paradox and dBase tables of a
given alias (as you can see in Figure 10.23), and it allows a user to select a table and
pack it.

Figure 10.23: The
DbPack application
allows you to pack
Paradox and dBase
tables. Image from the
original book.

Using Paradox Files on a Network271

When you want to share database data among multiple users, you have to keep the
shared database files on a disk accessible from every computer. The program can
reside on the network drive, but it is executed on the local machine, as the database
engine. The BDE and the proper aliases must be installed on each computer. You
can generate a simple installation program for your application by using the copy of
InstallShield Express272 available on the Delphi Professional and Client/Server CDs.
In any case, you are free to distribute the BDE files, which are also available as a
compressed CAB file for Internet-based deployment.

271 Even this can technically still de done today by downloading, installing, and distributing the
BDE engine, it’s a very old approach I’d recommend against. And if you are still using BDE
and Paradox today in applications you build at the time, it’s really time to move on to some-
thing modern.

272 This installer software no longer ships with Delphi.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

512 - Chapter 10: Advanced Database Access

There are several BDE settings you have to check when sharing Paradox database
files on a network with multiple client applications connected. Here is a list of the
most important issues:

· Set LOCAL SHARE to TRUE. This setting can be done with the BDE Configura-
tion Utility, in the System page. This option is required only if the same files are
used by other applications that aren’t based on the BDE and if you are not using
a Novell File Server.

· Use a shared network directory for the database data. This is the value of the
Alias in the BDE Configuration Utility or of a temporary alias in the Database
component. It is important to note that the network drive you are using must be
mapped with the same drive letter by all client machines; otherwise, the BDE
control gets confused about which tables the applications are sharing. In fact,
they refer to the tables in use by using the drive letter name.

· Also use a shared network directory for the network control file, Paradox.NET.
This is the value of the Net Dir parameter you can set up using the BDE configu-
ration utility or the NetFileDir property of the Session component. This control
file holds information about locks, preventing multiple users from editing the
same record at the same time, as discussed in the next section of this chapter.

note In case of setup errors, you’ll get the confusing error message Directory is controlled by
other .NET file or Multiple .NET files in use.

With these settings everything should work fine, unless a program is not properly
closed because of a system crash. There are a few suggestions you can follow to
make your applications more robust:

· The DBISaveChanges function of the BDE saves all the buffers of the database
engine to disk. This function is useful with local tables, but it is vital on a net-
work. A typical approach is to call this function in the AfterPost event of a table
or the OnIdle message of the global Application object.

· When there is an error in an index of a Paradox table, you can simply delete the
index file and rebuild it. Usually this fixes the problem.

· You can disable disk caching on the drive hosting the database files, so that the
data is immediately written to the disk and is not lost in case of a system crash on
the file server.

· Finally, you can use a special table repair utility DLL provided by Borland, called
TUtil32.DLL for the 32-bit versions of the BDE. There are third-party Delphi

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 513

components that call functions of this DLL, which allows you to try to fix a bro-
ken Paradox table file.

Concurrency Control

There is nothing you can do about it: when you have multiple users, they’ll eventu-
ally try to update the same information at the same time, causing an update conflict.
Different database servers use different approaches to handle concurrent access to
the same data. There are two basic approaches, one exemplified by Paradox and the
other by most SQL servers:

· Paradox uses a pessimistic approach. As a user places a record in edit mode, the
record is locked. The other users can still read its value, but they cannot place the
same record in edit mode.

· Most SQL server database engines use an optimistic approach273. They let multi-
ple users edit the same data, and they allow the applications to send back the
original and the modified data, so users can check if someone else already made
the change. I’ll cover this technique in the next chapter (in the section devoted to
the TUpdateSql component).

When you use Paradox in a networked environment, the lock information for each
user is saved in the shared Paradox.NET file (as mentioned in the last section). Even
if you don’t have a network, you can test this by simply running the same applica-
tion twice and trying to edit the same record in both windows. Since you have two
separate database sessions, one for each instance of the application, the situation is
very similar to having two users accessing the database. Figure 10.24 shows an
example of the error message displayed when you edit the same record in two
copies of a program.

Figure 10.24: The
error message
displayed by a Delphi
application when you
try to modify a record
locked by another user
or program. Image
from the original book.

273 I’d say, all of the relational databases now use optimistic conflict resolution. The coverage of
the pessimistic approach in this section is quite out of fashion.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

514 - Chapter 10: Advanced Database Access

There are several things you can do to have more control over the status of a record,
either to avoid these kinds of errors or simply to improve the output to the user. If
you use explicit calls to the Edit method of a table, a very simple solution is to wrap this
call inside a try-except block. This way, if the record is locked and the system raises
an exception, you can warn the user that someone else is modifying the data and ask
whether to retry the edit operation (maybe after some time) or skip it.

The problem in these cases is that by default you have little control over the length
of the editing operation, so you don’t know how long you need to wait before you
retry editing the record another user is blocking. The other user might have gone for
a cup of coffee without first posting the changes on the record. There are a few tech-
niques you can use to avoid or reduce this problem:

· You can use non–data-aware controls and handle the update operations in code,
making them extremely fast (as illustrated in the NonAware example in the last
chapter).

· You can force a time-out on the editing operations (using a timer control), so that
if a user doesn’t post the updates after a given amount of time and is not working
on the application anymore, the table editing operation is automatically can-
celed. If you do this, you should probably save the temporary changes in some
local buffer, to let the user restart the editing operation from the exact state in
which it was stopped. Otherwise, the user will have to reenter all the data, since
canceling the editing operation with data-aware controls forces an update of the
controls to reflect the current data in the database.

In some circumstances you might also want to know the status of a record, testing
whether it is locked (for example, before a custom update or when you use non–
data-aware controls). To check whether you have another table open on the same
record, you can simply use the DbiIsRecordLocked function. In a multiuser situa-
tion, however, this function doesn’t help because it checks only the current session.
In fact, there is no BDE function to test whether another user has locked a record.

What you can do is mimic the operation Delphi does when the table is set in edit
mode. In this case the VCL places a write lock on the record. Doing this operation
on the current table (technically, the current cursor) might actually change its sta-
tus. For this reason, it is better to create a clone cursor first and then apply the
function to it:

function IsRecordLocked (Table: TTable): boolean;
var
 Locked: BOOL;
 hCur: hDBICur;
 rslt: DBIResult;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 515

begin
 Table.UpdateCursorPos;
 // test if the record is locked by the current session
 Check (DbiIsRecordLocked (Table.Handle, Locked));
 Result := Locked;
 // otherwise check all sessions
 if (Result = False) then
 begin
 // get a new cursor to the same record
 Check (DbiCloneCursor (Table.Handle, False, False, hCur));
 try
 // try to place a write lock in the record
 rslt := DbiGetRecord (hCur, dbiWRITELOCK, nil, nil);
 // don’t call Check: we want to do special actions
 // instead of raising an exception
 if rslt <> DBIERR_NONE then
 begin
 // if a lock error occured
 if HiByte (rslt) = ERRCAT_LOCKCONFLICT then
 Result := True
 else
 // if some other error happened
 Check (rslt); // raise the exception
 end
 else
 // if the function was successful, release the lock
 Check (DbiRelRecordLock (hCur, False));
 finally
 // close the cloned cursor
 Check (DbiCloseCursor (hCur));
 end;
 end;
end;

This function is used in the LockTest example, a very simple program you should
test by executing multiple copies. The program uses a timer and the OnDataChange
event of the data source to test the status of the lock. In the form caption, it displays
whether the record is in edit mode (in which case we lock it), is locked by another
instance of the application, or is available. You can see three copies of the program
running with the three different conditions in Figure 10.25.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

516 - Chapter 10: Advanced Database Access

Figure 10.25: The
three different states of
the LockTest example:
edit mode (locked by
the current program),
locked by another user
or instance, and not
locked. Image from the
original book.

Besides displaying information in the caption, the program disables the three DBE-
dit controls every time there is a lock placed by another user:

procedure TNavigForm.TestLockStatus;
begin
 // if the table is not in edit mode
 if Table1.State in [dsEdit, dsInsert] then
 Caption := ‘LockTest - Record in edit mode’
 else if IsRecordLocked (Table1) then
 begin
 DbEdit1.ReadOnly := True;
 DbEdit2.ReadOnly := True;
 DbEdit3.ReadOnly := True;
 Caption := ‘LockTest - Record already locked’;
 end
 else
 begin
 DbEdit1.ReadOnly := False;
 DbEdit2.ReadOnly := False;
 DbEdit3.ReadOnly := False;
 Caption := ‘LockTest - Record not locked’;
 end;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 517

Database Transactions

Whether you are working with a SQL server or with local database files, you can use
transactions to make your applications more robust274. The idea of a transaction can
be described as a series of operations to be considered as a single, “atomic” whole
that cannot be split.

An example may help to clarify the concept. Suppose you have to raise the salary of
each employee of a company by a fixed rate, as we did in the Total example of the
last chapter. Now if during the operation an error occurs, you might want to undo
the previous changes. If you consider the operation “raise the salary of each
employee” as a single transaction, it should either be completely done or completely
ignored. Or consider the analogy with financial transactions—if only part of the
operation is performed, because of an error, you might end up with a missed credit
or with some extra money!

Working with database operations as transactions serves a useful purpose. You can
start a transaction and do several operations that should all be considered parts of a
single larger operation; then, at the end, you can either commit the changes or roll
back the transaction, discarding all the operations done up to now. Typically you
might want to roll back a transaction if an error occurred during its operations.

Handling transactions in Delphi is quite simple. By default each edit/post operation
is considered a single transaction, but you can alter this behavior by handling them
explicitly. Simply add a Database component to a form or data module, connect
each table or query to this form or data module to the Database component, and
then use the following three methods of the TDatabase class:

· StartTransaction marks the beginning of a transaction.

· Commit confirms all the updates to the database done during the transaction.

· Rollback returns the database to its state prior to starting the transaction.

274 Many RDBMS make the use of transactions compulsory. InterBase is one of them, although
database engines like FireDAC can automate the use of transactions behind the scenes.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

518 - Chapter 10: Advanced Database Access

A Simple Example of Transactions

To show you an example of transaction handling related to Paradox files, I’ve simply
made these three methods into user operations. This is not the standard use of
transactions, but it should help you understand how they work. In the next chapter
we’ll see more complex examples of transactions in a client/server environment.

The form displayed by the Transact example has three buttons in a panel, and it has
a grid connected with a simple query, which is in turn connected to a database com-
ponent. Simply place the database component in the form, give a value to its
DatabaseName property (which is different from the Name property, which is the
name of the component), and then choose this database name as the value of the
DatabaseName property of the Query component. To sum things up, here is a portion
of the DFM file of the Transact example:

object Database1: TDatabase
 AliasName = ‘DBDEMOS’
 Connected = True
 DatabaseName = ‘MyData’
 SessionName = ‘Default’
 TransIsolation = tiDirtyRead
end
object Query1: TQuery
 BeforeEdit = Query1BeforeEdit
 DatabaseName = ‘MyData’
 RequestLive = True
 SQL.Strings = (
 ‘select * from Employee’)
end

Now we can look at the code of the example, which is very simple. When the first
button is pressed, the program starts a transaction (calling
Database1.StartTransaction) and enables the other two buttons. The Commit but-
ton simply calls the corresponding method of the database object,
Database1.Commit, after posting any changes, and then enables and disables the
buttons properly. The last button, Rollback, should also update the contents of the
DBGrid, by calling the Refresh method of the Query after calling Query1.Cancel
and Database1.Rollback.

If you try running this program, you’ll see that you can post some changes to the
database, possibly editing several records, and then simply undo the changes by
pressing the Rollback button. You should not even press the Start button, because
its code is automatically executed each time you start an edit operation:

procedure TForm1.Query1BeforeEdit(DataSet: TDataSet);
begin

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 519

 // start a transaction, if not already started
 if not Database1.InTransaction then
 BtnStartClick (self);
end;

Notice that this code is executed before the dataset is put in edit mode. You can see
the effect of a rollback action in Figure 10.26. As a final note, keep in mind that
there is only a single level of transactions, but for multiple transactions on different
tables you can use multiple database components.

Figure 10.26: The
output of the Transact
example before (left)
and after (right) a
rollback operation.
Image from the
original book.

Transactions can be used on Paradox files, but only on tables that have an index; the
BDE handles the transaction by locking all records involved. Not only does this
hamper other changes, the BDE might even run out of resources for the locks. For
this reason transactions should be limited to non-visual operations, such as posting
(rapidly) a series of changes on one or more tables. Again, moving money from one
account to another and increasing the salary of each employee are good examples.
Transactions also work with other local file formats, such as dBase and FoxPro.

Using Cached Updates as Transactions

An alternative to the use of transactions on local files is the use of cached updates275.
What is a cached update? You keep the updates in memory and then send them to
the physical table all at once. This takes place when you apply the updates, by calling
the ApplyUpdates method of a dataset (to update a single table) or the same method

275 Cached updated remains a fundamental tool in today’s database access. FireDAC’s dataset
components integrate cached updates, but you can also use the FDMemTable component as
an extended cache for a data access component.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

520 - Chapter 10: Advanced Database Access

of the database (to perform the same operation on multiple tables at once). Don’t
forget to apply the updates when you are using cached updates, or your changes to
the data will be lost!

Cached updates are similar to transactions in that you can cancel the updates just as
you can roll back a transaction, skipping the local changes the user has done. To
show you an example of this approach I’ve transformed the Transact application
into a new program, called CacheUpd. The program has no database component,
and the query component has the CachedUpdates property set to True and these
other settings:

object Query1: TQuery
 CachedUpdates = True
 AfterPost = Query1AfterPost
 OnUpdateError = Query1UpdateError
 DatabaseName = ‘DBDEMOS’
 RequestLive = True
 SQL.Strings = (
 ‘select * from Employee’)
end

The two buttons simply call the ApplyUpdates and CancelUpdates methods and
then disable both buttons. Actually, after applying the updates you should also com-
mit them, to refresh the cache; and you should also stop error messages, as we’ll
handle them separately:

procedure TForm1.BtnApplyClick(Sender: TObject);
begin
 try
 // apply the updates and empty the cache
 Query1.ApplyUpdates;
 Query1.CommitUpdates;
 // set buttons
 BtnApply.Enabled := False;
 BtnCancel.Enabled := False;
 except;
 // silent exception
 end;
end;

When the first update is posted to the local cache, the handler of the AfterPost
event enables the buttons once more. Also, if the user exits from the application
while there are still pending updates, we ask for confirmation:

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
 // if there are pending changes, ask the user what to do
 if Query1.UpdatesPending and
 (MessageDlg (‘Apply the pending updates?’,

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 521

 mtConfirmation, [mbYes, mbNo], 0) = mrYes) then
 Query1.ApplyUpdates;
end;

As the user edits a record, the BDE places the usual lock on it, but it immediately
removes the lock once the updates are sent to the local cache. For this reason, two
different users can both have some updates in the local memory. The first user to
apply the update physically sends the data to the database, while the second is
stopped by an error indicating that another user has modified the data. In this case
Delphi raises the specific OnUpdateError event of the dataset, which passes the han-
dler several parameters:

procedure Query1UpdateError (DataSet: TDataSet;
 E: EDatabaseError; UpdateKind: TUpdateKind;
 var UpdateAction: TUpdateAction);

The first parameter is the dataset, the second the error that will be displayed to the
user, the third a description of the update (which can be ukModify, ukInsert, and
ukDelete), and the last the action you want to perform (the default value uaFail,
uaAbort, uaSkip, uaRetry, or uaApplied). A program can look at the data related to
the error and determine which action to perform, although it is generally very diffi-
cult to fix a problem. All we can do is use the OldValue and NewValue properties of
each field to evaluate error conditions and the UpdateStatus function to determine
the update operation (modify, insert, or delete). To fix an error you can set the
NewValue to a proper value and try to reapply the changes, although doing this
might create an infinite loop.

In the CacheUpd example I’ve used the UpdateStatus function to show the current
status of each record in the status bar as the user moves from one record to another:

procedure TForm1.Query1AfterScroll(DataSet: TDataSet);
begin
 // show the record update status in the status bar
 case Query1.UpdateStatus of
 usUnmodified:
 StatusBar1.SimpleText := ‘Non Modified’;
 usModified:
 StatusBar1.SimpleText := ‘Modified’;
 usInserted:
 StatusBar1.SimpleText := ‘Inserted’;
 end;
end;

When an error occurs, the program shows a complex secondary form, which lists in
a string grid all the fields of the current record, which were modified by the user.
The grid is part of a simple dialog box that is created at run time and is initialized in
the FormCreate method by filling the first row with a description of each column.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

522 - Chapter 10: Advanced Database Access

But the real initialization of the form takes place when an error occurs, as described
before. Here is the rather long but fully commented listing of the OnUpdateError
event handler of the query:

procedure TForm1.Query1UpdateError(DataSet: TDataSet;
 E: EDatabaseError; UpdateKind: TUpdateKind;
 var UpdateAction: TUpdateAction);
var
 strDescr: string;
 I, nRow: Integer;
begin
 nRow := 0;
 // create the dialog box
 ErrorsForm := TErrorsForm.Create (nil);
 try
 // set the caption to a description of the record
 ErrorsForm.Caption := ‘Record: ‘ +
 DataSet.FieldByName(‘LastName’).AsString;

 // for each modified field
 for I := 0 to DataSet.FieldCount - 1 do
 if DataSet.Fields [I].OldValue <>
 DataSet.Fields [I].NewValue then
 begin
 // add a row to the string grid
 Inc (nRow);
 ErrorsForm.StringGrid1.RowCount := nRow + 1;
 // copy the data to the new row
 with ErrorsForm.StringGrid1, DataSet.Fields[I] do
 begin
 Cells [0, nRow] := FieldName;
 Cells [1, nRow] := string (OldValue);
 Cells [2, nRow] := string (NewValue);
 end;
 end;

 // if new items were added, show the dialog
 if (nRow > 0) and
 (ErrorsForm.ShowModal = mrOk) then
 begin
 // revert the record and hide the message
 (DataSet as TQuery).RevertRecord;
 UpdateAction := uaAbort
 end
 else
 // skip the record, keeping it in the cache
 UpdateAction := uaSkip;
 finally
 ErrorsForm.Free;
 end;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 10: Advanced Database Access - 523

The effect of this program is visible only when you run two copies of it, make
changes on the same record in both windows, and then apply the updates in both.
Do not apply the updates in one window before doing the edits in the other one, or
the system will automatically update the value when the editing operation starts.
You can see an example of the secondary dialog box displayed in case of an error in
Figure 10.27.

Figure 10.27: The
error dialog box
displayed when there is
a conflict in the
updates with the
CacheUpd example.
Notice the description
of the record in the
status bar of the main
form. Image from the
original book.

note If your tables use an ID to identify records, using cached updates might get you in trouble, since
different applications see different views of the data (whatever they have in memory, not what is
saved on disk). A common solution is to have a separate table with a counter. This is also a typical
technique in client/server applications.

What’s Next?

In this chapter, we’ve explored many advanced features of Delphi database pro-
gramming, which apply both to local databases and to SQL servers. We’ve explored
the structure of database applications based on multiple forms, the use of data mod-
ules and the Data Dictionary when building complex applications, and we’ve even
built an MDI program.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

524 - Chapter 10: Advanced Database Access

Since many Delphi programmers tend to use Paradox tables, a lot of coverage was
devoted to using these file-based database in a multiuser networked environment,
but also to error handling, concurrency, and other related topics.

However, Access tables are getting very popular as local files, and Delphi 5 support
for ADO makes it very simple to use Access and other databases. This will be the
topic of the Chapter 12, which will use data access components that don’t require
the BDE. More components of this type, the InterBase Express components, will be
discussed in the next chapter, along with a detailed introduction to client/server
development with Delphi.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 525

Chapter 11:

Client/Server

Programming

In the last two chapters we’ve examined Delphi’s support for database program-
ming, focusing mainly on the use of local files (particularly Paradox) that might or
might not be shared over a network. This chapter moves on to the use of SQL server
databases, focusing on client/server development276. A single chapter cannot cover
this complex topic in detail, so I’ll simply introduce it from the perspective of the
Delphi developer and add some tips and hints. The next chapter extends our discus-
sion of client/server programming to Microsoft’s ADO support.

The RDBMS (Relational DataBase Management System), or SQL server, that we’ll
focus on is InterBase, simply because it is included in the Client/Server edition of

276 While client/server programming is much more actual than the previous local database chap-
ters, some of the components and specific techniques used here are not up to date.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

526 - Chapter 11: Client/Server Programming

Delphi (a Local version of InterBase is available also in Delphi Professional277). I
won’t try to assess whether this server is better or more robust than competing (and
often more expensive) alternatives but simply use InterBase to test the code snip-
pets and the examples presented along with the text.

In a rapid application development (RAD) tool such as Delphi, you can indeed take
the same components and code developed for a local database application and use
them in a client/server environment. However, this handy feature may prove to be
dangerous to beginners, as a standard technique that works well for local access
might become extremely inefficient in a client/server application.

note Most of the information in this chapter applies only to the Enterprise (formerly Client/Server)
edition of Delphi278. Of course, the general information about SQL can be useful whenever you are
writing queries against local files, and the basic concepts of client/server architecture apply even
if you are accessing a server using ODBC or other techniques available in Delphi Professional.

An Overview of Client/Server
Programming

The database applications in previous chapters used the BDE to access data stored
in files either on the local machine or on a networked computer. In both cases we
used a file server, whose only role was to store the file on a hard disk, because the
database engine (the BDE) was running exclusively on the computer that also
hosted the application. In this configuration, when we query one of the tables, its
data is first copied into a local cache of the BDE and then processed.

As an example, consider taking a table like Employee (part of the InterBase IBLocal
sample database279, which ships with Delphi), adding thousands of records to it, and
placing it on a networked computer working as a file server. If we want to know the

277 Today all Delphi editions include the Developer edition of InterBase and the embedded ver-
sions, IBLite and IBToGo (which is a single product, with features depending on the license).

278 This is not true any more, even if FireDAC features depend on the SKU, access to the local In-
terBase engine is available in all Delphi editions.

279 The InterBase sample database hasn’t changed much over the years, the same sample tables
still exists today.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 527

highest salary paid by the company, we can open a Table component280 (EmpTable)
connected with the database table and run this code:

EmpTable.Open;
EmpTable.First;
MaxSalary := 0;
while not EmpTable.Eof do
begin
 if EmpTable.FieldByName (‘Salary’).AsCurrency > MaxSalary then
 MaxSalary := EmpTable.FieldByName (‘Salary’).AsCurrency;
 EmpTable.Next;
end;

The effect of this approach is to move all the data of the (large) table from the net-
worked computer to the local machine, an operation that might take minutes.
Because Delphi includes a Query component281, you might think of using the follow-
ing SQL code to compute this maximum value:

select Max(Salary) from Employee

In case of a Paradox table, this query would be processed by the local SQL engine of
the BDE, and the entire data set of the table would still have to be moved from the
networked computer to the local one, with similarly poor performance. But if you
use InterBase and let the server execute the SQL code, only the result set—a single
number—will need to be transferred to the local computer.

note The two code excerpts above are part of the GetMax example, which includes some code to time
the two approaches. Using the Table component on the small Employee table takes about ten
times longer than using the query, even if the InterBase server is installed on the client computer.

If you want to store a large amount of data on a central computer and avoid moving
the data to client computers for processing, the only solution is to let the central
computer manipulate the data and send back to the client only a limited amount of
information. This is the foundation of client/server programming.

In general, you’ll use an existing program on the server (an RDBMS) and write a
custom client application that connects to it. Sometimes, however, you might even
want to write both a custom client and a custom server, as in three-tier applications.
Delphi support for this type of program—the MIDAS architecture282—is covered in
Chapter 21.

280 You could use FireDAC FDTable to build a similar demo project.

281 Or, better, FireDAC FDQuery component.

282 Now called DataSnap.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

528 - Chapter 11: Client/Server Programming

The upsizing of an application—that is, the transfer of data from local files to a SQL
server database engine—is generally done for performance reasons and to allow for
larger amounts of data. Going back to the previous example, in a client/server envi-
ronment the query used to select the maximum salary would be computed by the
RDBMS, which would send back to the client computer only the final result, a single
number! With a powerful server computer (such as a multiprocessor Sun SparcSta-
tion283), the total time required to compute the result might be minimal.

However, there are also other reasons to choose a client/server architecture284:

The amount of data: A Paradox table cannot exceed 2GB, but even around
300MB you might start having serious speed problems, and errors in the indexes
become more frequent.

The need for concurrent access to the data: Paradox uses the Paradox.NET
file to keep track of which user is accessing the various tables and records. The Para-
dox approach to handling multiple users is based on pessimistic locking. When a
user starts an editing operation on a record, none of the other users can do the same
(to avoid any update conflict), as we saw in the last chapter. In a system with tens of
users, this might lead to serious problems, because a single user might block the
work of many others. SQL server databases, by contrast, generally use optimistic
locking, an approach that allows multiple users to work on the same data and delays
the concurrency control until the time the users send back some updates.

Protection and security: An RDBMS usually has many more protection mecha-
nisms than the simple password you can add to a Paradox table. When your
application is based on files, a malicious or careless user might simply delete those
vital files. When SQL servers are based on robust operating systems, instead, they
provide multiple levels of protection, make backups easier to do, and often allow
only the database administrator to modify the structure of the tables.

Programmability: An RDBMS database can host business rules, in the form of
stored procedures, triggers, table views, and other techniques we’ll discuss in this
chapter. Choosing how to divide the application code between the client and the
server is one of the main issues of client/server programming.

Transaction Control: We saw in the last chapter that Paradox and the BDE offer
limited support for transactions, but the transaction support provided by an

283 Well, that was a great computer at the time the original book was written...

284 These reasons are still accurate today. Protection of data, also from unauthorized access and
even more in case of sensitive data a company must legally protect, is more important these
days and InterBase offers extensive encryption support, both for data at rest and in transit.
The same is available also for the local IBToGo engine.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 529

RDBMS database is generally much greater. This is another important aspect of the
overall robustness of the system.

Client/Server and Delphi

Now let’s consider how Delphi fits into the client/server picture. How does Delphi
help us build client/server applications? As I’ve mentioned, you can still use all the
components and techniques discussed in the last two chapters, although in some
cases alternative approaches will help you leverage the power of the RDBMS your
application is dealing with.

The Database Component

In local applications, programmers usually refer to the database by indicating the
alias of the file path in the DatabaseName property of the Table and Query compo-
nents. An alternative is to use the Database285 component to define a local alias and
then let all the DataSet components refer to this local alias.

As an example, consider the components of the GetMax application discussed ear-
lier:

object Database1: TDatabase
 AliasName = ‘IBLOCAL’
 Connected = True
 DatabaseName = ‘IB’
 LoginPrompt = False
 Params.Strings = (
 ‘USER NAME=SYSDBA’
 ‘PASSWORD=masterkey’)
 SessionName = ‘Default’
end
object EmpTable: TTable
 DatabaseName = ‘IB’
 TableName = ‘EMPLOYEE’
end
object EmpQuery: TQuery
 DatabaseName = ‘IB’

285 In FireDAC you’d use an FDConnection component to manage the overall connection to the
database, with datasets referring to it. The FDConnection component has a very powerful
component editor to configure and customize the database connection.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

530 - Chapter 11: Client/Server Programming

 SQL.Strings = (
 ‘select Max(Salary) from Employee ‘)
end

In a client/server application, using the Database component is almost mandatory,
as it is required to define connectivity and login parameters (the user name and
password, as you can see in the Params property above) and to handle transactions.

Keep in mind that the Database component establishes a connection with the
RDBMS, representing one of the clients of the system. As such, on most servers it
requires a license, and your organization is typically paying for a fixed number of
licenses. If the same application or the same computer uses multiple connections to
the server, it can count as multiple clients! Fortunately, by setting the
KeepConnection property of the Database component, you can specify whether to
keep the database connection active even when there is no active DataSet compo-
nent using the connection. If your program can fetch some data and then operate on
it locally, disconnecting from the server might help you conserve licenses286.

The Role of the BDE

What is the role of the BDE in this architecture? In a client/server application built
with Delphi 4 or earlier versions, the client programs still need to interact with a
local copy of the BDE, installed on the client machine. Using the new Delphi 5 ADO
or InterBase Express components, you can avoid installing the BDE on the client287
(but you won’t be able to use its features, of course).

Let’s discuss the traditional approach first. (It will still be very common with Delphi
5, anyway.) The BDE doesn’t know how to handle the RDBMS; it uses some further
drivers, called SQL Links, to perform this operation. As an alternative, the BDE can
also interact with ODBC drivers. Inprise provides native BDE drivers for InterBase,
Oracle, Informix, MS SQL, Sybase, and DB2.

If the BDE is still required on the local machines, it can actually be very efficient.
For example, when you use the pass-through mode for queries, the BDE doesn’t try
to interpret the SQL code but passes it directly to the RDBMS server. This allows

286 Similar considerations still applies today, in different areas. For example, sharing connections
among multiple threads with connection pooling (a feature included in FireDAC).

287 This is true for FireDAC, which is a library fully written in Delphi and embedded into your ex-
ecutable (unless you use runtime packages). FireDAC requires no deployment other than the
client library for the specific database you want to use.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 531

you to use a server’s specific SQL commands and also to speed up the execution.
The pass-through mode is activated using the BDE Administrator utility288.

Having the BDE between the client and the server can also help in building applica-
tions designed to work with multiple servers289. In practice, however, it’s not easy to
do this and still obtain the best performance, because of differences in the SQL
dialects understood by each SQL server. In particular, data types are handled differ-
ently by the various servers. If the same table were placed on two servers that have
data type differences, Delphi would need to use two different TField objects.

Also keep in mind that the BDE generally treats data with a record-oriented
approach typical of local files, rather than the set-oriented approach of SQL servers.

note An interesting aspect of the BDE is its ability to perform heterogeneous joins; that is, it can run
SELECT statements on multiple tables of different databases (using different SQL servers and
local tables). This can be useful, as many servers offer no support for connecting to external
tables, but you should keep in mind that to perform this operation the BDE often needs to fetch
the entire content of the tables involved in executing the query on the client computer.

There are two alternatives to using the BDE: the direct use of the specific server’s
API, as in the InterBase Express components; or the use of a different database
engine, as in the combination of ADO with OLE DB. Using the server API can result
in better performance, but the application will generally not be portable to another
SQL server. The native Delphi 5 dataset components for InterBase certainly make
the server API approach appealing, and I’ll discuss them later in this chapter (after
an introduction to client/server programming based on the traditional approach
and the BDE).

Another alternative, covered in the next chapter, is the use of ADO instead of the
BDE290. As we’ll see, the advantage of ADO is that its engine is part of the Windows
2000 operating system, so you can take it for granted (if not now, at least in the
near future). Also, using ADO might be a good choice in conjunction with Microsoft
database technology (including MS Access and MS SQL Server).

If you plan to use Oracle, I think the BDE and ADO are equally good alternatives:
although the future of ADO certainly looks brighter, the BDE support for the Object
Relational model of Oracle 8.0 is probably superior. Since Oracle and Microsoft are

288 Most modern database access libraries allow passing the queries to the database with little or
no upfront processing.

289 This is certainly more true with FireDAC, which offers universal data access across dozens of
RDBMS and at the same time can optimize access and performances to each of them.

290 The importance of classic ADO and of the associated components is more limited these days.
I’ll add some specific comments in the next chapter.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

532 - Chapter 11: Client/Server Programming

battling each other over database issues (including, for example, the SQL extensions
used to introduce the object-relational model) there might be surprises in this area.
Keep in mind, anyway, that if Oracle is your definitive choice you’ll also be able to
use direct components similar to those Delphi provides for InterBase (see, for
example, Direct Oracle Access at www.allroundautomations.nl291).

From Local to Client/Server

Now we can start focusing on particular techniques useful for client/server pro-
gramming. Keep in mind that the general goal is to distribute the workload properly
between the client and the server and reduce the network bandwidth required to
move information back and forth.

The foundation of this approach is good database design, which involves both table
structure and appropriate data validation and constraints, or business rules. Enforc-
ing the validation of the data on the server is important, as the integrity of the
database is one of the key aims of any program. However, the client side should
include data validation as well, to improve the user interface and make the input
and the processing of the data more user-friendly. It makes little sense to let the
user enter invalid data and then receive an error message from the server, when we
can prevent the wrong input in the first place.

note If you use a CASE tool for the definition of the database, or import the definition in such a tool
afterwards, you can use Delphi’s Case Wizard292 to generate a corresponding data dictionary and
have the field objects created at design time automatically import the constraints specified on the
server.

Unidirectional Cursors

In local databases, tables are sequential files whose order is either the physical order
or is defined by an index. By contrast, SQL servers work on logical sets of data, not
related to a physical order. A relational database server handles data according to
the relational model, a mathematical model based on set theory.

291 The company is still active today, offering tools and components for Oracle.

292 This is another tool that was tied to the BDE and the data dictionary, and has been long been
removed from the product.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 533

What is important for the present discussion is that in a relational database, the
records (sometimes called tuples) of a table are identified not by position but exclu-
sively through a primary key, based on one or more fields. Once you’ve obtained a
set of records, the server adds to each of them a reference to the following one,
which makes it fast to move from a record to the following one but terribly slow to
move back to the previous record. For this reason, it is common to say that an
RDBMS uses a unidirectional cursor.

Connecting such a table or query to a DBGrid control makes it very slow when
browsing the grid backwards. Actually, the BDE helps a lot, as it keeps in a local
cache the records already loaded in the table293. Thus, when we move to following
records, they are requested from the SQL server, but when we go back the BDE
jumps in and provides the data. In other words, the BDE makes these cursors fully
bidirectional, although this might use quite a lot of memory.

note The simple case of a DBGrid used to browse an entire table is common in local programs but
should generally be avoided in a client/server environment. It’s better to filter out only part of the
records and only the fields you are interested in. Do you need to see a list of names? Return all
those starting with the letter A, then those with B, and so on, or ask the user for the initial letter of
the name.

If proceeding backward might result in problems, keep in mind that jumping to the
last record of a table is even worse; usually this operation implies fetching all the
records294!

A similar situation applies to the RecordCount property of data sets. Computing the
number of records often implies moving them all to the client computer. This is the
reason why the thumb of the vertical scrollbar of the DBGrid works for a local table
but not for a remote one. If you need to know the number of records, run a separate
query to let the server (and not the client) compute it. For example, you can see how
many records will be selected from the Employee table if you are interested in those
records having a salary field higher than 50,000:

select count(*)
from Employee
where Salary > 50000

293 FireDAC also caches the query results, but in ways that are very powerful and can be exten-
sively customized for the best performance.

294 This can now be avoided by smart data access layers like FireDAC by reversing the data query
access, starting form the last record and moving backwards.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

534 - Chapter 11: Client/Server Programming

note Using the SQL instruction count(*) is a handy way to compute the number of records returned
by a query. Instead of the * wildcard, we could have used the name of a specific field, as in
count(First_Name), possibly combined with either distinct or all, to count only records
with different values for the field or all the records having a non-null value.

Table and Query Components in Client/Server

In Delphi there are two components you use to access an existing database table,
Table and Query295. When building client/server applications, programmers tend to
use the Query component exclusively, but that is certainly not mandatory and there
are cases in which using the simpler Table component has no drawback. Here’s a
quick look at the pros and cons of both components:

· While the Table component should not be used to access a large table296, it can
work perfectly well with a small lookup table. By opening a Table component you
don’t transfer the entire content of the table to the local machine; the data is
moved only when you access specific records.

· Consider also that with the Table component, the BDE asks the server first for
the table structure and then for the table data297. These two steps are necessary
for setting up the proper internal structures of the BDE, and they are not exe-
cuted by the Query component. If you activate the BDE’s Schema Caching
feature, the logical structure of the table will be kept locally, saving this extra
step. Of course, this might create problems if the logical structure of the table
changes on the server.

· One problem with the Table component is that the BDE mimics a bidirectional
cursor by caching the data locally. With a Query component, instead, you can

295 Again, FDTable and FDQuery have matching features and also similarly named properties for
easier migration of existing BDE code to FireDAC. For this purpose, Delphi includes a specific
script to help migrate your code, powered by the reFind tool. This tool uses regular expres-
sions to find specific text in your code and DFM files and replace references to the BDE com-
ponents with references to the FireDAC equivalents. Because the tool is powered by a script
you can edit, a few iterations might be needed for migrating large applications.

296 With FireDAC offering better optimizations, this is no longer the case. However, in most data-
base structures, the fields in a table have references to other tables and a query can fetch the
data from multiple tables offering a more complete data view to an end user. Therefore table
access is not that commonly used.

297 This is also true for FireDAC, but it happens also for queries. You can keep a local copy fo the
the dataset configuration and even store the FieldDefs in the configuration (in the DFM file)
to reduce the metadata access.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 535

specify whether you want this caching or not with the Unidirectional prop-
erty298.

· Another point to consider is that you can generally edit the result of a simple
query, sending the data back to the SQL server. This is accomplished by setting
the RequestLive property to True. For more complex queries, however, you’ll
need to use an UpdateSQL component299, something we’ll discuss later in this
chapter.

· When trying to minimize the data moved between the server and the client, you
need to consider the size of each record as well as the total number of them.
When you select only a few fields with a query, only part of the data is consid-
ered. A Table component, instead, always entails transferring the entire record to
the local machine, even if you’ve filtered out some fields using the Fields editor.
The same problem takes place when you ask for a live query (by setting the
RequestLive property). In this case the BDE needs to see the entire record in
order to send back the proper update commands. This means that selecting all
the records of a table with a live query is equivalent to using the Table compo-
nent.

· The Query component is not limited to select SQL statements; you can also use
it to insert or delete records. When the Query component returns a dataset, you
generally activate it with the Open method (or with the equivalent operation, set-
ting the Active property to True). When the Query component is used to perform
an operation on the server, you activate it by calling the ExecSQL method300.

Parametric Queries and Null Values

Parametric queries are a very useful technique. Essentially, they allow you to run
multiple queries with different result sets while the server only needs to work out
the access strategy for solving the query once.

You can force this initial preparation of the query access strategy by calling the
Prepare method of a Query component. With this operation the server receives the

298 FireDAC offers these features but also additional options in this regard. Sing unidirectional
cursors can save local resources and be an important optimization. You can also combine a
unidirectional cursors and an in memory dataset, like FDMemTable.

299 The FDUpdateSQL component has a similar role, but FireDAC ability to generate updates au-
tomatically is significantly higher than what the BDE used to offer.

300 To run a query command, FireDAC FDQuery offers a compatible ExecSQL method, but also a
more specific Execute method.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

536 - Chapter 11: Client/Server Programming

query, checks its syntax, and while compiling it determines how to use indexes and
other access techniques301. If the query is then executed multiple times, it will be
faster as these initial operations have already been executed once for all. Of course,
you should call Prepare again if you change the SQL text of the query. Also, remem-
ber to call Unprepare at the end, to free some BDE resources.

Note that some powerful SQL servers can do the same operation by caching the
requests and automatically determining that you are sending the same request
twice. If the server is smart enough, preparing the query might result in little or no
performance gain.

note When you write parametric queries against a SQL server, you should consider null values with
care. In fact, to test for a null value you should not write a field = null test, but use the spe-
cific expression field is null instead.

Using Table and Query Filters

One way to limit the amount of data returned by a table is to filter it. Using the
Filter property of the Table component you can specify a condition similar to the
where clause of a query. When you work with local databases, the filter is applied by
the BDE, but with a SQL server the BDE passes the condition to the server in the
query generated for the table. This makes filtered tables very portable between local
and client/server applications.

note The situation is different if you filter the records in the Pascal code, using the OnFilterRecord
event. In this case all the records are sent to the client application, which does its own custom fil-
tering.

If you use a filter with a Query component, the filtering operation will always be
performed locally by the BDE, even when you are working with a SQL server. In this
case, the BDE asks the server for the entire result set of the query. This would be
reasonable only when the user of the application changes the filtering condition
often. For a query, only the local filter will be modified, and the data in the local
cache will be used. For a table, the BDE will generate an updated query to be exe-
cuted.

301 Preparing queries still makes sense in most data access frameworks, even if this is often auto-
mated and happens without issuing a specific command.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 537

Getting Started with Local InterBase

Now that we’ve looked at the theory and some of the most common pitfalls of
client/server programming, we can start looking at some practical examples intro-
ducing Local InterBase, the single-user version of the Inprise302 RDBMS included in
the Professional and Enterprise editions of Delphi. This local version of the SQL
server engine is useful for developing and testing a client/server application on a
single computer303.

note Among the advantages of using InterBase are its simple administration tools, which are Windows
applications, its limited “footprint,” and its good performance on large amounts of data.

After installing Local InterBase (available on the Delphi 5 CD), you’ll be able to acti-
vate the server from the Windows Start menu304. (The IBServer.EXE program is in
the Bin directory of InterBase, usually under the Program Files\Borland\IntrBase
path or Program Files\InterBase Corp\InterBase, depending on your installation.)
When the server is active, you’ll see a corresponding icon in the Tray Icon area of
the Windows TaskBar. The menu connected with this icon allows you to configure
InterBase and activate its automatic startup. Double-clicking on the icon displays
status information, as you can see in Figure 11.1.

There are two main tools you can use to interact directly with InterBase. One is the
Server Manager application, which can be used to administer both a local and a
remote server, and the other is Windows Interactive SQL (or WISQL).

302 The temporary company name used by Borland for a few years, before chancing it back to Bor-
land and before selling Delphi to Embarcadero (after creating the CodeGear business unit).

303 This version is now the developer edition, which ships with Delphi. It’s most visible practiccal
limitation, compared to the full server, is that you need to restart it every 48 hours.

304 InterBase installation is now an option in the Delphi installer and the database is generally in-
stalled and configured as a service, so you can open the Windows Services app to turn it on
(and to restart it, as mentioned above).

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

538 - Chapter 11: Client/Server Programming

Figure 11.1: The
status information
displayed by InterBase
when you double-click
on its tray icon. The
License and
Capabilities
information indicate
this is actually Local
InterBase. Images from
the original book and
one captured of the
InterBase Manager for
the InterBase 2020
Update 6 version that
ships with Delphi 12.

Server Manager can be used for administering local or remote InterBase databases
and servers. With Server Manager, you can manage database security (authorize
new users, change user passwords, and remove user authorizations), back up a
database, perform maintenance tasks, see database statistics, and execute other
related operations. Figure 11.2 shows an example of using the Server Manager to
add a user.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 539

Figure 11.2: The
InterBase Server
Manager tool, while
adding a new user.
Image from the
original book.

The Windows InterBase ISQL (Interactive SQL) application, available in the Inter-
Base\Bin directory, can be used to execute a SQL statement on a local or remote
InterBase server305. You can start WISQL, connect to an existing local or remote
database, and enter a SQL statement. For example, you could connect to the IBLO-
CAL alias and enter this statement:

select First_Name, Last_Name
from employee
where Job_Code = “Eng”

This SQL command outputs the first and last name of every employee in the Engi-
neering (Eng) department, as you can see in Figure 11.3. Windows ISQL can be used

305 InterBase today ships also with the IBConsole app, a very powerful client application for man-
aging, configuring, creating data structure and trying out queries against any version of Inter-
Base (Developer, Server, Desktop or embedded). IBConsole fully replaces Windows ISQL,
while the command line version ISQL still exists and can be handy, for example, when working
on a remote Linux server.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

540 - Chapter 11: Client/Server Programming

to view the contents of a database, but its real role is in database setup and mainte-
nance. You can define new tables, add indexes, write stored procedures, and so on.
You can do all these operations using the Data Definition portion of SQL.

Figure 11.3: The
result of executing a
SQL statement in the
Windows ISQL
application. Image
from the original book.
You can also see here
the current Interactive
SQL, which is part of
IBConsole, running the
same query (the query
editor and results are
in separate tabs).

note As an alternative, you can use a generic database front end to see and modify an InterBase data-
base. For example, you can use Delphi’s Database Explorer and Database Desktop to navigate
through existing tables or databases306, as well as to insert and delete records and modify existing
values. For instance, with the Database Explorer you can execute a SQL statement similar to the
one in the WISQL example. By simply selecting the Data and SQL tabs, you can see all of the data
or select just some fields or records.

An alternative to these Windows-based server-management applications is to use
some command-line tools that perform similar tasks. These tools (ISQL for queries,
GBACK for backups, GFIX for fixing problems, and a few others) are handy for
batch processing and when you are working in a Unix or Linux environment. (How-
ever, you can still use the simpler Windows-based tools from a client Windows
machine connected to the Unix server.)

306 While these tools don’t exist any more, same metadata navigation features are now available in
the Data Explorer pane within the Delphi IDE.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 541

SQL: The Data Definition Language

RDBMS packages are generally based so closely on SQL (Structured Query Lan-
guage, commonly pronounced “sequel”) that they are often called SQL servers. SQL
is defined by an ANSI/ISO committee, although many servers use custom exten-
sions to the last official standard (called SQL-92 or SQL2). Recently many servers
have started adding object extensions, which should be part of the future SQL3
standard.

Contrary to what its name seems to imply, SQL is used not only to query a database
and manipulate its data, but also to define it. SQL actually consists of two areas: a
Data Definition Language (DDL), including the commands for creating databases
and tables; and a Data Manipulation Language (DML), including the query com-
mands.

The DDL commands are generally used only when designing and maintaining a
database; they are not used directly by a client application. The starting point is the
create database command, which has a very simple syntax:

create database “mddb.gdb”;

This command creates a new database (in practice, a new GDB file) in the current
directory or in the indicated path. Using WISQL, you can also create a database
using the File Create Database menu command307. In the above statement notice
the final semicolon, used in WISQL as a command terminator. The opposite opera-
tion is drop database, and you can also modify some of the creation parameters
with alter database.

note In general, client programs should not operate on metadata, an operation that in most organiza-
tions would compete with the database administrator’s responsibilities. I’ve added these calls to a
simple Delphi program (called DdlSample) only to let you create new tables, indexes, and triggers
in a sample database. You can use that example while reading the following sections. As an alter-
native, you can type the commands in the Windows Interactive SQL application.

307 There is now a feature-rich and easy-to-use Create Database wizard in IBConsole.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

542 - Chapter 11: Client/Server Programming

Data Types

After creating the database, you can start adding tables to it with the create table
command. In creating a table, you have to specify the data type of each field. SQL
includes a number of data types, although it is less rich than Paradox and other local
databases. Table 11.1 lists SQL standard data types and some other types available
on most servers308.

Table 11.1: The Data Types Used by SQL

DATA TYPE STANDARD USAGE

char, character (n) Yes Indicates a string of n characters. Specific servers or drivers
can impose a length limit (32,767 characters for InterBase).

int, integer Yes An integer number, usually four bytes but platform
dependent.

smallint Yes A smaller integer number, generally two bytes.

float Yes A floating-point number.

double precision Yes A high-precision floating-point number.

numeric
(precision, scale)

Yes A floating-point number, with the indicated precision and
scale.

date No A date. The implementation of this data type varies from
server to server.

blob No An object that holds a large amount of binary data (BLOB
stands for Binary Large OBject).

varchar No A variable-size string used to avoid the space consumption of
a fixed large string.

note The TStringField class in Delphi can distinguish between char and varchar types, indicat-
ing the actual type in a property and fixing some the problems of using a char that’s not padded
with trailing spaces in the where clause of an update statement.

308 There are many more data types available in most servers these days, but covering the en-
hancements to SQL is really beyond the scope of these footnotes.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 543

Programmers who are used to Paradox and other local engines will probably notice
the absence of a logical or Boolean type, of date and time fields (the date type in
InterBase holds both date and time), and of an AUTOINC type, which offers a com-
mon way to set up a unique ID in a table. The absence of a logical type can create a
few problems when upsizing an existing application. As an alternative, you can use a
smallint field with 0 and 1 values for True and False, or you can use a domain, as
explained in the next section. An AutoInc type is present in some servers, such as
Microsoft SQL Server, but not in InterBase. This type can be replaced by the use of a
generator, as we’ll discuss later on.

Domains

Domains can be used to define a sort of custom data type on a server. A domain is
based on an existing data type, possibly limited to a subset (as in a Pascal subrange
type). A domain is a useful part of a database definition, as you can avoid repeating
the same range check on several fields, and you can make the definition more read-
able at the same time.

As a simple example, if you have multiple tables with an address field, you can
define a type for this field and then use this type wherever an address field is used:

create domain AddressType as char(30);

The syntax of this statement also allows you to specify a default value and some con-
straints, with the same notation used when creating a table (as we’ll see in the next
section). This is the complete definition of a Boolean domain:

create domain boolean as smallint default 0
 check (value between 0 and 1);

Using and updating a domain (with the alter domain call) makes it particularly easy
to update the default and checks of all the fields based on that domain at once. This
is much easier than calling alter table for each of the tables involved.

Creating Tables

In the create table command, after the name of the new table, you indicate the
definition of a number of columns (or fields) and some table constraints. Every col-
umn has a data type and some further parameters:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

544 - Chapter 11: Client/Server Programming

· not null indicates that a value for the field must always be present (this parame-
ter is mandatory for primary keys or fields with unique values, as described
below).

· default indicates the default value for the field, which can be any of the follow-
ing: a given constant value, null, or user (the name of the user who has inserted
the record).

· One or more constraints, optionally with a name indicated by the constraint
keyword. Possible constraints are primary key, unique (which indicates that every
record must have a different value for this field), references (to refer to a field of
another table), and check (to indicate a specific validity check).

Here is an example of the code you can use to create a table with simple customer
information:

create table customer (
 cust_no integer not null primary key,
 firstname varchar(30) not null,
 lastname varchar(30) not null,
 address varchar(30),
 phone_number varchar(20)
);

In this example we’ve used not null for the primary key and for the first and last
name fields, which cannot be left empty. The table constraints can include a primary
key using multiple fields, as in:

create table customers (
 cust_no integer not null,
 firstname varchar(30) not null,
 ...
 primary key (cust_no, name)
);

note The most important constraint is the constraint reference, which allows you to define a for-
eign key for a field. A foreign key indicates that the value of the field refers to a key in another
table (a master table). This relationship makes the existence of the field in the master table
mandatory. In other words, you cannot insert a record referring to a nonexistent master field; nor
can you destroy this master field while there are other tables referencing it.

Once you’ve created a table you can remove it with the drop table command, an
operation that might fail if the table has some constrained relationships with other
tables.

Finally, you can use alter table to modify the table definition, removing or adding
one or more fields and constraints. However, you cannot modify the size of a field

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 545

(for example, a varchar field) and still keep the current contents of the table. You
should move the contents of the resized field into temporary storage, drop the field,
add a new one with the same name and a different size, and finally move back the
data.

Indexes

The most important thing to keep in mind about indexes is that they are not rele-
vant for the definition of the database and do not relate to the mathematical
relational model. An index should be considered simply a suggestion to the RDBMS
on how to speed up data access.

In fact, you can always run a query indicating the sort order, which will be available
independently from the indexes (although the RDBMS can generate a temporary
index). Of course, defining and maintaining too many indexes might require a lot of
time; if you don’t know exactly how the server will be affected, simply let the
RDBMS create the indexes it needs.

The creation of an index is based on the create index command:

create index cust_name on customers (name);

You can later remove the index by calling drop index. InterBase also allows you to
use the alter index command to disable an index temporarily (with the inactive
parameter) and re-enable it (with the active parameter).

Views

Besides creating tables, the database allows you to define views of a table. A view is
defined using a select statement and allows you to create persistent virtual tables
mapped to the physical ones. From Delphi, views look exactly the same as tables.

Views are a handy way to access the result of a join many times, but they also allow
you to limit the data that specific users are allowed to see (restricting access to sen-
sitive data). When the select statement that defines a view is simple, the view can
also be updated, actually updating the physical tables behind it; otherwise, if the
select statement is complex, the view will be read-only.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

546 - Chapter 11: Client/Server Programming

Migrating Existing Data309

There are two alternatives to defining a database by manually writing the DDL statements. One
option is to use a CASE tool to design the database and let it generate the DDL code. The other
is to port an existing database from one platform to another, possibly from a local database to a
SQL server. The Enterprise version of Delphi includes a tool to automate this process, the Data
Pump Wizard.

The aim of this tool is to extract the structure of a database and recreate it for a different
platform. Before starting the Data Pump, you should use BDE Administrator to create an alias
for the database you want to create. Using Data Pump is quite simple: You select the source alias
and the target alias; then you select the tables to move (shown next).

When you select a table (for example, the EMPLOYEE table) and click Next, the Data Pump
Wizard will verify whether the upsizing operation is possible. After few seconds the wizard will
display a list of the tables and let you modify a few options.

If the field conversion is not straightforward, the Data Pump will show the message “Has
Problems” or “Modified.” After modifying the options, if necessary, you can press the Upsize
button to perform the actual conversion. By selecting a field, you can verify how the wizard
plans to translate it; then, clicking the Modify Table Name or Field Mapping Information For
Selected Item button, you can change the actual definition.

309 FireDAC’s BatchMove architectures offes the ability of creating data pumps fairly easily and
highly customizable way. It require very a little coding, outside of components configuration.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 547

An alternative to the use of the Data Pump Wizard (available only in Delphi Enterprise) is the
BatchMove component, which does a default conversion of the tables and cannot be fine-tuned.
Finally, you can simply use the Database Desktop, create a new table on the server, and click the
Borrow Struct button to extract the table definition from an existing local table.

SQL: The Data Manipulation
Language

The SQL commands within the Data Manipulation Language are commonly used by
programmers, so I’ll describe them in more detail. There are four main commands:
select, insert, update, and delete. All these commands can be activated using a
Query component, but only select returns a result set. For the other commands
you should open the query using the ExecSQL method instead of Open (or the Active
property).

Select

The select statement is the most common and well-known SQL command; it’s used
to extract data from one or more tables (or views) of a database. In its simplest
form, the command is

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

548 - Chapter 11: Client/Server Programming

select <fields> from <table>

In the <fields> section you can indicate one or more fields of the table, separated
by commas, use the * symbol to indicate all the table fields at once, or even specify
an operation to apply to one or more fields. Here is a more complex example:

select upper(name), (lastname || “,” || firstname) as fullname
from customers

In this code, upper is a server function that converts all the characters to uppercase,
the double pipe symbol (||) is the string-chaining operator, and the optional as key-
word gives a new name to the overall expression involving the first and last name.

By adding a where clause, you can use the select statement to specify which records
to retrieve as well as which fields you are interested in:

select *
from customers
where cust_no = 100

This command selects a single record, the one corresponding to the customer whose
ID number is 100. The where clause is followed by one or more selection criteria,
which can be joined using the and, or, and not operators. Here is an example:

select *
from customers
where cust_no=100 or cust_no=200

The selection criteria can contain functions available on the server and use standard
operators, including +, –, >, <, =, <>, >=, and <=. There are also few other special
SQL operators:

· is null tests whether the value of the field is defined.

· in <list> returns True if the value is included in a list following the operator.

· between <min> and <max> indicates whether the value is included in the range.

Here is an example of these operators:

select *
from customers
where address is not null and cust_no between 100 and 150

Another powerful operator, used to perform pattern matching on strings, is like.
For example, if you want to look for all names starting with the letter B, you can use
this statement:

select *
from employee

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 549

where last_name like “B%”

The % symbol indicates any combination of characters and can also be used in the
middle of a string. For example, this statement looks for all the names starting with
B and ending with n:

select *
from employee
where upper(last_name) like “B%N”

The use of upper makes the search case-insensitive and is required because the like
operator performs a case-sensitive matching. An alternative to like is the use of the
containing and starting with operators. Using like on an indexed field with
InterBase might produce a very slow search, as the server won’t always use the
index. If you are looking for a match in the initial portion of a string, it is better to
use the starting with expression, which enables the index and is much faster.

Another option is to sort the information returned by the select statement by speci-
fying an order by clause, using one or more of the selected fields:

select *
from employee
order by lastname

The asc and desc operators can be used for ascending and descending order. The
default is ascending.

An important variation of the select command is given by the distinct clause,
which removes duplicated entries from the result set. For example, you can see all
the cities where you have customers with this expression:

select distinct city
from customer

The select command can also be used to extract aggregate values, computed by
standard functions:

· avg computes the average value of a column of the result set (works only for a
numeric field).

· count computes the number of elements in the result set; that is, the number of
element satisfying the given condition.

· max and min compute the highest and lowest values of a column in the result set.

· sum computes the total of the values of a column of the result set. (It works only
for numeric fields.)

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

550 - Chapter 11: Client/Server Programming

These functions are applied to the result set, usually to a specific column, excluding
the null values. This statement computes the average salary:

select avg(salary)
from employee

Another important clause is group by, which lets you aggregate the elements of the
result set according to some criterion before computing aggregate values with the
functions listed above. For example, you might want to determine the maximum
and average salary of the employees of each department:

select max (salary), avg (salary), department
from employee
group by department

Notice that all the noncalculated fields must appear in the group by clause. The fol-
lowing is not legal:

select max (salary), lastname, department
from employee
group by department

note When you extract aggregate values, it is better to use an alias for the result field with the as key-
word. This makes it easier to refer to the resulting value in your Delphi code.

The aggregate values can also be used to determine the records in the result set. The
aggregate functions cannot be used in the where clause, but they are placed in a spe-
cific having section. The following statement returns the highest salary of each
department, but only if the value is above 40,000:

select max(salary) as maxsal, department
from employee
group by department
having max(salary) > 40000

Another interesting possibility is to nest a select statement within another one,
forming a subquery. Here is an example, used to return the highest-paid employee
(or employees):

select firstname, lastname
from employee
where salary = (select max(salary) from employee)

We could not have written this code with a single statement, since adding the name
in the query result would have implied adding it to the group by section as well.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 551

Inner and Outer Joins

Up to now our example select statements have worked on single tables, a serious
limitation for a relational database. The operation of merging data from multiple
source tables is called a table join. The SQL standard supports two types of joins,
called inner and outer.

An inner join can be written directly in the where clause:

select *
from <table1>, <table2>
where <table1.keyfield>=<table2.externalkey>

This is a typical example of an inner join used to extract all the fields of each table
involved. An inner join is handy for tables with a one-to-one relationship (one
record of a table corresponding only to one record of the second table). Actually, the
standard syntax should be the following, although the two approaches usually gen-
erate the same effect:

select *
from <table1> left join <table2>
on <table1.keyfield>=<table2.externalkey>

An outer join, instead, can be specifically requested with the statement:

select *
from <table1> left outer join <table2>
on <table1.keyfield>=<table2.keyfield>

The main difference from an inner join is that the selected rows of an outer join will
not consider the null fields of the second table. There are other types of joins,
including these: the self-join, in which a table merges with itself; the multi-join,
which involves more than two tables; and the Cartesian product, a join with no
WHERE condition, which merges each row of a table with each row of the second one,
usually producing a huge result set. The inner join is certainly the most common
form.

Insert

The insert command is used to add new rows to a table or an updatable view.
When you insert a new record in a DBGrid connected with a SQL server table, the
BDE generates an insert command and sends it to the server. Besides this implicit
use, there are several cases in which you’ll want to write explicit SQL insert calls
(including the use of cached updates, which we’ll discuss later in this chapter).

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

552 - Chapter 11: Client/Server Programming

Unless you add a value for each field, you should list the names of the fields you are
actually providing, as in the following code:

insert into employee (empno, lastname, firstname, salary)
values (0,”brown”, “john”, 10000)

You can also insert in a table the result set of a select statement (if the fields of the
target table have the same structure of the selected fields), with this syntax:

insert into <table> <select statement>

Update

The update command modifies one or more records of a table or view. Delphi gen-
erates an update call every time you edit data with visual controls connected to a
table or a live query on a SQL server. Again, there are also cases where you’ll want to
use the update statement directly.

In an update statement you can indicate which record to modify, by using a where
condition similar to that of a select statement. For example, you can change the
salary of a specific employee with this call:

update employee
set salary = 30000
where emp_id = 100

note A single update instruction can update all the records that satisfy a given condition. An incorrect
where clause could unintentionally update many records, and no error message would be dis-
played.

The set clause can indicate multiple fields, separated by commas, and it can use the
current values of the fields to compute the new values. For example, the following
statement gives a nice raise to the employees hired before January 1, 1990:

update employee
set salary = salary * 1.20
where hiredate < “01-01-1990”

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 553

Delete

The delete command is equally simple (although its misuse can be quite danger-
ous). Again, you generally remove records using a visual component, but you can
also issue a SQL command like the following:

delete from employee
where empid = 120

You simply indicate a condition identifying the records to delete. If you issue this
SQL command with a Query component (calling ExecSQL), you can then use the
RowsAffected property to see how many records were deleted. The same applies to
the update commands.

Using SQL Builder

As we’ve seen, SQL has a great many commands, particularly in relation to select
statements. And we haven’t actually seen them all! While the DDL commands are
generally used by a database administrator, or only for the initial definition of the
database, DML commands are commonly used in everyday Delphi programming
work.

To help with the development of correct SQL statements, Delphi Enterprise
includes a tool called SQL Builder310. You easily activate it by right-clicking on a
Query component.

Originally, added in Delphi 4 to replace the more limited Visual Query Builder
found in earlier versions, SQL Builder is a two-way tool; you can use it both to cre-
ate the text of a query and to obtain the graphical representation of an existing one
(even if you’ve changed the original text).

Using SQL Builder is very simple. You choose the database you want to work on,
and then you select one or more tables, placing them in the work area. After select-
ing the proper parameters, as explained below, you can use the command Query
Run Query (or F9) to see the result of the query or the command Query Show
SQL (F7) to see the source code of the select statement you’ve generated.

In the selected tables you can simply mark the fields you want to see in the result
set. The check box near the name of the table selects all of its fields. But the real

310 There is no graphical query builder in Delphi today.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

554 - Chapter 11: Client/Server Programming

power of SQL Builder lies in two features. First, you can drag a field from one table
onto another table to join them, as shown in Figure 11.4.

Figure 11.4: Two
tables displayed as
joined in SQL Builder.
Image from the
original book.

The other powerful feature is the Query notebook, the multipage control at the bot-
tom of the SQL Builder window. Here is a short description of each of the pages:

· The Criteria page indicates the selection criteria of the where clause. By selecting
one of the fields of the result table, you can indicate a comparison against a fixed
value or another field, and you can use like, is null, between, and other opera-
tors. Using the local menu of the grid present in this page, you can also activate
the exist operator or an entire SQL expression. This page allows you to combine
multiple conditions with the and, or, and not operators, but it doesn’t allow you
to specify a precedence among these operators by adding parentheses.

· The Selection page lists all the fields of the result set and allows you to give them
an alias. With the local menu you can also introduce aggregate functions (sum,
count, and so on). Finally, the upper-left check box indicates the distinct condi-
tion.

· The Grouping page corresponds to the group by clause. SQL Builder automati-
cally groups all the fields that are used in the aggregate functions, as required by
the SQL standard.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 555

· The Group Criteria page corresponds to a having clause, which is available in
conjunction with aggregate functions. The operations are similar to those of the
Selection page and are activated by using the local menu.

· The Sorting page corresponds to the order by clause. You simply select the field
you want to sort and then select the ascending or descending sort.

· The Joins page is the last but probably the most powerful, as it allows you to
define join conditions, beyond the simple dragging of a field from one table to
another in the work area. This page allows you to fine-tune the join request by
indicating its type (INNER or OUTER) and selecting conditions other than the
equality test.

To better understand how to use the SQL Builder, we can build an actual example
based on the sample InterBase database installed by Delphi (and corresponding to
the LocalIB alias). The example is in the SqlBuilder directory and its form has a
Query, a DataSource, and a DBGrid component, connected as usual. The
DatabaseName property of the Query component is set to IBLocal and a right-click
on the component activates SQL Builder, as shown in Figure 11.5.

We want to create a query including the first and last name, department, title, and
salary of each employee. This operation requires two joins. Choose the Employee,
Department, and Job tables. Click on the Dep_No field of the Department table and
drag the cursor over the Dep_No field of the Employee table. Similarly, connect the
Job table with the Employee table using the three fields Job_Code, Job_Grade, and
Job_Country.

After creating the joins, select the fields you want to see in the result set: First_
Name, Last_Name and Salary from the Employee table; Department from the
Department table; and Job_Title from the Job table. Finally, move to the Sorting
page of the Query notebook and select Department.Department from the Output
Fields list to sort the result set by department.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

556 - Chapter 11: Client/Server Programming

Figure 11.5: A
complex join displayed
by SQL Builder. Image
from the original book.

The following should be the generated SQL:

select employee.first_name, employee.last_name,
 department.department, job.job_title, employee.salary
from employee employee
 inner join department department
 on (department.dept_no = employee.dept_no)
 inner join job job
 on (job.job_code = employee.job_code)
 and (job.job_grade = employee.job_grade)
 and (job.job_country = employee.job_country)
order by department.department

We might add an extra where clause to choose only the employee with a high salary.
Simply move to the Selection page, select the Employee.Salary field, go to the col-
umn Operator >= and type the value 100,000. Executing the query you’ll see a
limited number of records, and looking at the SQL source you’ll see the extra state-
ment:

where employee.salary >= 100000

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 557

Finally, note that it is possible to export and import the SQL code from a plain text
file. Simply by closing SQL Builder you will also save the text of the query in the SQL
property of the related Query component.

note When working with ADO queries or InterBase Express ones, you won’t have the power of SQL
Builder available. You can, however, prepare the query with SQL Builder using a generic TQuery
component and then copy the SQL code to the actual query component you want to use.

Server-Side Programming

At the beginning of this chapter I underlined the fact that one of the objectives of
client/server programming—and one of its problems—is the division of the work-
load between the computers involved. When you activate SQL statements from the
client, the burden falls on the server to do most of the work. However, you should
try to use select statements that return a large result set, to avoid jamming the net-
work.

Besides accepting DDL and DML requests, most RDBMS servers allow you to create
routines directly on the server using the standard SQL commands plus their own
server-specific extensions (which are generally not portable). These routines typi-
cally come in two forms, stored procedures and triggers.

Stored Procedures

Stored procedures are like the global functions of a Delphi unit and must be explic-
itly called by the client side. Stored procedures are generally used to define routines
for data maintenance, to group sequences of operations you need in different cir-
cumstances, or to hold complex select statements.

Like Pascal procedures, stored procedures can have one or more typed parameters
and a return value. As an alternative to returning a value, a stored procedure can
also return a result set, the result of an internal select statement.

The following is a stored procedure written for InterBase, which receives a date in
input and computes the highest salary among the employees hired on that date:

create procedure maxsaloftheday(ofday date)
returns (maxsal decimal(8,2))
as

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

558 - Chapter 11: Client/Server Programming

begin
 select max(salary)
 from employee
 where hiredate = :ofday
 into :maxsal;
end

Notice the use of the into clause, which tells the server to store the result of the
select statement in the MaxSal return value. To modify or delete a stored procedure
you can later use the alter procedure and drop procedure commands.

Looking at this stored procedure, you might wonder what its advantage is compared
to the execution of a similar query activated from the client. The difference between
the two approaches is not in the result you obtain but in its speed. A stored proce-
dure is compiled on the server in an intermediate and faster notation when it is
created, and the server will determine at that time the strategy it will use to access
the data. By contrast, a query is compiled every time the request is sent to the server
(although the server can cache it and avoid recompiling two identical requests). For
this reason a stored procedure can replace a very complex query, provided it doesn’t
change too often!

From Delphi you can activate a stored procedure returning a result set by using
either a Query or a Stored Procedure component. With a Query you can use the fol-
lowing SQL code:

select *
from MaxSalOfTheDay (“01/01/1990”)

It’s generally easier to use StoredProc when the procedure has multiple or complex
parameters. This component lists the stored procedures available on the server and
has an easy-to-use dialog box for the definition of the parameters, as shown in Fig-
ure 11.6.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 559

Figure 11.6: The
Params property editor
of the StoredProc
component. Image
from the original book.

Triggers (and Generators)

Triggers behave more or less like Delphi events and are automatically activated
when a given event occurs. Triggers can have specific code or call stored procedures.
In both cases the execution is done completely on the server. Triggers are used to
keep data consistent, checking new data in more complex ways than a constraint
check allows, and to automate the side effects of some input operations (such as cre-
ating a log of previous salary changes when the current salary is modified).

Triggers can be fired by the three basic data update operations: insert, update, and
delete. When you create a trigger, you indicate whether it should fire before or after
one of these three actions.

As an example of a trigger, we can use a generator or sequence to create a unique
index in a table. Many tables use a unique index as primary key. SQL servers don’t
have an AutoInc field, unlike Paradox and other local databases. Because multiple
clients cannot generate unique identifiers, we can rely on the server to do this.
Almost all SQL servers offer a counter you can call to ask for a new ID, which you
should later use for the table. InterBase calls these automatic counters generators,
while Oracle calls them sequences. Here is the sample InterBase code:

create generator cust_no_gen;
...
gen_id (cust_no_gen, 1);

The gen_id function then extracts the new unique value of the generator passed as
first parameter, with the second parameter indicating how much to increase (in this
case one).

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

560 - Chapter 11: Client/Server Programming

At this point you can add a trigger to a table, an automatic handler for one of the
table’s events. A trigger is similar to the event handler of the Table component, but
you write it in SQL and execute it on the server, not on the client. Here is an exam-
ple:

create trigger set_cust_no for customers
before insert position 0 as
begin
 new.cust_no = gen_id (cust_no_gen, 1);
end

This trigger is defined for the Customer table and is activated each time a new
record is inserted. The new symbol indicates the new record we are inserting. The
position option indicates the order of execution of multiple triggers connected to
the same event. Triggers with the lowest values will be executed first.

Inside a trigger you can write DML statements that also update other tables, but
watch out for updates that end up reactivating the trigger, creating an endless recur-
sion. You can later modify or disable a trigger by calling the alter trigger
statement or drop trigger.

note Triggers fire automatically for specified events. If you have to make many changes in the database
using batch operations, the presence of a trigger might slow down the process. If the input data
has already been checked for consistency, you can temporarily drop the trigger. These batch oper-
ations are often coded in stored procedures, but stored procedures generally cannot issue DDL
statements, like those required for dropping and resetting the trigger. In this situation you can
define a view based on a simple select * from table command, thus creating an alias for
the table. Then you can let the stored procedure do the batch processing on the table and apply
the trigger to the view (which should also be used by the client program).

Live Queries and Cached Updates

When working with local data it is very common to use grids and other visual con-
trols, edit the data, and send it back to the database. We’ve already seen that using a
DBGrid might cause a few problems when working with an RDBMS, as moving on
the grid might send numerous data requests to the server, creating a huge amount
of network traffic.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 561

When you use the Query component to connect to some data, you cannot edit the
data unless its RequestLive property is set to True311. If you are working with local
tables, the query is always elaborated by the BDE with the Local SQL engine. The
BDE will allow for a live query only if it is quite simple: All joins should be outer
joins; there cannot be a distinct key; there can be no aggregation, no group by or
having clause, no subqueries, and no order by unless supported by an index; and
there are few other rules you can find in Delphi’s Help.

If you are working with a SQL server, setting a live query will put the BDE in control
of the query, instead of the server. When connected to a SQL server, a live query
behaves like a Table component. (So it makes sense to use the table anyway, in these
cases.)

note Most SQL servers, including InterBase, allow you to define updatable views based on the result of
a select statement that the Local SQL engine of the BDE won’t consider updatable. Then you
can simply hook a Table component to the view, letting the SQL server do the work and bypassing
the Local SQL engine of the BDE.

If the BDE determines that the data set cannot be updated312, it sets the CanModify
property to False. The DataSource component checks this value before allowing an
editing operation. A solution to this problem is to avoid the use of data-aware con-
trols, as discussed in the last chapter, and use specific SQL queries to update, insert,
and delete records.

A better approach is to automate this process (retaining the capabilities of the data-
aware controls) by using the UpdateSQL component together with the Query com-
ponent. The UpdateSQL can be used only in conjunction with cached updates, a
topic discussed in the last chapter. The basic idea is that the update operations are
kept in a local cache until the program calls the ApplyUpdates method of the Query
component. This operation corresponds to the execution of a series of update,
insert, and delete SQL operations on the server, using the data in the cache. The
required SQL commands are held by the UpdateSQL component, which has a
design-time editor you can use to generate these SQL commands almost automati-
cally.

Cached updates solve the live queries issue, reduce network traffic, define a stan-
dard way to solve updates conflicts, and reduce the server load, but they require
more memory on the client computer.

311 FireDAC FDQuery FetchOptions property offers a way more granular control on how the data
is loaded and kept in memory.

312 FireDAC is generally much smarter in offering automatic updates on more complex queries
than the BDE could handle.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

562 - Chapter 11: Client/Server Programming

The UpdateSQL Component

The role of the UpdateSQL component313 is to provide a query with the update state-
ments required to make its result set editable. Its key properties are DeleteSQL,
InsertSQL, and ModifySQL, but the most important element is the UpdateObject
property of the related Query component. The update SQL statements are executed
when you apply the cached updates, sending the changes to the server. Because
cached updates maintain the information on the original records, the updates usu-
ally indicate which record to update by passing the original data. This is the only
way we have to identify a record on a SQL server, and this technique also helps the
server to track any updates on the same record done by other users.

All this setup might seem to imply a lot of work, but it is actually very simple. After
you’ve written a query, you can connect the UpdateSQL component to it and acti-
vate the component editor, as shown in Figure 11.7.

This component editor has two sections. The first page indicates the criteria used to
generate the SQL statements for adding, deleting, or modifying records. With a join
you can select the table to update and the fields involved. When you’ve completed
this step, click the Generate SQL button and the editor will move to the second page,
where you can inspect the generated SQL code for the three operations.

313 FDUpdateSQL is the matching component in FireDAC, but it’s less commonly used as a sepa-
rate component, as FireDAC datasets can handle more update scenarios automatically.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 563

Figure 11.7: The
UpdateSQL component
editor in action. Image
from the original book
and fro Delphi 12,
based on FireDAC
FDUdpateSQL
component editor.

The UpdateSQL Example

To demonstrate the real power of the UpdateSQL component, I’ve built a complex
example called UpdateSQL, based on the Employee, Department, and Job tables of
the IBLocal database we’ve used in the past. The example is based on the query
shown back in Figure 11.5, which is placed along with the other data access compo-
nents in a data module.

Here is the textual description of the UpdateSQL component of the example:

object EmpUpdate: TUpdateSQL
 ModifySQL.Strings = (
 ‘update EMPLOYEE’
 ‘set’

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

564 - Chapter 11: Client/Server Programming

 ‘ FIRST_NAME = :FIRST_NAME,’
 ‘ LAST_NAME = :LAST_NAME,’
 ‘ SALARY = :SALARY,’
 ‘ DEPT_NO = :DEPT_NO,’
 ‘ JOB_CODE = :JOB_CODE,’
 ‘ JOB_GRADE = :JOB_GRADE,’
 ‘ JOB_COUNTRY = :JOB_COUNTRY’
 ‘where’
 ‘ EMP_NO = :OLD_EMP_NO’)
 InsertSQL.Strings = (
 ‘insert into EMPLOYEE’
 ‘ (FIRST_NAME, LAST_NAME, SALARY, DEPT_NO, JOB_CODE,
 ‘ JOB_GRADE, JOB_COUNTRY)’
 ‘values’
 ‘ (:FIRST_NAME, :LAST_NAME, :SALARY, :DEPT_NO, :JOB_CODE, ‘
 ‘ :JOB_GRADE, :JOB_COUNTRY)’)
 DeleteSQL.Strings = (
 ‘delete from EMPLOYEE’
 ‘where’
 ‘ EMP_NO = :OLD_EMP_NO’)
 end

To delete the employee records, the program uses a stored procedure, which is
already available in the sample database and is connected to the following compo-
nent:

object spDelEmployee: TStoredProc
 DatabaseName = ‘AppDB’
 StoredProcName = ‘DELETE_EMPLOYEE’
 ParamData = <
 item
 DataType = ftInteger
 Name = ‘EMP_NUM’
 ParamType = ptInput
 end>
end

The OnUpdateRecord event of the Query component uses the stored procedure
instead of the default UpdateSQL component for deleting records. Here is the code
of the event handler:

procedure TdmData.qryEmployeeUpdateRecord(DataSet: TDataSet;
 UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);
begin
 // when deleting the record, use the stored procedure
 if UpdateKind = ukDelete then
 begin
 // assign emp_no value
 with dmData do
 spDelEmployee.Params[0].Value := qryEmployeeEMP_NO.OldValue;
 try

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 565

 // invoke stored procedure that tries to delete employee
 dmData.spDelEmployee.ExecProc;
 UpdateAction := uaApplied; // success
 except
 UpdateAction := uaFail;
 end;
 end
 else
 try
 // apply updates
 dmData.EmpUpdate.Apply(UpdateKind);
 UpdateAction := uaApplied;
 except
 UpdateAction := uaFail;
 end;
end;

Notice that because we perform the update operation directly, we must indicate in
the UpdateAction parameter whether it succeeds or not. This code is part of the data
module. The main form, visible at run time in Figure 11.8, has a couple of extra fea-
tures. If the user closes the form with any updates pending, the OnCloseQuery event
of the form displays a warning message, allowing the user to apply the updates or
skip them:

procedure TMainForm.FormCloseQuery(Sender: TObject;
 var CanClose: Boolean);
var
 Res: Integer;
begin
 with dmData do
 if qryEmployee.UpdatesPending then
 begin
 Res := MessageDlg (CloseMsg, mtInformation,
 mbYesNoCancel, 0);
 if Res = mrYes then
 AppDB.ApplyUpdates ([qryEmployee]);
 CanClose := Res <> mrCancel;
 end;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

566 - Chapter 11: Client/Server Programming

Figure 11.8: The
main form of the
UpdateSql example
along with a secondary
form. Image from the
original book.

The second feature is the use of a secondary form to update the fields that are
related to other tables—the fields involved in the joins. The program uses two sec-
ondary dialog boxes, which get the data from other two Query components. The
dialog boxes are displayed when the user clicks on the ellipsis button of the DBGrid
control, in the OnEditButtonClick event. Here is the first part of this event handler,
related to the selection of the department:

procedure TMainForm.DBGrid1EditButtonClick(Sender: TObject);
begin
 // check if this is the department field
 if DBGrid1.SelectedField = dmData.qryEmployeeDEPARTMENT then
 with TfrmDepartments.Create(self) do
 try
 dmData.qryDepartment.Locate(‘DEPT_NO’,
 dmData.qryEmployeeDEPT_NO.Value, []);
 if ShowModal = mrOk then
 with dmData do
 begin
 if not (qryEmployee.State in [dsEdit, dsInsert]) then
 qryEmployee.Edit;
 qryEmployeeDEPT_NO.Value :=
 qryDepartment.Fields[0].Value;
 qryEmployeeDEPARTMENT.Value :=
 qryDepartment.Fields[1].Value;
 end;
 finally
 Free;
 end

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 567

 else // similar code for the job fields...

Finally, the Apply button simply calls the ApplyUpdates method if there are pending
updates and then refreshes the data of the query:

procedure TMainForm.btnApplyClick(Sender: TObject);
begin
 with dmData do
 if qryEmployee.UpdatesPending then
 begin
 AppDB.ApplyUpdates([qryEmployee]);
 // refresh the data
 qryEmployee.Close;
 qryEmployee.Open;
 btnApply.Enabled := False;
 end;
end;

If you run this program, you’ll notice that even if the underlying query is read-only,
you can change data directly in the DBGrid, as you would do with a regular Table
component. The visual operations you do are temporarily stored in the cache; then,
when you issue the update operation, the UpdateSQL and the StoredProc compo-
nents provide the actual code. Also keep in mind that the salary field has some
constraints (defined in the sample database), so you have to change it carefully to
avoid errors on the server when the changes are applied.

Update Conflicts

When you are working with local tables, using cached updates might cause concur-
rency problems. A plain edit operation usually places a lock on the table, so that the
other users cannot modify the same record until the first user has posted the
updates. The previous chapter covered locking and concurrency issues in detail.

When working with SQL servers, however, the default locking behavior is opti-
mistic. Multiple users can update the same records, and only when the data is sent
back does the server verify the original data of the record before updating it, poten-
tially raising an error. More precisely, the update statement uses one or more
original fields to locate the record you want to update. If you use all fields and
another user has changed the record, then the server will not find the original
record and will cause an update error.

You can manually control this behavior either in the code of the UpdateSQL compo-
nent (indicating to include all the fields read in the query) or by using the
UpdateMode property of the Table and Query components. The default value,

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

568 - Chapter 11: Client/Server Programming

upWhereAll, indicates that the update query will have a where clause with all the
original fields of the record. In many cases, the fact that another user has modified a
field different from those we have modified is not an error. We can set the
upWhereChanged mode to let Delphi generate an exception and show an error mes-
sage only if the current and the other user have both modified the same fields. The
third alternative is to use the key field only to identify the record, which means that
update conflicts will be ignored and that the last user posting the data will simply
override any previous change. As you can imagine, this is generally an option to
avoid in a client/server, multi-user environment.

Using Transactions

Another topic related to updates in a client/server environment is the use of trans-
actions. In the last chapter we introduced the concept of transactions (multiple
updates considered as a single atomic operation), but there are further details spe-
cific to working with SQL servers.

In Delphi we use the Database component to handle transactions and set the trans-
action isolation level using the TransIsolation property. When one user starts a
transaction and modifies data, should such changes be visible to other users? And
what happens if the user rolls back the transaction? To such questions there isn’t a
universal answer; every programmer should try to answer them according to the
requirements or business rules of the application. There are three alternative values
for transaction isolation in the BDE:

· tiDirtyRead makes the updates of a transaction immediately visible to other
transactions and users even before they are committed. This is the only possibil-
ity for local databases, which have very limited transaction support.

· tiReadCommitted makes available to other transactions only the updates already
committed.

· tiRepeatable Read hides every other transaction started by other users after the
current one. Following repeat calls within a transaction will always produce the
same result, as if the database took a snapshot of the data when the current
transaction started.

Most but not all SQL servers support only the most advanced levels. The default
choice should be tiReadCommitted, which is quite powerful but not too heavy on the
SQL server (as it adds very few internal locks).

As a general suggestion, transactions should involve only a minimal number of
updates (only those strictly related and part of a single atomic operation) and

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 569

should be kept short in time. You should avoid transactions that wait for user input
to complete them, as the user might be temporarily gone and the transaction might
remain active for a long time. Using update statements on multiple records and
using cached updates can help us make the transactions small and fast.

To further inspect transactions and experiment with the update mode of the Table
component, you can use the TranSample application. As you can see in Figure 11.9,
you can simply use the radio buttons to choose the different alternatives, and click
the push buttons on the right of the toolbar to manually start, commit, and rollback
a transaction. To get a real idea of the different effects, you should run multiple
copies of the program (provided you have enough licenses on your InterBase
server).

Figure 11.9: The
TranSample
application allows you
to test the transaction
isolation of a database
and the update modes
of a table. Image from
the original book.

InterBase Express

All the examples built up to now have used the BDE to reach the InterBase server.
As mentioned at the beginning of this chapter, Delphi 5 includes new components
specifically designed to access an InterBase database. This technology is called

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

570 - Chapter 11: Client/Server Programming

InterBase Express (or IBX for short)314. Borland’s promise is that applications using
these components work better and faster, giving you more control over the specific
features of InterBase. I have no reason to doubt this. The problem is that an applica-
tion built with this approach is inherently not portable to a different SQL server.

The IBX components include custom dataset components. These inherit from the
base TDataSet class, can use all the common Delphi data-aware controls, provide a
field editor and all the usual design-time features, and can be used in the new Data
Module Designer, but they don’t require the BDE. You can actually choose among
multiple dataset components:

· IBTable resembles the Table component and allows you to access a single table
or view.

· IBQuery resembles the Query component and allows you to execute a SQL query,
returning a result set. The IBQuery component can be used together with the
IBUpdateSQL component to obtain a live (or editable) dataset.

· IBStoredProc resembles the StoredProc component and allows you to execute a
stored procedure.

· IBDataSet allows you to work with a live result set obtained by a executing a
select query. It basically merges IBQuery with IBUpdateSQL in a single compo-
nent.

Many other components in InterBase Express don’t belong to the dataset category:

· IBDatabase mimics the standard Database component.

· IBTransaction allows complete control over transactions.

· IBSQL lets you execute SQL statements without the overhead of a dataset con-
trol.

· IBDatabaseInfo is used for querying the database structure and status.

· IBSQLMonitor is used for debugging the system.

· IBEvents receives events posted by the server.

This large group of components provides greater control over the database server
than you can have with the BDE. For example, having a specific transaction compo-
nent allows you to manage multiple concurrent transactions over one or multiple
databases, as well as a single transaction spanning multiple databases.

314 IBX is still available in Delphi today, although the general recommendation is to use FireDAC
for it’s additional features and flexibility.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 571

Up and Running

As a first simple example, I’ve taken the IbEmpl program discussed earlier and
recreated it using the minimum InterBase Express components required. After
replacing the Query component with an IBQuery, I had to add two more compo-
nents: IBTransaction and IBDatabase. Any IBX application requires at least an
instance of each of these two components. You cannot set database connections in a
dataset (as you can do with a plain Query), and at least a transaction object is
required to open a query.

Here are the key properties of these components in the IbEmpl2 example:

object IBTransaction1: TIBTransaction
 Active = False
 DefaultDatabase = IBDatabase1
end
object IBQuery1: TIBQuery
 Database = IBDatabase1
 Transaction = IBTransaction1
 CachedUpdates = False
 SQL.Strings = (
 ‘SELECT * FROM EMPLOYEE’)
end
object IBDatabase1: TIBDatabase
 DatabaseName = ‘C:\Program Files\Common Files\
 Borland Shared\Data\employee.gdb’
 Params.Strings = (
 ‘user_name=SYSDBA’
 ‘password=masterkey’)
 LoginPrompt = False
 IdleTimer = 0
 SQLDialect = 1
 TraceFlags = []
end

The changes don’t take too much time to perform, and if you are accessing the same
database table as in the BDE-based program you won’t need to change the data-
aware components at all, but only hook the DataSource component to IBQuery1.
Because I’m not using the BDE, I had to type in the pathname of the InterBase data-
base. However, not everyone in the world has the Program Files folder, which
depends on the local version of Windows, and of course the Borland sample data
files could have been installed in any other location of the disk. We’ll solve these
problems in the next example.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

572 - Chapter 11: Client/Server Programming

note Notice that I’ve embedded the password in the code, a very naïve approach to security. Not only
can anyone run the program, but someone could even extract the password by looking at the
hexadecimal code of the executable file. I used this approach so I wouldn’t need to keep typing in
my password while testing a program, but in a real application you should require your users to
do so if they care about the security of their data.

Building a Live Query

The IbEmpl2 example has a query that doesn’t allow editing. To activate editing you
need to use an IBTable component or add to the query an IBUpdateSQL compo-
nent, even if the query is very simple. Usually the BDE does the behind-the-scenes
work that lets you edit the result set of a simple query, but we are not using the BDE
now.

The relationship between the IBQuery and IBUpdateSQL components is the same
as between the Query and UpdateSQL components. To highlight this, I’ve taken the
main form of the UpdateSql example discussed earlier in this chapter and ported it
to the InterBase Express components, building the UpdSql2 example. I’ve simply
copied the two components from the original example, pasted them into an editor,
changed the type of the object, and copied the resulting text into a new form. The
properties are so similar that I had only to ignore a couple of missing ones (the
DatabaseName and the UpdateMode properties).

At this point I simply added an IBDatabase and an IBTransaction component, a
data source and a grid, and my program was up and running. The key element of
these components, in fact, is their SQL code, which is attached to the SQL property
of the query and the ModifySQL, DeleteSQL, and InsertSQL properties of the update
component.

However, this time I’ve made the reference to the database a little more flexible.
Instead of typing in the database name at design time, I’ve extracted it from the
Windows Registry (where Borland saves it while installing the programs). This is
the code executed when the program starts:

uses
 Registry;

procedure TForm1.FormCreate(Sender: TObject);
var
 Reg: TRegistry;
begin
 Reg := TRegistry.Create;
 try
 Reg.RootKey := HKEY_LOCAL_MACHINE;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 573

 Reg.OpenKey(
 ‘\Software\Borland\Borland Shared\Data’, False);
 IBDatabase1.DatabaseName :=
 Reg.ReadString(‘Rootdir’) + ‘\employee.gdb’;
 finally
 Reg.CloseKey;
 Reg.Free;
 end;
 EmpDS.DataSet.Open;
end;

This is actually a nice example of the use of the TRegistry class of the VCL, a topic
I’ll cover again briefly in Chapter 19.

The new feature of this example, compared to the last version, is the presence of a
transaction component. As I’ve already said, the InterBase Express components
make the use of a transaction component compulsory. Simply adding a couple of
buttons to the form to commit or roll back the transaction would be enough,
because a transaction starts automatically as you edit any dataset attached to it.

I’ve also improved the program a little by adding an ActionList component to it.
This includes all the standard database actions and adds two custom actions for
transaction support, Commit and Rollback. Both actions are enabled when the
transaction is active:

procedure TForm1.ActionUpdateTransactions(Sender: TObject);
begin
 acCommit.Enabled := IBTransaction1.InTransaction;
 acRollback.Enabled := acCommit.Enabled;
end;

When executed, they perform the main operation but also need to reopen the
dataset in a new transaction (which can also be done by “retaining” the transaction
context):

procedure TForm1.acCommitExecute(Sender: TObject);
begin
 IBTransaction1.CommitRetaining;
end;

procedure TForm1.acRollbackExecute(Sender: TObject);
begin
 IBTransaction1.Rollback;
 // reopen the dataset in a new transaction
 IBTransaction1.StartTransaction;
 EmpDS.DataSet.Open;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

574 - Chapter 11: Client/Server Programming

note Be aware that InterBase closes any opened cursors when a transaction ends, which means you
have to reopen them and re-fetch the data even if you haven’t made any changes. When commit-
ting data, instead, you can ask InterBase to retain the “transaction context”—not to close open
data sets—by issuing a CommitRetaining command. With the forthcoming version 6.0 of Inter-
Base, you will also be able to issue a RollbackRetaining command. The reason for this
behavior depends on the fact that a transaction corresponds to a snapshot of the data. Once a
transaction is finished, you are supposed to read the data again to refetch records that may have
been modified by other users.

The last operation refers to a generic dataset and not a specific one because I’m
going to add a second alternative dataset to the program. The actions are connected
to a text-only toolbar, as you can see in Figure 11.10. The program opens the data set
at startup and automatically closes the current transaction on exit, after asking the
user what to do, with the following OnClose event handler:

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
var
 nCode: Integer;
begin
 if IBTransaction1.InTransaction then
 begin
 nCode := MessageDlg (‘Commit Transaction? (No to rollback)’,
 mtConfirmation, mbYesNoCancel, 0);
 case nCode of
 mrYes: IBTransaction1.Commit;
 mrNo: IBTransaction1.Rollback;
 mrCancel: Action := caNone; // don’t close
 end;
 end;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 575

Figure 11.10: The
output of the UpdSql2
example. Image from
the original book.

An alternative to using the IBQuery and IBUpdateSQL components is to use the
IBDataSet component, which combines the two. An InterBase dataset, in fact, is a
live query with a complete set of SQL statements for all the main operations. The
differences between using the two components and the single one are minimal.
Using IBQuery and IBUpdateSQL is probably better when porting an existing appli-
cation based on the two equivalent BDE components, even if porting the program
directly to the IBDataSet component doesn’t really require a lot of extra work.

In the UpdSql2 example I’ve provided both alternatives, so that you can test the dif-
ferences yourself. Here is part of the DFM description of the dataset component:

object IBDataSet1: TIBDataSet
 Database = IBDatabase1
 Transaction = IBTransaction1
 CachedUpdates = False
 BufferChunks = 32
 DeleteSQL.Strings = (
 ‘delete from EMPLOYEE
 ‘where’
 ‘ EMP_NO = :OLD_EMP_NO’)
 InsertSQL.Strings = (
 ‘insert into EMPLOYEE’
 ‘ (FIRST_NAME, LAST_NAME, SALARY, DEPT_NO, JOB_CODE, JOB_GRADE, ‘
 ‘ JOB_COUNTRY)’
 ‘values’
 ‘ (:FIRST_NAME, :LAST_NAME, :SALARY, :DEPT_NO, :JOB_CODE, ‘ +
 ‘ :JOB_GRADE, :JOB_COUNTRY)’)
 SelectSQL.Strings = (...)

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

576 - Chapter 11: Client/Server Programming

 UpdateRecordTypes = [cusUnmodified, cusModified, cusInserted]
 ModifySQL.Strings = (...)
end

If you connect the IBQuery1 or the IBDataSet1 components to the data source and
run the program, you’ll see that the behavior is identical. Not only do the compo-
nents have a similar effect; the available properties and events are also very similar.

Client/Server Optimization

Just as you need a debugger to test a Delphi application (a topic discussed in Chap-
ter 18), you need some tools to test how a client/server application behaves and to
speed it up if possible. In particular, it is very important to look at the information
moving from the client to the server (the explicit SQL requests our program does
and those added by the BDE) and from the server to the client (the actual data).
This is what the SQL Monitor tool included in Delphi Enterprise is for.

Using SQL Monitor

As you can see in Figure 11.11, the central window of SQL Monitor315 shows a list of
the low-level commands sent to the server. The bottom portion of the window
shows the selected line of the above list on multiple rows, which helps when the line
is too long.

315 The SQLMonitor was specifically tied to the BDE and no longer exists. There is now a FireDAC
Monitor available in the Delphi IDE Tools menu.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 577

Figure 11.11: The SQL
Monitor running.
Image from the
original book.

To use SQL Monitor, simply select the client program you want to inspect. Then set
the proper trace options (by using the corresponding speed button or the Options
Trace Options command). The available options are listed in Table 11.2.

Table 11.2: The Trace Options of the SQL Monitor

Trace Option Meaning

Prepared Query Statement Enables tracing of the SQL statements every time they are prepared.

Executed Query Statement Traces all the SQL statements sent to the server.

Input Parameters Shows input parameters as they become available. This is important for
testing whether the parameters are correct.

Fetched Data Shows the data sent by the server (a very slow operation).

Statement Operations Shows the requests preceding the execution of a SQL statement, such as
the allocation, preparation, and parsing of the input.

Connect/Disconnect Shows the connection and disconnection events. This is an important
test when the KeepConnection of the Database component is set
to False, as the client won’t maintain the connection with the server
but will establish it only as needed (with the side effect of reducing the
number of licenses required, in some cases). Looking at the frequency of
these events might help you understand if it is better to keep the
connection active or not.

Transactions Traces the transactions, including those activated automatically by the
BDE if you don’t use transactions directly.

Blob I/O Shows the data about BLOB fields.

Miscellaneous Traces other operations that don’t fit any of the above categories.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

578 - Chapter 11: Client/Server Programming

Vendor Errors Shows server error messages.

Vendor Calls Shows client API calls.

SQL Monitor is useful for seeing if the SQL statements sent by the BDE to the server
are correct, but it also helps you see how many operations are done behind the
scenes. Along with the time-stamp information for each operation, the number of
operations can give some clue about your application’s speed (although you should
remember that the presence of SQL Monitor slows down the connection quite a lot).

In other words, SQL Monitor should be your guide in determining how to speed up
your client/server application, using some of the tricks described in this chapter. At
the same time, however, it takes a lot of experience and a good understanding of
SQL to interpret its output properly.

As an example of the use of SQL Monitor, we can test what happens when we use
the Filter property of a Table component. In a new project, simply place a Table, a
DataSource, and a DBGrid. Select a database and a table (for example, the
Employee table of IBLocal) and set the Filtered property to True and the Filter
property to EmpNo>20. If you now run the program, SQL Monitor will show you that
the select statement generated by the BDE has a where clause corresponding to the
filter. You can see this situation in Figure 11.12.

Figure 11.12: SQL
Monitor showing SQL
statements generated
by a Table component.
Image from the
original book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 579

Monitoring InterBase Express

SQL Monitor works by using a hook into the BDE architecture. For this reason, you
cannot use it with applications based on the InterBase Express components.
Instead, however, you can simply embed in your application a copy of the IBSQL-
Monitor component and produce a custom log.

You can even write a more generic monitoring application, as I’ve done in the Ibx-
Mon example. I’ve placed in its form a monitoring and a RichEdit control, and
written the following handler for the OnSQL event:

procedure TForm1.IBSQLMonitor1SQL(EventText: String);
begin
 if Assigned (RichEdit1) then
 RichEdit1.Lines.Add (TimeToStr (Now) + ‘: ‘ + EventText);
end;

The if Assigned test can be useful when receiving a message during shutdown, and
it is required when you add this code directly inside the application you are moni-
toring.

To receive the messages from other applications (or from the current one), you have
to turn on the tracing options of the IBDatabase component. In the UpdSql2 exam-
ple (discussed earlier, in the section “Building a Live Query”) I turned them all on:

object IBDatabase1: TIBDatabase
 ...
 TraceFlags = [tfQPrepare, tfQExecute, tfQFetch, tfError, tfStmt,
 tfConnect, tfTransact, tfBlob, tfService, tfMisc]

If you run the two examples at the same time, the output of the IbxMon program
will list the details about the UpdSql2 program’s interaction with InterBase, as you
can see in Figure 11.13.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

580 - Chapter 11: Client/Server Programming

Figure 11.13: The
output of the IbxMon
example, based on the
IBMonitor component.
Image from the
original book.

Performance Tuning

Besides using the SQL Monitor to determine the potential bottlenecks in your appli-
cations, there are several things you can do to speed up your client/server
programs. The key element to keep in mind—as I’ve stressed many times in this
chapter—is to reduce the network traffic, by reducing the result sets returned by the
server both in the number of records and in the size of each.

Besides a good overall database design and a good Delphi implementation of it,
there are many settings you can check. The following tips might come in handy, but
they won’t help as much as a better design!

· In InterBase you can set an automatic sweep (or “garbage collection”) interval.
The operation is also automatically performed when you do a backup. Because a
sweep slows down the database, it should not be done too frequently. However, if
you never do it, the database will keep track of many leftover deleted records,
reducing the overall performance and using extra memory.

· Use indexes on the fields used more often, particularly if you sort the result set
on them. Keep in mind, though, that a good RDBMS will add at least temporary

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 11: Client/Server Programming - 581

indexes for you. Using indexes can speed up queries quite a lot, particularly if the
indexed fields are used to join two tables.

· If you sort a field in descending order, a corresponding descending index might
help.

· If you’re an expert user, you might examine the query plan, the approach used
by the server to perform a query, which is displayed (for example) when you use
WISQL. The query plan will show you whether the SQL server is using indexes.
In some cases, you might need to modify some complex queries to help the query
optimizer built into the RDBMS.

· Check the server settings, including its cache, to obtain the best overall perfor-
mance. The operating system cache on the server computer might help as well.
In InterBase, if you want to perform all the updates physically, you can set the
Forced Writes option in the Maintenance Database Properties menu of the
InterBase Server Manager.

· Whenever possible, avoid an excessive use of transactions and try to keep them
short and focused. Use cached updates instead of transactions (or together with
them) to let the client computer do some more work for you, and skip some
costly server operations.

· Handle transactions directly, disabling the auto-commit feature of the BDE; to
do this, set SQLPASSTHRU MODE to SHARED NOAUTOCOMMIT. (You can set this and
other BDE features described in this list with the BDE Administrator program.)

· If you have no licensing problems, set the KeepConnection property of the Data-
base component to True.

· Set TRACE MODE to 0 when you are not debugging, to avoid having the drivers send
trace strings to the debugger and slowing down the operations. When working
with InterBase Express components, call DisableMonitoring in your initializa-
tion code to disable tracing.

· Enable schema caching (set ENABLE SCHEMA CACHE to TRUE). This setting reduces
the time required to open a table, as the client doesn’t need to ask for the meta-
data. You can also use the Delphi FieldDefs and StoreDefs properties of the
Table component to store the metadata directly in the client program.

· With Microsoft and Sybase SQL Servers, try to set the PACKETSIZE parameter to a
minimum of 4K, also modifying the corresponding value on the server. With
these servers, also check that the DRIVER FLAGS parameter is set to 0. If it is 2048,
queries will be executed in asynchronous mode and will be much slower.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

582 - Chapter 11: Client/Server Programming

· With ORACLE, DB/2, and ODBC drivers, try to fine-tune the ROWSET SIZE
parameter until you obtain the best performance.

· With the InterBase driver, if you don’t use explicit transactions, set the DRIVER
FLAGS parameter to 4096. This value enables soft commits, meaning that after
each commit or rollback operation the open cursors won’t have to be refreshed.

What’s Next?

This chapter has presented an introduction to client/server programming with Del-
phi. We saw what the key issues are, looked at the most important features of the
SQL language, and delved a little into some interesting areas of client/server pro-
gramming. A complete discussion of client/server in Delphi would probably require
an entire separate book.

The same can be said of ADO programming, which is only introduced in the next
chapter. ADO is the interface to the database engine Microsoft is promoting (called
OLE DB). Because we’re working on the Windows platform, we should know at least
a little about it no matter what database we are using.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 12: Using ADO - 583

Chapter 12: Using

ADO

When Delphi was originally designed, Borland owned Paradox and Visual dBase
and, therefore, built a single data-access engine shared by all of its products. This
engine is the BDE I’ve discussed in the last three chapters316. The BDE was designed
to connect to many SQL servers, including Oracle and InterBase, and to access other
data source via ODBC, the first Microsoft data-access interface. ODBC, however,
was originally very slow, and some of the drivers for specific database formats were
not bug free.

Over time, however, three things happened. First, Borland sold its end-user data-
base products. Second, Microsoft’s role as a database provider grew larger, with
both MS Access and MS SQL Server gaining more and more acceptance in the
industry. Whether this happened for technical reasons or because Microsoft has
better marketing is not important. As a Delphi programmer, you cannot always
choose the technologies you are going to work with, and the odds are your programs
will have to work with Microsoft databases more frequently. Third, Microsoft

316 As people say, this is now history. None of the programs mentioned here have had an actual
role for many years now.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

584 - Chapter 12: Using ADO

improved its data-access strategy, introducing DAO, RDO, OLE DB, and ADO317.
We’ll see what these acronyms stand for in the next section.

Borland has acknowledged these changes over the last several years by adding spe-
cific BDE drivers for MS Access. Using the BDE, it is possible to connect to an
Access database, but this implies using two database engines at once, when an
Access connection through ADO is a more direct link. There wasn’t much more Bor-
land could do, however, because Microsoft hasn’t been very open in documenting
how to use its database engines, particularly the JET Engine used by Visual Basic
programmers to connect with Access databases. Furthermore, JET Engine doesn’t
manage data in a consistent way as the BDE does, making it hard to have both
engines cooperate smoothly.

Microsoft’s ActiveX Data Objects (ADO), the new high-level data interface318, change
this perspective again, and Delphi 5 now supports this technology directly using
specific DataSet components. These components don’t use the BDE and don’t
require its installation on the computers of your clients. Instead, these components
require the existence of Microsoft’s ADO and OLE DB database engines on your
clients’ machines. Because ADO and OLE DB are installed by default with Windows
2000 and Windows 98, the headaches of installing a database engine with your
application will probably decrease in the future as these platforms gradually replace
the older operating systems. However, Windows 95 and Windows NT 4 don’t neces-
sarily have ADO installed, so you will probably have to distribute and install the
ADO engine with your application or require the end user to install ADO before
installing your application, in order for your application to run on these older plat-
forms319. Even when ADO is already installed on the system, your installation
process will probably need to configure ADO for your application’s needs. Using
ADO components isn’t so much a matter of shedding BDE installation and configu-

317 There is now a new “generation” of Microsoft data access technologies, under the name of
ADO.NET. As the name implies, this is a new architecture part of the .NET Framework. How-
ever, ADO.NET is not really part of the core operating system like previous data access tech-
nologies from Microsoft, which is why the classic ADO and low-level ODBC have remained rel-
evant up and are in use today.

318 It was new at the time, 25 years ago. However, ADO is still a supported technology and Delphi
still has native components for it.

319 While most computers have ADO installed these days, it might be a different version than you
are targeting, making this installation steps still a worry. A download link is listed in the next
footnote. Notice that, by contrast, while BDE and ADO required the engine installation,
FireDAC code is 100% Delphi and all of the required code can be compiled into your exe-
cutable program, with the only external dependency being the database client library – a re-
quirement in any case.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 12: Using ADO - 585

ration chores as exchanging them with ADO installation and configuration chores.
For further information, check out www.microsoft.com/data320.

Before we discuss Delphi 5 ADO components, however, let me recap the key con-
cepts hidden behind Microsoft data technologies.

Microsoft’s Way to the Data

Please bear with me if this section sounds more like a Microsoft marketing pitch full
of acronyms than a technical description, but when building programs for Windows,
we have to live in the Microsoft world.

Microsoft’s strategy for providing access to any kind of data is called Universal
Data Access. The idea is to have a single interface that lets programmers use their
preferred tools to access relational databases and other less structured data sources
(such as mail messages or spreadsheets).

If Universal Data Access is the idea, in practice this strategy is accomplished by
installing the Microsoft Data Access Components (MDAC) on a Win32 system.
Windows 2000 will have MDAC as part of the system, but the components can also
be downloaded from Microsoft’s Web site, www.microsoft.com321.

note Delphi 5’s CD includes an installation of MDAC you have to install to be able to use the ADO com-
ponents, unless you have the ADO support already installed on your system322.

Now, to make things more confusing, MDAC includes ActiveX Data Objects (ADO),
OLE DB, and Open Database Connectivity (ODBC) support.

320 The URL now redirects to Microsoft SQL Server. The download for ADO is at https://www.mi-
crosoft.com/en-us/download/details.aspx?id=21995 and I recommend searching for “MDAC”
as the term “ADO” is now used for one of the Azure features and the old meaning is almost ig-
nored.

321 A good download link was in the previous footnote. As mentioned, MDAC is the terms you
should use to look for information.

322 Needless to say the CD is long gone, but also need the to install MDAC, which is generally al-
ready installed on most Windows computers.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://www.microsoft.com/en-us/download/details.aspx?id=21995
https://www.microsoft.com/en-us/download/details.aspx?id=21995

586 - Chapter 12: Using ADO

ADO and OLE DB

ADO provides the actual API that programmers have to target to build solutions
according to Microsoft’s strategy. ADO is designed with the goal of being the only
data interface needed for any programming tasks. I really doubt that all of the Del-
phi developers will move to ADO, but it is certainly a technology to consider323.

If I were a Microsoft spokesperson, I’d say that “the primary benefits of ADO are
ease of use, high speed, low-memory overhead, a small disk footprint, minimal net-
work traffic in key scenarios, and a minimal number of layers between the front end
and data store—all to provide a lightweight, high-performance interface.” This is
quoted from the Microsoft literature on ADO. Technically, ADO provides an alterna-
tive to the BDE using a COM interface, although when using Delphi 5 ADO
components, you don’t need to understand COM.

While ADO provides an interface, the underlying data access is performed by
another layer, called OLE DB. This is a system-level programming interface and can
be considered as the successor to ODBC, which is still available as an alternative
way to access data. OLE DB extends ODBC by providing access to non-relational
data sources, including mainframe and hierarchical databases as well as e-mail and
file system stores.

You may wonder why Microsoft has introduced the ADO layer instead of letting pro-
grammers access OLE DB. The primary reason is the complexity of OLE DB. ADO
encapsulates over sixty OLE DB interfaces, which are not straightforward to relate,
into about 20 simple objects. When you use ADO, you don’t have to worry about
interfaces, memory allocations, reference counting, or class factories (all of which
are issues with OLE DB).

An alternative answer is that ADO is targeted for high-level programming tools
(such as Visual Basic) that aren’t able to deal with COM Interfaces via lower-level
VTables. Instead, they created some ActiveX Objects that wrap OLE DB functional-
ity, exposing to the programmers only the most important concepts in a simpler and
easy-to-use way. With ADO, any tools supporting ActiveX technology (whether they
are fully featured compilers or simple scripting languages) can actually join the
UDA model. In fact, you can write ADO programs without the specific components
Delphi 5 provides. However, the ready-to-use ADO dataset components allow you to
program ADO using the same techniques with which you are familiar.

323 Using ADO was suggestion at the time, certainly not today. Microsoft hasn’t added any extra
feature, and compared to FireDAC the old ADO support is very limited. If you are using ADO,
a migration to FireDAC is recommended and there are specific scripts and extra classes that
can help you move your existing ADO code to FireDAC.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 12: Using ADO - 587

note Here is some more terminology: OLE DB may be looked at as a set of components consisting of
data providers, which contain and expose data; data consumers, which use data; and service
components, which process and transport data (such as query processors and cursor engines).

ADO Objects

ADO architecture is built around a few objects, for which Delphi provides wrapper
components. Here is a short list of the key ADO objects:

· The Connection object offers the means of accessing the data source, using con-
nection strings to locate data providers, manage the related session, and handle
transactions.

· A Command object allows you to operate on a data source (managed by a Con-
nection object), exposing a way to query, add, delete, or update the data. A
Command may have one or more Parameter objects. Among the nonrelational
databases that ADO supports, different data providers support different com-
mand strings (and not all of them support SQL commands).

· A Recordset object is the result of a Query command; that is, a cache of the
records returned by the query. A Recordset allows navigation and editing of the
data. Each row of a Recordset is made of multiple Field objects.

Other ADO objects include the Error object and the Errors collection, Property
objects (which encompass the properties of the objects and dynamic properties
attached to them at run time), and the Properties collection. Finally, there are
events, which are notifications that an operation is about to occur or has been com-
pleted.

Reading this short description, you’ve probably realized that the ADO architecture
is not very different from Delphi’s own dataset architecture. Even with these simi-
larities, there are indeed many differences between the ADO objects and the Delphi
components. For this reason, even though it is possible to program these objects
directly, Delphi 5 wraps the ADO objects with familiar components, providing an
easy solution. Mapping the ADO concepts into VCL dataset concepts probably
wasn’t so simple, considering that the ADO DB unit of the VCL responsible for this
has well over 5,000 lines of source code.

note Delphi 5 ADO components are included in Delphi Enterprise and can be bought separately by
owners of Delphi Professional.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

588 - Chapter 12: Using ADO

Delphi 5 ADO Components

Delphi ADO components324 inherit from the TDataSet class. The key benefit of this
is the integration with the Delphi IDE and the possibility of using all the default and
third-party data-aware controls for displaying and editing the data.

There are several ADO DataSet components in Delphi 5. There are three compo-
nents you can use for writing database applications:

· The TADOConnection component wraps the ADO connection object, providing
connection strings, login, and transactions. The features of this component are
similar to those of TDatabase.

· The TADOCommand component wraps the ADO Command object, providing a way
to execute a query that doesn’t return a dataset.

· The TADODataSet component wraps both the ADO Command and the ADO
Recordset objects at once. As with any other dataset, you issue a command
related to one table or querying multiple tables and receive as a result a set of
records.

These components are all you need to use ADO in your Delphi applications. How-
ever, the way you use them is quite different from the traditional Delphi
programming with TTable and TQuery components. The available properties are dif-
ferent, and so is the programming style. Because this would make it hard to port
existing programs to ADO, Delphi 5 also includes some specialized ADO data-access
components, with properties and features corresponding to standard DataSet com-
ponents. The three components are TADOTable, TADOQuery, and TADOStoredProc.

note Beside the new dataset components, ADO support in Delphi 5 includes some new field types, as
mentioned in Chapter 9. The specific field classes include TWideStringField for strings based
on Unicode characters; TGuidField for convenient storage of Globally Unique Identifiers;
TVariantField for fields based on the variant data type (that is, without a predefined type);
TInterfaceField and the derived TIDispatchField host; a generic COM interface; and a
COM IDispatch interface.

324 Delphi’s ADO components have later been renamed “dbGo”, because Microsoft claimed the
terms ADO was proprietary and couldn't be used without permission. The actual component
names haven't changed, though.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 12: Using ADO - 589

A Practical ADO Primer

Now that you know the key concepts and components you can use for ADO pro-
gramming, it’s time to look at code. I’ll first build a very simple example, called
AdoPrimer, which uses an ODBC connection to retrieve a dBase table of the DBDE-
MOS database. The program is based on a data module, to which I’ve added an
ADOConnection component. Actually, the connection component is not required,
because you can use the ConnectionString property of an ADODataSet component.

note Using a specific ConnectionString instead of linking the dataset to an ADOConnection means
that the Recordset will create a new connection object. In this case, if you open multiple data sets
from the same program you’ll end up with multiple connections, wasting resources and, eventu-
ally, client access licenses. If you’re going to retrieve more than one Recordset from an ADO
source, you should always use a shared ADOConnection object.

Setting up the connection requires indicating how to access the data and where it is
physically located. The ConnectionString property of the ADOConnection compo-
nent (as that of the ADODataSet component) activates the specific editor you can
see in Figure 12.1. This is also the default editor of the component. You have basi-
cally two choices: you can build a custom connection string, or you can store one in
a Microsoft Data Link file (.UDL) and refer to the file in the connection string.

Figure 12.1: The
editor of the
ConnectionString
property and of the
ADOConnection
component. Images
captured in Delphi 5
and Delphi 12.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

590 - Chapter 12: Using ADO

If you choose the Connection String radio button and press the Build button, you’ll
see the Data Link properties dialog box provided by Microsoft. This same dialog box
is activated when you are editing a Data Link file. The Data Link dialog has multiple
pages. In the first page (Provider), you select an OLE DB provider. Moving to the
next page (Connection), you’ll see different elements depending on your choice of
provider. Figure 12.2 shows the available options for an ODBC provider.

Figure 12.2: The Data
Link properties dialog
box provided by
Microsoft. Images from
the original book and
captured in a modern
version of Windows.

Again, you can select a type of data source (Use data source name) or indicate a
specific database (Use connection string). In the second case, if you press the Build
button, you’ll be asked to select a type of data source first and a specific file or direc-
tory next. I’ve selected dBase and the Delphi demos data directory. Finally, you can
modify network connections and access permissions in the third page (Advanced)
and check whether everything looks fine in the final page (All). The settings I’ve
used in the example produce the following string (reformatted to make it readable):

Provider=MSDASQL.1;
Persist Security Info=False;
Mode=Read|Write;
Connect Timeout=15;
Extended Properties=”
 DSN=dBASE Files;
 DBQ=c:\PROGRAM FILES\COMMON FILES\BORLAND SHARED\DATA;
 DefaultDir=c:\PROGRAM FILES\COMMON FILES\
 BORLAND SHARED\DATA;
 DriverId=533;
 MaxBufferSize=2048;
 PageTimeout=5;”;
Locale Identifier=1033

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 12: Using ADO - 591

Once this is set, you can test the connection string by using the button in Connec-
tions page of the Data Link dialog box or by toggling the value of the Connected
property of the component. I’ve also disabled the LoginPrompt property, because
dBase has no password support.

After setting the ADOConnection component, we can now add to the data module
an ADODataSet. This component has a Connection property you can use to refer to
the ADOConnection, as an alternative to setting up a specific ConnectionString.
Next, you have to specify the command you want to send to the database. The type
of the command is indicated by the CommandType property, which indicated how to
interpret the CommandText property, which has the actual command. For example,
we can access the CLIENTS.DB table using the following values:

object ADODataSet: TADODataSet
 Active = True
 Connection = ADOConnection
 CommandText = ‘clients’
 CommandType = cmdTable
end

You can also refer directly to a stored procedure (with the cmdStoredProc command
type), but most of the time, you’ll use the cmdText command type and write a SQL
query in the command text. The same two CommandText and CommandType properties
are also available for the ADOCommand component. As I mentioned earlier, an
ADODataSet is a special type of ADO command returning a recordset.

If you plan to use a query, you can use the editor of the CommandText property, a very
simple query builder as you can see in Figure 12.3. In this case, I’ve selected a table
and all of its fields. Notice that this editor is displayed even if the command type is
different than cmdText, which could possibly lead to some confusion.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

592 - Chapter 12: Using ADO

Figure 12.3: The
editor of the
CommandText
property of the
ADODataSet and
ADOCommand
components. Image
from the original book.

At this point, we can simply add a data source component to the data module,
obtaining the data diagram shown in Figure 12.4325. All these components are on the
data module. The form is linked to it with a uses statement and includes a DBNavi-
gator and a DBGrid, both connected with the data source on the data module.

Figure 12.4: The data
diagram for the
AdoPrimer demo
program. Image from
the original book.

325 As already mentioned, the Data Diagram view doesn’t exist any more.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 12: Using ADO - 593

From Paradox to Access

Before we delve into some of the more advanced features, we should look at an
example built in the previous chapters and ported to ADO. The first example I’ve
converted is DbAware, from Chapter 9, because this program generates a new table
from scratch. Later on I’ll build an example used to convert existing tables from
DBDEMOS, and I’ll port other programs built in the previous chapters.

note Delphi 5 demo database data actually includes an Access MDB database that is similar to the
DBDEMOS database. Still, I’ll show you the conversion process, because your programs will need
to be ported by converting your own custom tables. It is also possible to use a Paradox OBDC
driver to access to the DBDEMOS tables using ADO, but I felt using MS Access was a better choice
for discussing ADO features. You shouldn’t need to use ADO if you plan to use the Paradox data-
base file format, because the BDE defines the standard for Paradox database file support.

In general, when you are porting existing applications to ADO, you might benefit
from using the TADOTable and TADOQuery components. These components don’t
have exactly the same properties as the corresponding BDE components, but they
do have some common elements.

The ADO table component has an intuitive TableName property, which is mapped to
the CommandText property of the ADO dataset. It also provides support for a master-
detail connection among tables (using the MasterSource and MasterFields proper-
ties).

The ADO query component has an intuitive SQL property, which is mapped again to
the CommandText property, and a DataSource for building a master detail structure
or otherwise getting values for the parameters from another dataset.

Both classes provide very little over the TADODataset component, which in turn adds
very little to the TADOCustomDataset that all three components inherit from. This
last class is the real workhorse for the ADO dataset facility provided in Delphi 5.

Using ADOTable

After this introduction, let’s get back to the example. As I was saying, I’ve converted
the DbAware example from Chapter 9 into the DbAware2 example. The only opera-
tion I had to do was to open the original form, open the DFM file, and change the
line

object Table1: TTable

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

594 - Chapter 12: Using ADO

into

object Table1: TADOTable

As you save or compile the converted example, Delphi will prompt you to modify the
type of the Table1 object in the Pascal file, a handy new feature that appears when
you change the type of a component326. The Delphi request is visible in Figure 12.5.

Figure 12.5: When
you change the type of
an object in a DFM file,
Delphi 5 asks you to
convert the form field
in the Pascal code, as
well. Image from the
original book.

By converting the DFM file back into the actual form, you’ll see that Delphi doesn’t
recognize the Database property. This is not a problem, because the ADO table uses
the Connection property for this. I’ve added to the program a connection compo-
nent pointing to the MdData.mdb file in the Data folder of the chapter examples. By
the way, I’ve obtained this link though a UDL file you’ll find in the same Data direc-
tory.

note All the link files and connection strings of the example programs throughout this book refer to
their data using absolute path names. These path names reflect the default folder (directory)
structure that is created when you “unpack” the self-extracting archive downloaded from the
Sybex Web site327. If you move the programs to a different folder structure, you’ll have to fix these
links before you can run the examples. It is certainly possible to fix this problem by setting the
connection at run time, but in this case, you won’t be able to work with the live data at design time
anyway.

The real problem is that you’ll get another error for the field definitions. The ADO
table component doesn’t allow you to use field definitions to create a sample table,
as in the original example. As a solution, we have to perform the table creation (over
an existing database) using SQL code. As discussed in the DDL (Data Definition
Language) section of the last chapter, you can use a SQL command to create a table.

326 This Delphi feature isn’t available any more today. I don’t know how we lost it. Today the IDE
will suggest you to remove the incorrect field declaration, but it won’t automatically convert it
to the correct type.

327 When you download it from GitHub, you are going to have the code in a folder of your choice,
so you’ll have to update this absolute links.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 12: Using ADO - 595

I have added an ADOCommand component, which is hooked to the same connec-
tion, and have entered this text manually in the editor of the CommandText property:

create table workers (
 firstname TEXT(30),
 lastname TEXT(30),
 department INTEGER,
 branch TEXT (20),
 senior YESNO,
 hiredate DATETIME);

The data types listed here are those available in MS Access, not generic SQL types.
In the following table, you can see a list of available MS Access data types:

Type Description

TEXT(size) A string up to 255 characters

MEMO or LONGTEXT A string up to 1.2 gigabytes

BYTE A number in the range 0 to 255

SHORT A short integer (2 bytes)

LONG or INTEGER An integer number (4 bytes)

COUNTER An integer automatically incremented for each new record

SINGLE A 4-byte floating point value

DOUBLE An 8-byte floating point value

CURRENCY An 8-byte numeric value with 4 decimal digits (as Delphi’s own currency
type)

GUID A COM GUID (128 bits)

DATETIME A double value holding a date and time

BIT or YESNO Boolean value or one single bit

BINARY(size) Binary data of a given size

LONGBINARY Large binary data

After setting this command in the connection string, I’ve replaced the code of the
OnCreate event handler of the form, with the following:

procedure TDbaForm.FormCreate(Sender: TObject);
var
 TablesList: TStringList;
begin
 // read table names form database
 TablesList := TStringList.Create;
 try
 ADOConnection.GetTableNames (TablesList);
 // check if the table already exists
 if TablesList.IndexOf (Table1.TableName) < 0 then
 // create it

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

596 - Chapter 12: Using ADO

 ADOCommand.Execute;
 // open the new or existing table
 Table1.Open;
 finally
 TablesList.Free;
 end;
end;

To see whether the table exists, this procedure uses the GetTableNames method of
the connection component, retrieving all the tables and checking whether the table
referenced by the ADOTable component is one of them. If not, then the command is
executed, resulting in the creation of the table. Having done this, the converted
example runs as smoothly as the original one did. You can see its output in Figure
12.6, although there is nothing special to see: all the differences, in fact, are behind
the scenes.

Figure 12.6: The
DbAware2 example,
based on an MS Access
table created on the fly.
Image from the
original book.

Copying Tables

To be able to convert some of the other BDE-based examples to ADO, or at least
recycle some of their source code, I decided to move more database tables from
DBDEMOS to an Access database328. I’ll show you the conversion process, instead of
using the converted DBDEMOS database included in Delphi, because your pro-

328 While I’d discourage copying tables from Paradox to Access, some of the concept explained in
this section still make sense. As already mentioned in previous chapters, FireDAC include a
very powerful and flexible Batch Move architecture for mapping data sources and moving
data, not only between databases, bu also to and from other formats.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 12: Using ADO - 597

grams will need to be ported by converting your own custom tables. This example
provides some guidelines and ready-to-use code. The simple program I wrote to do
that, Bde2Ado, isn’t terribly interesting from a user perspective, but it allows me to
discuss some more techniques or (at least) to generalize the techniques described in
the last section.

The Bde2Ado example borrows its start-up code from the Tables example of Chap-
ter 9. In fact, as it starts, it fills a combo box with the names of the available BDE
aliases and a list box with the names of the tables of the selected database. The only
difference is that now, in the GetTablesNames call, I filter only Paradox tables (sec-
ond parameter) and don’t show the extensions (third parameter):

Session.GetTableNames (ComboBox1.Text, '*.db',
 False, False, ListBox1.Items);

As you can see in Figure 12.7, the operations after selecting a table are performed in
three manual steps: generating the Create Table SQL statement (the Get Structure
button), executing the statement (the Create Table button), and copying the data
(Move Data button). The first operation reads the field definitions from the Paradox
table and generates the SQL code in the text of the memo. This way, if the code is
not appropriate, you can fix it (as I mentioned, this is not supposed to be a program
for end users but for developers).

Figure 12.7: The
Bde2Ado program,
with a create SQL
statement generated by
pressing the first
button. Image from the
original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

598 - Chapter 12: Using ADO

The event handler for the first button starts by determining the name of the table.
The procedure uses the original name unless that table is already present, in which
case it appends the new word to the name (one or more times until the table name
is unique). For example if there is already a MyTable and a MyTableNew, it creates a
MyTableNewNew table:

procedure TForm1.btnGetStructureClick(Sender: TObject);
begin
 ...
 // find a new table name
 AdoTable.TableName := (BdeTable.TableName);
 // check if the table already exists
 while TableExists (AdoTable.TableName) do
 AdoTable.TableName := AdoTable.TableName + ‘New’;
 Memo1.Lines.Add (‘create table ‘ +
 AdoTable.TableName + ‘ (‘);

The TableExists method uses the GetTableNames method of the ADOConnection
component we’ve already seen in the last example. Once it has the table name, the
program generates the first line of the command, with the ‘create table’ string. Next
we have to add one line for each field, indicating the field name and its type (in this
example, using MS Access data types). This is accomplished by scanning the field
definitions:

 // btnGetStructureClick continued...
 // get field information
 BdeTable.FieldDefs.Update;
 for I := 0 to BdeTable.FieldDefs.Count - 1 do
 begin
 strField := ‘ ‘ +
 BdeTable.FieldDefs[I].Name + ‘ ‘ +
 AdoTypeName (BdeTable.FieldDefs[I]);
 // add comma or parenthesis
 if I < BdeTable.FieldDefs.Count - 1 then
 strField := strField + ‘,’
 else
 strField := strField + ‘)’;
 Memo1.Lines.Add (strField);
 end;

The actual work is done by the custom AdoTypeName function (a more accurate name
might have been AccessTypeName). It checks the type of the field and returns a cor-
responding definition. Here is its initial portion:

function AdoTypeName (fdef: TFieldDef): string;
begin
 case fdef.DataType of
 ftString: Result := ‘TEXT(‘ +
 IntToStr (fdef.Size) + ‘)’;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 12: Using ADO - 599

 ftSmallint: Result := ‘SMALLINT’;
 ftInteger: Result := ‘INTEGER’;
 ftWord: Result := ‘WORD’;
 ftBoolean: Result := ‘YESNO’;

With this code, we can build a SQL statement similar to the one in Figure 12.7. The
code of the other two buttons is simpler. The second one simply takes the text of the
memo, after a user might have manually modified it, and executes it:

procedure TForm1.btnCreateTableClick(Sender: TObject);
begin
 ADOCommand.CommandText := Memo1.Text;
 ADOCommand.Execute;
end;

After a table is available, with the same structure of the original one, the last button
moves the actual records. Because we cannot use the BatchMove component outside
the BDE world, we simply scan the table manually, moving fields one by one. This is
certainly not the most effective approach, but it can help us solve differences in the
implementations: even if the field types are similar, the actual record structures in
memory might be slightly different. By using the field names of the source table, the
code works even if the destination table has extra fields (but not in the opposite
case):

procedure TForm1.btnMoveDataClick(Sender: TObject);
var
 I: Integer;
begin
 BdeTable.Open;
 AdoTable.Open;
 try
 // for each record
 while not BdeTable.Eof do
 begin
 // new record
 AdoTable.Insert;
 // for each field
 for I := 0 to BdeTable.Fields.Count - 1 do
 with BdeTable.Fields[I] do
 AdoTable.FieldByName (Name).Value := Value;
 // post and move on
 AdoTable.Post;
 BdeTable.Next;
 end;
 finally
 BdeTable.Close;
 AdoTable.Close;
 end;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

600 - Chapter 12: Using ADO

Master/Detail Structures

Both the ADODataSet and ADOTable components have the same support of the
master-detail relationships in the Table component. You can set a master data
source and link some of the fields. To prove this is really the case, I’ve built a simple
master/detail/detail structure using the common customers/orders/items tables of
the DBDEMOS database, after converting them to Access with the Bde2Ado pro-
gram I’ve just described.

To connect two ADOTable components, you set the MasterFields and
MasterSource properties, as in the following DFM file:

object ADOTable2: TADOTable
 Connection = ADOConnection
 IndexFieldNames = ‘CustNo’
 MasterFields = ‘CustNo’
 MasterSource = DataSource1
 TableName = ‘orders’
end

With an ADODataSet component, you use the DataSource and MasterFields proper-
ties instead:

object ADODataSet3: TADODataSet
 Connection = ADOConnection
 CommandText = ‘items’
 CommandType = cmdTable
 DataSource = DataSource2
 IndexFieldNames = ‘OrderNo’
 MasterFields = ‘OrderNo’
end

Notice that the dataset is hooked to a table; when you use a query, you have to use
the parameters, such as what we’ve done for BDE queries. You can see the output of
this program in Figure 12.8. By using a data module, you can also define diagrams,
such as in traditional master/detail programs, but in this case, I’ve built the pro-
gram simply by placing the data-access components on the form.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 12: Using ADO - 601

note When you want to join two tables, you can either write a query with a join statement (as discussed
in the last chapter) or use a master/detail structure. An alternative is to let the user build a table
that includes an extra field corresponding to the detail table. This is supported in some object-
relational database servers (such as Oracle 8) and is also available in ADO using a technique
called Data Shaping. Data Shaping allows you to define on the server side calculated fields and
fields referring to detail tables, among other things. For example, you can use this ADO com-
mand: SHAPE {select * from customer} APPEND ({select * from orders} AS
Orders RELATE CustNo TO CustNo) to embed the orders table as a dataset field of the cus-
tomer table. There is an example of this approach in the Ado\Shape folder of Delphi’s Demos
directory. Delphi’s MIDAS architecture and the ClientDataSet component provide similar support
for nested tables.

Figure 12.8: The
AdoMd example
demonstrates
master/detail
relationships among
ADO dataset
components. Image
from the original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

602 - Chapter 12: Using ADO

More ADO Features

We have discussed only the basics of ADO up to this point. However, I can’t cover
all the elements of database programming with ADO, because that would take an
entire book in itself, and only owners of the Enterprise edition of Delphi would ben-
efit from the discussion. However, a few specific features are important. To
highlight some of these features, I’ll build a few more examples.

Cursors and Optimization

The process of optimizing a database application is inherently quite specific to the
type of database (local or SQL server) and the driver used to access the data; so I
cannot discuss every optimization feature of ADO. However, there are still some
features you can test when looking for improvements.

A key element that affects speed in the ADO model is the location of the cursor on
the client or on the server, indicated by the CursorLocation property of the ADO-
Dataset component. Of course, this is particularly important for client/server
operations:

· Using a client-side cursor means moving all of the data to the client before you
start using it. This procedure may slow down the operation initially, but you will
see a faster response time once the data is local. You can also perform a number
of operations on the local data, such as sorting, without requesting the data from
the server again. The client-side cursor behaves like a local cache.

· Using a server-side cursor means fetching only the required records, requesting
more from the server as the user browses the data. This can make the application
very responsive at the beginning, but in some cases, performance might drop.
For example, re-sorting the records means executing a new request to the data-
base. Also note that you cannot use a server-side cursor if the data is local, such
as in a local Access table.

The cursor location is strictly connected to the cursor type, as indicated by the
CursorType property. A ctOpenForwardOnly cursor type, for example, allows only
unidirectional operations, which are the only ones typically supported by SQL
servers (as discussed in Chapter 11). In some SQL servers, moving back to look at a
past record might cause the entire query to be executed once more and all the previ-
ous records to be fetched again. However, if you know in advance you’re going to
scroll the entire recordset in one direction (as you would do, say, when building a

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 12: Using ADO - 603

report on paper or on the Web), you’ll get better performance by using a forward-
only cursor (as the system doesn’t have to cache data it is not going to use again).

Other cursor types (ctKeyset, ctDynamic, and ctStatic) determine how updates
from other users will affect the data we are reading:

· A Dynamic cursor is the most flexible cursor type; it allows you to see records
added, updated, or deleted by other users as well as to scroll forward and back-
ward through your data. It also supports bookmarks (but only if the data
provider supports them, too).

· A Keyset cursor operates in a similar way to a dynamic cursor, but you can’t see
records added or deleted by other users.

· A Static cursor is the most restrictive one: it gives you a snapshot of the data at
the time of your request, and you won’t see changes made by other users. This is
typically used to produce reports and to elaborate a fixed set of data.

The way the data is retrieved is affected also by the ExecuteOptions (where you can
ask for asynchronous operations, if a data provider supports them). For example, if
you set the size of the Cache and the eoAsyncFetch value for the ExecuteOptions the
ADO dataset fetches immediately the initial quantity specified in the Cache property
and then retrieves the remaining rows asynchronously.

Finally, if you want to read records in memory to work on them without refreshing
the user interface, you can set the BlockReadSize property of the ADODataSet com-
ponent. When the value is greater than zero, the State of the dataset will be
dsBlockRead, and data-aware controls won’t be refreshed. The advantage is extra
speed in fetching multiple records.

Indexes and Sorting

Using a client cursor, you can create temporary (or internal) indexes. This can
speed up finding, sorting, and filtering operations. To create a temporary index, you
need to add the Optimize dynamic property to the proper ADO field object.

What’s a dynamic property? Dynamic properties in ADO are optional properties,
which might or might not be present. In practice, Properties is a collection of vari-
ant values, with each value having a name. Many ADO objects have this collection
property.

Although the Delphi ADO fields don’t specifically include the Optimize property,
adding it to the proper field object is not as difficult as it might seem.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

604 - Chapter 12: Using ADO

Because Delphi doesn’t offer this feature, you might think it is very complex to use
it. On the contrary, the ADODataSet component exposes the internal Recordset
ADO object, which has a Fields property holding the collection of ADO fields. Each
field has a Properties collection you can access to set and get the value of each item.
Here it is in code terms:

 AdoDataSet.Recordset.Fields[I].
 Properties[‘Optimize’].Set_Value (True);

This code is used by the AdoSort program to create a temporary index on the field
number I of the table. Once you’ve set up an index, it can be used by the Sort and
Filter properties and by the Find method. (When you sort the table on a field, a
temporary index is created anyway, making the manual operation almost useless.
There is one small advantage, however: if you create the temporary index manually,
you can be sure it will be preserved and used by multiple operations. If you rely on
automatic indexing, the index might be re-created each time.)

Clearly, one of the aims of the AdoSort example is to sort. ADO datasets have a Sort
property where you can list the fields to use in the sorting operation, possibly with a
client-side cursor. You can assign to this property the name of a field or multiple
names.

In the AdoSort example, a list box is filled with the names of the fields as the form is
created:

procedure TFormSort.FormCreate(Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to AdoDataSet.FieldDefs.Count - 1 do
 ListFields.Items.Add (AdoDataSet.FieldDefs [I].Name)
end;

A user can select a field and drag it over one of the edit boxes below it, copying the
text to it:

procedure TFormSort.Edit1DragDrop(Sender, Source: TObject;
 X, Y: Integer);
begin
 (Sender as TEdit).Text := (Source as TListBox).Items [
 (Source as TListBox).ItemIndex];
end;

The read-only edit boxes can also be cleared by clicking them.

When you press the Sort button, all of the fields in which names are listed in the edit
boxes will be used in the sorting operation. (The operation is timed using the
GetTickCount Windows API.) The program appends the ‘DESC’ keyword to the field

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 12: Using ADO - 605

name to ask for a descending order (as in Figure 12.9). You could improve this code
by making the references to the components more generic, but it works:

procedure TFormSort.btnSortClick(Sender: TObject);
var
 t: Cardinal;
 strSort: string;
begin
 t := GetTickCount;
 strSort := Edit1.Text;
 if CheckBox1.Checked then
 strSort := strSort + ‘ DESC’;
 if Edit2.Text <> ‘’ then
 strSort := strSort + ‘,’ + Edit2.Text;
 if CheckBox2.Checked then
 strSort := strSort + ‘ DESC’;
 if Edit3.Text <> ‘’ then
 strSort := strSort + ‘,’ + Edit3.Text;
 if CheckBox3.Checked then
 strSort := strSort + ‘ DESC’;
 AdoDataSet.Sort := strSort;
 Caption := ‘AdoSort - ‘ + IntToStr (GetTickCount - t);
end;

Figure 12.9: The
output of the AdoSort
example, with a
partially descending
index. Image from the
original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

606 - Chapter 12: Using ADO

If you turn on the index for a field before sorting on it, you’ll see a limited time dif-
ference compared with a direct sorting. After you’ve done the operation once,
however, the index is kept in memory, and the difference will disappear.

Filtering

The last feature demonstrated by the AdoSort program is a filter. In an ADO
Recordset object, the single Filter property can be used for three different opera-
tions, which Delphi exposes with three different properties:

· The Filter property holds the usual series of conditions, such as a SQL Where
clause. This is similar to the Filter property of a Table and can have multiple
conditions separated by AND and OR operators.

· The FilterBookmarks property allows you to pass a collection of bookmarks to
the records you want to see. It is a kind of record selector.

· The FilterGroup property allows you to filter records depending on their status.
You can choose the modified records (only for batch mode updates), the records
affected by the last insert or delete operations, and so on.

The actual filtering is enabled only after setting the Filtered property to True. The
AdoSort example uses the most traditional approach, allowing you to move the text
of an edit box to the Filter property.

A Snapshot of the Data

When you have some data in a recordset, you might want to work on it without
being connected to the database, for example, on a laptop. ADO allows you to do
this by letting you save a recordset to a local file and then reload it.

note The same feature is also available in Delphi’s ClientDataSet component and is called the Briefcase
model. The ClientDataSet is described in Chapter 21.329

In the AdoSort example, you can use the buttons at the bottom of the side panel to
save the current snapshot of the recordset to a file and to reload one of these files.

329 The ClientDataSet is still an option, but FireDAC’s FDMemTable does the same offering a lot
more features and control.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 12: Using ADO - 607

When you save the data, you save the current situation, with the current filters and
sorting. This way you can save only the data you are really interested in.

To save the data, you call the SaveToFile method, which requires a filename as its
parameter. Some of its features are not intuitive: you cannot save to an existing file,
the file remains open and is kept updated until you close the dataset (becoming a
kind of persistent cache), and you should use a client cursor in case the provider
doesn’t support this streaming operation. Here is the code:

procedure TFormSort.btnSaveClick(Sender: TObject);
begin
 if SaveDialog.Execute and not
 FileExists (SaveDialog.FileName) then
 AdoDataSet.SaveToFile (SaveDialog.FileName);
end;

If you want to make the file available, you should first close the dataset, using the
check box at the bottom:

procedure TFormSort.cbConnectedClick(Sender: TObject);
begin
 AdoDataSet.Active := cbConnected.Checked;
end;

After repeating this operation one or more times, you can close the dataset and
reload one of the file-based snapshots:

procedure TFormSort.btnLoadClick(Sender: TObject);
begin
 if OpenDialog.Execute then
 AdoDataSet.LoadFromFile (OpenDialog.FileName);
 cbConnected.Checked := True;
end;

Finding, Summing, and Locking Records

To locate a record within the current record set, you can use the standard Locate
method. As with a BDE dataset, you can look for values of one or more fields, passed
in a variant array. In the AdoEmpl example (which is based on the Employee table
moved to Access from DBDEMOS), the Find button has this code attached:

procedure TAdoEmplForm.btnFindClick(Sender: TObject);
begin
 if not AdoTable.Locate (
 ‘LastName’, EditName.Text, []) then
 MessageDlg (‘Name not found’, mtError, [mbOk], 0);

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

608 - Chapter 12: Using ADO

end;

Another feature, which was used in the Total example from Chapter 9, is the ability
to compute the sum of employee salaries. Instead of doing this using a specific SQL
query, the program scans the table, as we’ve already seen many times. In past exam-
ples we’ve disabled and enabled the user interface, with code like this:

AdoTable.DisableControls;
try
 // code
finally
 AdoTable.EnableControls;

This time, instead, we can use the block-size reading technique, which disables the
visual controls and should also increase the performance:

AdoTable.BlockReadSize := 10;
try
 // code
finally
 AdoTable.BlockReadSize := 0;

The program also lets you experiment with lock types, although MS Access support
is limited compared with what you can do in ADO. We’ve seen in the last chapter
that Paradox locks the records you are editing. ADO allows you to specify a lock
strategy, using the LockType property of the dataset. You can choose between a pes-
simistic lock, in which two users cannot edit the same record at the same time, and
an optimistic lock, in which every user can supersede any other user’s changes.

As you click the Lock check box, the status of the LockType property changes:

procedure TAdoEmplForm.cbLockClick(Sender: TObject);
begin
 AdoTable.Close;
 if not cbLock.Checked then
 AdoTable.LockType := ltPessimistic
 else
 AdoTable.LockType := ltOptimistic;
 AdoTable.Open;
end;

By activating the lock (or even if you don’t activate it!) and editing the same record
from two instances of the program, you should be able to see the error message
shown in Figure 12.10. Notice that the effect you get by running the program
depends on whether the program is also using transactions: by disabling them,
you’ll see a different message.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 12: Using ADO - 609

Figure 12.10: The
error message caused
by the locks in the
AdoEmpl example.
Image from the
original book.

note Keep in mind that Access will give you an error message only when the record is posted, not when
the editing operation starts. This is certainly not user-friendly. Also, modifying a record places a
lock on that and some neighboring records, because Access uses a page-lock strategy. So if a user
is editing a record, another user won’t be allowed to modify that record or the next few records
before or after it.

Handling Transactions in ADO

Like the BDE, ADO allows you to handle transactions. To demonstrate how ADO
does this, I’ve taken the buttons of the Transact example and their code and added
them to the AdoEmpl example, on the second page of the Page Control used to build
a toolbar with two pages.

The code is very similar to the earlier BDE example, with only the name of the
method having changed. (Quite an odd situation, I have to say.) The
StartTransaction, Commit, and Rollback methods of the Database component
become the BeginTrans, CommitTrans, and RollbackTrans methods of the AdoCon-
nection component:

To remove the code used to enable and disable the buttons, here is the core of the
transaction that handles support in the AdoEmpl example:

procedure TAdoEmplForm.BtnCommitClick(Sender: TObject);
begin

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

610 - Chapter 12: Using ADO

 if AdoTable.State = dsEdit then
 AdoTable.Post;
 AdoConnection.CommitTrans;
end;

procedure TAdoEmplForm.BtnRollbackClick(Sender: TObject);
begin
 AdoTable.Cancel;
 AdoConnection.RollbackTrans;
 // refresh
 AdoTable.Requery;
end;

procedure TAdoEmplForm.BtnStartClick(Sender: TObject);
begin
 AdoConnection.BeginTrans;
end;

We saw in the last chapter that the Database component allows us to indicate the
transaction isolation level (the isolation among users’ transactions in a multi-user
environment) using the TransIsolation property. In ADO, you can control how
transactions interact with each other by setting the IsolationLevel property of the
ADOConnection component before opening the connection. Three important
options are

· ilReadCommitted (the default value) and the equivalent ilCursorStability
mean that we can see only committed changes made by other users. This is usu-
ally the preferred isolation level.

· ilReadUncommitted and the equivalent ilBrowse mean that we can see changes
made by other users that haven’t been committed. Because other users may
change their minds and roll back the transaction, we cannot rely on the validity
of the data we are working with, which limits this setting to few cases.

· ilRepeatableRead means that you won’t see changes made by other transac-
tions, even if they are committed, unless you reexecute the query. This is not
possible with the ilIsolated value, which is the most restrictive isolation level.

Even though ADO allows a fine-grained setting for the transaction isolation level,
most the providers (the databases) support fewer alternatives. You might end up
with a different level of isolation than you request.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 12: Using ADO - 611

Custom Events

Beyond the usual dataset events, there are several other interesting events of the
ADO components. The Delphi dataset has Before and After events; ADO has Will
and Complete events.

For example, the connection component has the OnWillConnect and
OnConnectComplete events and the OnWillExecute and OnExecuteComplete events.
You might use OnWillExecute to log every command issue to the server or to filter
out commands that users are not authorized to use (such as a delete command).
This same component also has many events related to transactions.

The ADODataSet component has Will and Complete events for the change field,
change record, change record set, and move operations. It has also an
OnFetchProgress and an OnFetchComplete event you can use to implement a
progress bar while waiting for a large dataset to load.

What’s Next?

In this chapter, I’ve introduced the key ideas related to the use of Microsoft’s ADO
interface and OLE DB infrastructure for database programming. As Microsoft inte-
grates these components with the operating system, you should expect ADO to
become more and more popular.

Borland’s decision to support ADO with native DataSet components lets you move
existing programs easily and lets you adopt a new technology (ADO) while still
using the existing architecture provided by the TDataSet class of the VCL. Although
this is not the only possible way of working with ADO, it is certainly a good choice.

The other advantage of following this approach is that you can get rid of the BDE on
the client computers, with (eventually) you having to do less installation on the
client machines. For the near future, however, you should assume you’ll have to
install ADO on older operating systems that don’t already have it. ADO even sup-
ports remote access to the data, in a 3-tier architecture. From what I’ve seen,
however, this architecture is more limited than Borland’s own MIDAS technology.

This chapter ends the part of the book devoted to database programming, but I’ll
focus on this topic again, discussing multi-threaded queries in Chapter 17, introduc-
ing the use of databases in Internet programming in Chapter 20, and discussing
MIDAS in Chapter 21.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

612 - Chapter 13: Creating Components

Chapter 13:

Creating

Components

While most Delphi programmers are probably familiar with using existing compo-
nents, at times it can also be useful to write our own components or to customize
existing ones. One of the most interesting aspects of Delphi is that creating compo-
nents is simple. For this reason, even though this book is intended for Delphi
application programmers and not Delphi tool writers, this chapter will cover the
topic of creating components and introduce Delphi add-ins, such as component
and property editors.

This chapter gives an overview of writing Delphi components and presents a num-
ber of simple examples. There is not enough space to present very complex
components, but the ideas in this chapter will cover all the basics to get you started.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 613

note You’ll find a lot more information about writing components in Delphi Developer’s Handbook,
including how to build data-aware components and many other advanced techniques.

Extending the VCL

When you write a new component, you always extend one of the existing classes of
the VCL330. To do this, you use many features of the Object Pascal language that
component users seldom need. If you still have doubts about advanced Object Pas-
cal features, you may want to review the overall description of the language
presented in Part I of the book. Chapter 3 presented an overview of the role of prop-
erties, methods, and events, and Chapter 4 introduced the structure of the VCL. If
you skipped those chapters or do not feel confident with the basic ideas about the
VCL, read them before continuing with this chapter.

Delphi components are classes, and the VCL is the collection of all the classes defin-
ing Delphi components. Each time you add a new package with some components to
Delphi, you actually extend the VCL with a new class. This new class will be derived
from one of the existing component-related classes, adding new capabilities to those
it inherits.

You can derive a new component from an existing component or from an abstract
component class—one that does not correspond to a usable component. The VCL
hierarchy includes many of these intermediate classes to let you choose a default
behavior for your new component and to change its properties.

Component Packages

Components are added to component packages. Each component package is basi-
cally a DLL (a dynamic link library) with a BPL extension (which stands for Borland
Package Library).

Packages come in two flavors: design-time packages used by the Delphi IDE, and
run-time packages optionally used by applications. The type of the package is deter-
mined by the design-only or run-only package option. When you attempt to install a
package, the IDE checks whether it has the design-only or run-only flags, and

330 The overall component architecture hasn’t changed much since the early days of Delphi. While
there are additional features, the foundations remain the same.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

614 - Chapter 13: Creating Components

decides whether to let the user install the package and if it should be added to the
list of run-time packages. Since there are two non-exclusive options, each with two
possible states, there are four different kinds of component packages—two main
variations and two special cases:

· Design-only component packages can be installed in the Delphi environment.
These packages usually contain the design-time parts of a component, such as its
property editors and the registration code. Often they can also contain the com-
ponents themselves, although this is not the most professional approach. The
code of the components of a design-only package is usually statically linked into
the executable file, using the code of the corresponding Delphi Compiled Unit
(DCU) files. Keep in mind, however, that it is also technically possible to use a
design-only package as a run-time package.

· Run-only component packages are used by Delphi applications at run time. They
cannot be installed in the Delphi environment, but they are automatically added
to the list of run-time packages when they are required by a design-only package
you install. Run-only packages usually contain the code of the component
classes, but no design-time support (this is done to minimize the size of the com-
ponent libraries you ship along with your executable file). Run-only packages are
important because they can be freely distributed along with applications, but
other Delphi programmers won’t be able to install them in the environment to
build new programs.

· Plain component packages (having neither the design-time–only nor the run-
time–only option set) cannot be installed and will not be added to the list of run-
time packages automatically. This might make sense only for utility packages
used by other packages, but they are certainly rare.

· Packages with both flags set can be installed and are automatically added to the
list of run-time packages. Usually these packages contain components requiring
little or no design-time support (apart from the limited component registration
code). Keep in mind, however, that users of applications built with these pack-
ages can use them for their own development.

note The file names of Delphi’s own design-only packages start with the letters DCL (for example
DCLSTD50.BPL); file names of run-only packages start with the letters VCL331 (for example,
VCL50.BPL). You can follow the same approach for your own packages, if you want.

331 This is true only for VCL related component packages, FireMonkey related component pack-
ages start with FMX and other subsystem use a different naming.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 615

In Chapter 1 we discussed the effect of packages on the size of a program’s exe-
cutable file. Now we’ll focus on building packages, since this is a required step in
creating or installing components in Delphi.

When you compile a run-time package, you produce both a dynamic link library
with the compiled code (the BPL file) and a file with only symbol information (a
DCP file), including no compiled machine code. The latter file is used by the Delphi
compiler to gather symbol information about the units that are part of the package
without having access to the unit (DCU) files, which contain both the symbol infor-
mation and the compiled machine code. This reduces compilation time and allows
you to distribute just the packages without the pre-compiled unit files. The pre-
compiled units are still required to statically link the components into an applica-
tion. Distribution of pre-compiled DCU files (or source code) may make sense
depending on the kind of components you develop. We’ll see how to create a pack-
age after we’ve discussed some general guidelines and built our very first
component.

note DLLs are executable files containing collections of functions and classes, which can be used by an
application or another DLL at run time. The typical advantage is that if many applications use the
same DLL, only one copy needs to be on the disk or loaded in memory, and the size of each exe-
cutable file will be much smaller. This is what happens with the new Delphi packages, as well.
Chapter 14 looks at DLLs and packages in more detail.

Rules for Writing Components

Some general rules govern the writing of components. You can find a detailed
description of most of them in the Delphi Component Writer’s Guide help, which is
required reading for Delphi component writers332.

Here is my own summary of the rules for component writers:

· Study the Object Pascal language with care. Particularly important concepts are
inheritance, method overriding and overloading, the difference between public
and published sections of a class, and the definition of properties and events.

· Study the structure of the VCL class hierarchy and keep a graph of the classes at
hand (such as the one included with Delphi).

332 This is still available as part of the Delphi docwiki, see https://docwiki.embarcadero.com/
RADStudio/en/Component_Writer%27s_Guide_Index.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://docwiki.embarcadero.com/RADStudio/en/Component_Writer's_Guide_Index
https://docwiki.embarcadero.com/RADStudio/en/Component_Writer's_Guide_Index

616 - Chapter 13: Creating Components

· Follow the standard Delphi naming conventions. There are several of them for
components, as we will see, and following these rules makes it easier for other
programmers to interact with your components and further extend them.

· Keep components simple, mimic other components, and avoid dependencies.
These three rules basically mean that a programmer using your components
should be able to use them as easily as preinstalled Delphi components. Use sim-
ilar property, method, and event names whenever possible. If users don’t need to
learn complex rules about the use of your component (that is, if the dependen-
cies between methods or properties are limited) and can simply access properties
with meaningful names, they’ll be happy.

· Use exceptions. When something goes wrong, the component should raise an
exception. When you are allocating resources of any kind, you must protect them
with try-finally blocks and destructor calls.

· To complete a component, add a bitmap to it, to be used by Delphi’s Component
Palette. If you intend your component to be used by more than a few people, con-
sider adding a Help file as well.

· Be ready to write real code and forget about the visual aspects of Delphi. Writing
components generally means writing code without visual support (although
Class Completion can speed up the coding of plain classes quite a lot).

· The exception to the rule above, in Delphi 5, is that you can use frames to write
components visually.

· Use a third-party component writing tool to build your component or to speed up
their development.

· The most powerful third-party tool for creating Delphi components I know of is
the Component Development Kit (CDK) from Eagle Software
(http://www.eagle-software.com).333

333 This tool is no longer available. I don’t think there is any tool for writing Delphi components
these days.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 617

The Base Component Classes

To build a new component you generally start from an existing one, or from one of
the base classes of the VCL. In both cases your component is in one of three broad
categories of components (introduced in Chapter 4), set by the three basic classes of
the component hierarchy:

· TWinControl is the parent class of any component based on a window. Compo-
nents that descend from this class can receive the input focus and get Windows
messages from the system. You can also use their window handle when calling
API functions. When creating a brand-new window control, you’ll generally
inherit from the derived class TCustomControl, which has a few extra useful fea-
tures (particularly some support for painting the control).

· TGraphicControl is the parent class of visible components that have no Windows
handle (which saves some Windows resources). These components cannot
receive the input focus or respond to Windows messages directly. When creating
a brand-new graphical control, you’ll inherit directly from this class (which has a
set of features very similar to TCustomControl).

· TComponent is the parent class of all components (including the controls) and can
be used as a direct parent class for non-visual components.

In the rest of the chapter, we will build some components using various parent
classes, and we’ll look at the differences among them. We’ll start with components
inheriting from existing components or classes at a low level of the hierarchy, and
then we’ll see examples of classes inheriting directly from the ancestor classes men-
tioned above.

note When you derive a new component from these high-level classes of the VCL hierarchy, it already
inherits some properties that are common to all components. Refer to Figure 4.4 to see the prop-
erties defined in some of the high-level VCL classes.

Building Your First Component

As we saw in Chapter 3, it is very simple to take an existing class, turn it into a non-
visual component, and build a simple package to host it. Building components is
actually an important activity for Delphi programmers. The basic idea is that any
time you need the same behavior in two different places in an application, or in two

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

618 - Chapter 13: Creating Components

different applications, you can place the shared code inside a class—or, even better,
a component.

In this section I’ll just introduce a couple of simple components to give you an idea
of the steps required to build one and to show you different things you can do to
customize an existing component with a limited amount of code.

The Fonts Combo Box

Many applications have a toolbar with a combo box you can use to select a font. If
you often use a customized combo box like this, why not turn it into a component?
It would probably take less than a minute. To begin, close any active projects in the
Delphi environment and start the Component Wizard either by choosing Compo-
nent New Component or by selecting File New to open the Object Repository
and then choosing the Component in the New page. As you can see in Figure 13.1,
the Component Wizard requires the following information:

· The name of the ancestor type: the component class you want to inherit from. In
this case we can use TComboBox.334

· The name of the class of the new component you are building; we can use
TMdFontCombo.

· The page of the Component Palette where you want to display the new compo-
nent, which can be a new or an existing page. We can create a new page, called
Md.

· The filename of the Pascal unit where Delphi will place the source code of the
new component; we can type MdFontBox.

· The current search path (which should be set up automatically).

334 In the current version of the Component Wizard, the first page offers a selection of the UI li-
brary to write a component for (and language in case of RAD Studio) and a second page offers
the selection of the base class to inherit from, with support for search. The third page, visible
in the second part of Figure 13.1, has the remaining options.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 619

Figure 13.1: The
definition of the new
TMdFontCombo
component with the
Component Wizard.
Images captured in
Delphi 5 and Delphi 12.

Click on the OK button, and the Component Wizard will generate the following sim-
ple Pascal source file with the structure of your component. The Install button can
be used to install the component in a package immediately. Let’s look at the code
first, and then discuss the installation:

unit FontBox;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics,
 Controls, Forms, Dialogs, StdCtrls;335

type

335 Today you’ll get a list with the following unit in the uses statement: System.SysUtils,
System.Classes, Vcl.Controls, and Vcl.StdCtrls.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

620 - Chapter 13: Creating Components

 TMdFontCombo = class (TComboBox)
 private
 { Private declarations }
 protected
 { Protected declarations }
 public
 { Public declarations }
 published
 { Published declarations }
 end;

procedure Register;

implementation

procedure Register;
begin
 RegisterComponents(‘Md’, [TMdFontCombo]);
end;

end.

One of the key elements of this listing is the class definition, which begins by indi-
cating the parent class. The only other relevant portion is the Register procedure.
In fact, you can see that the Component Wizard does very little work.

note Starting with Delphi 4, the Register procedure must be written with an uppercase R. The rea-
son is apparently due to C++Builder compatibility (identifiers in C++ are case-sensitive).336

note Use a naming convention when building components. All the components installed in Delphi
should have different class names. For this reason most Delphi component developers have cho-
sen to add a two- or three-letter signature prefix to the names of their components. I’ve done the
same, using Md to identify components built in this book. The advantage of this approach is that
you can install my TMdFontCombo component even if you’ve already installed a component
named TFontCombo. Notice that the unit names must also be unique for all the components
installed in the system, so I’ve applied the same prefix to the unit names. To check the prefixes
used by the most important component vendors and other developers you can refer to the Web
site http://developers.href.com/dpr.337

That’s all it takes to build a component. Of course, in this example there isn’t a lot of
code. We need only copy all the system fonts to the Items property of the combo box
at startup. To accomplish this, we might try to override the Create method in the
class declaration, adding the statement Items := Screen.Fonts. However, this is

336 This is still true today!

337 To my knowledge, this web site doesn’t exist any more.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 621

not the correct approach. The problem is that we cannot access the combo box’s
Items property before the window handle of the component is available. And the
component cannot have a window handle until its Parent property is set, and the
Parent property isn’t set in the constructor, but later on.

For this reason, instead of assigning the new strings in the Create constructor, we
must perform this operation in the CreateWnd procedure, which is called to create
the window control after the component is constructed, its Parent property is set
and its window handle is available. Again, we execute the default behavior, and then
we can write our custom code. I could have skipped the Create constructor and
written all the code in CreateWnd, but I decided to use both startup methods to
demonstrate the difference between them. Here is the declaration of the component
class:

type
 TMdFontCombo = class (TComboBox)
 public
 constructor Create (AOwner: TComponent); override;
 procedure CreateWnd; override;
 published
 property Style default csDropDownList;
 property Items stored False;
 end;

And here is the source code of its two new methods:

constructor TMdFontCombo.Create (AOwner: TComponent);
begin
 inherited Create (AOwner);
 Style := csDropDownList;
end;

procedure TMdFontCombo.CreateWnd;
begin
 inherited CreateWnd;
 Items.Assign (Screen.Fonts);
end;

Notice that besides giving a new value to the component’s Style property, in the
Create method, I’ve redefined this property by setting a value with the default key-
word. We have to do both operations because adding the default keyword to a
property declaration has no direct effect on the property’s initial value. Why specify
a property’s default value then? Because properties that have a value equal to the
default are not streamed with the form definition (and they don’t appear in the tex-
tual description of the form, the DFM file). The default keyword tells the streaming
code that the component initialization code will set the value of that property.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

622 - Chapter 13: Creating Components

The other redefined property, Items, is set as a property that should not be saved to
the DFM file at all, regardless of the actual value. This is obtained with the stored
directive followed by the value False. The component and its window are going to
be created again when the program starts, so it doesn’t make any sense to save in
the DFM file information that will be discarded later on (to be replaced with the
new list of fonts).

note We could have even written the code of the CreateWnd method to copy the fonts to the combo
box items only at run time. This can be done by using statements such as this:
if not (csDesigning in ComponentState) then
But for this first component we are building, the less efficient but more straightforward method
described above offers a clearer illustration of the basic procedure.

Creating a Package

Now we have to install the component in the environment, using a package. For this
example, we can either create a new package or use an existing one, like the default
“users package,” as we did in Chapter 3. Creating a new package is quite simple,
anyway.

In each case, choose the Component Install Component menu command. The
resulting dialog box has a page to install the component into an existing package,
and a page to create a new package. In this last case, simply type in a filename and a
description for the package. Clicking OK opens the Package Editor338 (see Figure
13.2), which has two parts:

· The Contains list indicates the components included in the package (or, to be
more precise, the units defining those components).

· The Requires list indicates the packages required by this package. Your package
will generally require the vcl50 package339 (the main run-time package that con-
tains the fundamental parts of the Delphi VCL), but it might also need the
vcldb50 package (which includes most of the database-related classes) if the
components of the new package do any database-related operations.

338 The package editor as a stand alone tool doesn’t exist any more. The same features (with the
contains and requires sections) are available in the project manager pane when a package is
the active project.

339 These days the reference to system packages can be written without specifying the version
number, that is using vcl and not vcl50. This makes the code easier to migrate to newer ver-
sions of Delphi. Also in terms of the name of the actual BPL file generated, you can automati-
cally append the internal package number matching the current product version.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 623

Figure 13.2: The
Package Editor. Image
from the original book.
These same features
are now part of the
Project Manager when
the active project is a
package.

If you add the component to the new package we’ve just defined, and then simply
compile the package and install it (using the two corresponding toolbar buttons of
the package editor), you’ll immediately see the new component show up in the ‘Md’
page of the Component Palette. The Register procedure of the component unit file
told Delphi where to install the new component. By default, the bitmap used will be
the same as the parent class, because we haven’t provided a custom bitmap (we will
do this in later examples). Notice also that if you move the mouse over the new com-
ponent, Delphi will display as a hint the name of the class without the initial letter T.

What’s Behind a Package?

What is behind the package we’ve just built? The package editor basically generates
the source code for the package project: a special kind of DLL built in Delphi. The
package project is saved in a file with the DPK (for Delphi PacKage) extension. A
typical package project looks like this:

package MdPack;

{$R *.RES}
{$ALIGN ON}
{$BOOLEVAL OFF}
{$DEBUGINFO ON}
...
{$DESCRIPTION ‘Mastering Delphi Package’}
{$IMPLICITBUILD ON}

requires
 vcl50;

contains
 MdFontBox in ‘MdFontBox.pas’;

end.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

624 - Chapter 13: Creating Components

As you can see, Delphi uses specific language keywords for packages: the first is the
package keyword (which is similar to the library keyword I’ll discuss in Chapter
14). This keyword introduces a new package project. Then comes a list with all the
compiler options, some of which I’ve omitted from the listing. Usually the options
for a Delphi project are stored in a separate file; packages, by contrast, include all
the compiler options directly in their source code. Among the compiler options
there is a DESCRIPTION compiler directive, used to make the package description
available to the Delphi environment. In fact, after you’ve installed a new package, its
description will be shown in the Packages page of the Project Options dialog box, a
page you can also activate by selecting the Component Install Packages menu
item. This dialog box is shown in Figure 13.3.

Figure 13.3: The
Project Options for
packages. You can see
the new package we’ve
just created. Image
from the original book
and in Delphi 12.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 625

Besides common directives like the DESCRIPTION one, there are other compiler
directives specific to packages. The most common of these options are easily acces-
sible through the Options button of the Package Editor. After this list of options
come the requires and contains keywords, which list the items displayed visually
in the two pages of the Package Editor. Again, the first is the list of packages
required by the current one and the second is a list of the units installed by this
package.

What is the technical effect of building a package? Besides the DPK file with the
source code, Delphi generates a BPL file with the dynamic link version of the pack-
age and a DCP file with the symbol information. In practice, this DCP file is the sum
of the symbol information of the DCU files of the units contained in the package.

At design time, Delphi requires both the BPL and DCP files, because the first has
the actual code of the components created on the design form and the symbol infor-
mation required by the Code Insight technology. If you link the package dynamically
(using it as a run-time package), the DCP file will also be used by the linker, and the
BPL file should be shipped along with the main executable file of the application. If
you instead link the package statically, the linker refers to the DCU files, and you’ll
need to distribute only the final executable file.

For this reason as a component designer you should generally distribute at least the
BPL file, the DCP file, and the DCU files of the units contained in the package and
any corresponding DFM files, plus a help file. As an option, of course, you might
also make available the source code files of the package units (the PAS files) and of
the package itself (the DPK file).

Installing the Components of This Chapter

Having built our first package, we can now start using the component we’ve added
to it. Before we do so, however, I should mention that I’ve extended the MdPack
package to include all of the components we are going to build in this chapter,
including different versions of the same component. I suggest you install this pack-
age. The best approach is to copy it into a directory of your path, so that it will be
available both to the Delphi environment and to the programs you build with it. I’ve
collected all the component source code files and the package definition in a single
sub-directory, called MdPack. This allows the Delphi environment to refer only to
one directory when looking for the package and the DCU files.

Remember, anyway, that if you compile an application using the packages as run-
time DLLs, you’ll need to install these new libraries on your clients’ computers. If
you instead compile the programs by statically linking the package, the DLL will be
required only by the development environment, and not by the users of your appli-
cations.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

626 - Chapter 13: Creating Components

note Besides creating and installing single packages, Delphi can handle collections of packages. The
Package Collection Editor (PCE.EXE, in the Delphi/Bin directory) allows you to place multiple
packages in a single DPC (Delphi Package Collection) file340. This file can then be installed in Del-
phi in the same way you install a stand-alone package. The Package Collection Editor allows you
to specify a complex installation, with several support files, and even to let users choose the direc-
tory where they want to install the compiled packages, the source code files, and all the other
support files.

Using the Fonts Combo Box

Now you can create a new Delphi program to test the Font combo box. Move to the
Component Palette, select the new component, and add it to a new form. A tradi-
tional-looking combo box will appear. However, if you open the Items Property
Editor, you’ll see a list of the fonts installed on your computer. To build a simple
example, I’ve added a Memo component to the form with some text inside it. The
FontBoxDemo program has very little code. When a user selects a new font in the
combo box, the new value is used as the Memo component’s font:

procedure TForm1.MdFontCombo1Change(Sender: TObject);
begin
 // activate the new selection
 Memo1.Font.Name := MdFontCombo1.Text;
end;

At the beginning, the reverse action is performed; the name of the Memo compo-
nent’s font is displayed in the combo box:

procedure TForm1.FormCreate(Sender: TObject);
begin
 // select the item corresponding to the current font
 MdFontCombo1.ItemIndex :=
 MdFontCombo1.Items.IndexOf (Memo1.Font.Name);
end;

The aim of this simple program (see Figure 13.4 for its output) is only to test the
behavior of the new component we have built. The component is still not very useful
—we could have added a couple of lines of code to a form to obtain the same effect—
but looking at a couple of simple components should help you get an idea of what is
involved in component building.

340 The concept of Package Collection and the specific editor are no longer part of Delphi.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 627

Figure 13.4: The
output of the
FontBoxDemo
example. Image from
the original book.

Creating Compound Components

The next component I want to focus on is a digital clock. This example has some
interesting features. First, it embeds a component (a Timer) in another component;
second, it shows the live-data approach.

Since the digital clock will provide some text output, I considered inheriting from
the TLabel class. However, this would allow a user to change the label’s caption—
that is, the text of the clock. To avoid this problem, I simply used the TCustomLabel
component as the parent class. A TCustomLabel object has the same capabilities as a
TLabel object, but few published properties. In other words, a TCustomLabel sub-
class can decide which properties should be available and which should remain
hidden.

note Most of the Delphi components, particularly the Windows-based ones, have a TCustomXxx base
class, which implements the entire functionality but exposes only a limited set of properties.
Inheriting from these base classes is the standard way to expose only some of the properties of a
component in a customized version. In fact, you cannot hide public or published properties of a
base class.

Besides re-declaring some of the properties of the parent class, TMdClock has one
new property of its own, Active. This property indicates whether or not the clock is
working. As you might have guessed, the clock contains a TTimer component. The
timer is not made public through a property, because I don’t want programmers to
access it directly. Instead, I made the Enabled property of the Timer available, wrap-

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

628 - Chapter 13: Creating Components

ping it inside the Active property of the digital clock. Here is the full type declara-
tion for the component:

type
 TMdClock = class (TCustomLabel)
 private
 FTimer: TTimer;
 function GetActive: Boolean;
 procedure SetActive (Value: Boolean);
 protected
 procedure UpdateClock (Sender: TObject);
 public
 constructor Create (AOwner: TComponent); override;
 published
 property Align;
 property Alignment;
 property Color;
 property Font;
 property ParentColor;
 property ParentFont;
 property ParentShowHint;
 property PopupMenu;
 property ShowHint;
 property Transparent;
 property Visible;
 property Active: Boolean
 read GetActive write SetActive;
 end;

Notice that we need methods both to write and to read the value of the Active prop-
erty, because the value of the property is not local data, but rather refers to a
member of the embedded component, the Timer:

function TMdClock.GetActive: Boolean;
begin
 Result := FTimer.Enabled;
end;

procedure TMdClock.SetActive (Value: Boolean);
begin
 FTimer.Enabled := Value;
end;

To create the Timer, we have to override the constructor of the clock component.
The Create method calls the corresponding method of the base class and creates the
Timer object, installing a handler for its OnTimer event:

constructor TMdClock.Create (AOwner: TComponent);
begin
 inherited Create (AOwner);
 // create the internal timer object

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 629

 FTimer := TTimer.Create (Self);
 FTimer.OnTimer := UpdateClock;
 FTimer.Enabled := True;
end;

The code doesn’t set a value for the Timer’s Interval property, simply because the
timer’s default interval of 1000 milliseconds is appropriate. We don’t need a
destructor, simply because the FTimer object has our TMDClock component as owner
(as indicated by the parameter of its Create constructor), so it will be destroyed
automatically when the clock component is destroyed.

The key piece of the component’s code is the UpdateClock procedure, which is just
one statement:

procedure TMdLabelClock.UpdateClock (Sender: TObject);
begin
 // set the current time as caption
 Caption := TimeToStr (Time);
end;

This method uses Caption, which is an unpublished property, so that a user of the
component cannot modify it in the Object Inspector. The result of this statement is
to display the current time. This happens continuously, because the method is con-
nected to the Timer’s OnTimer event.

The Component Palette Bitmaps

Before installing this second component, we can take one further step: define a bit-
map for the Component Palette. If we fail to do so, the Palette uses the bitmap of the
parent class, or a default object’s bitmap if the parent class is not an installed com-
ponent (as is the case of the TCustomLabel). Defining a new bitmap for the
component is easy, once you know the rules. You can create one with the Image Edi-
tor341 (as shown in Figure 13.5), starting a new project and selecting the DCR (Delphi
Component Resource) project type.

341 As already mentioned, the Image Editor is no longer part of Delphi. You can use any graphic
editor.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

630 - Chapter 13: Creating Components

Figure 13.5: The
definition of a
component palette
bitmap in Delphi’s
Image Editor. Image
from the original book.
This tool is no longer
available.

note DCR files are simply standard RES files with a different extension. If you prefer, you can create
them with any resource editor, including the Borland Resource Workshop342, which is certainly a
more powerful tool than the Delphi Image editor. When you finish creating the resource file, sim-
ply rename the RES file to use a DCR extension.

Now, we can add a new bitmap to the resource, choosing a size of 24 24 pixels.
Now we are ready to draw the bitmap. The other important rules refer to naming. In
this case, the naming rule is not just a convention, it is a requirement so that the
IDE can find the image for a given component class:

· The name of the bitmap resource must match the name of the component,
including the initial T. In this case, the name of the bitmap resource should be
TMDCLOCK. The name of the bitmap resource must be uppercase. This is
mandatory.

· If you want the Package Editor to recognize and include the resource file, the
name of the DCR file must match the name of the compiled unit that defines the
component. In this case, the file name should be MdClock.DCR. If you manually
include the resource file, via a $R directive, you can give it the name you like, and
also use a RES or DCR file with multiple palette icons.

342 The Borland Resource Workshop has also been removed from the product.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 631

When the bitmap for the component is ready, you can install the component in Del-
phi, by using the Package Editor’s Install Package toolbar button. After this
operation, the Contains section of the editor should list both the PAS file of the com-
ponent and the corresponding DCR file (the list of DCR files was not available in
Delphi 3). In Figure 13.6 you can see all the files (including the DCR files) of the
final version of the Md4Pack package. If the DCR installation doesn’t work properly,
you can manually add the {$R unitname.dcr} statement in the package source
code.

Figure 13.6: The
Contains section of the
Package Editor shows
both the units that are
included in the package
and the component
resource files. Image
from the original book.

Building Compound Components with Frames

Instead of building the compound component in code and hooking up the event of the timer
manually, we could have obtained a similar effect by using a frame. Frames make the
development of compound components with custom event handlers a visual (and simpler)
operation. You can share this frame by adding it to the Repository or by creating a template
using the Add to Palette command of the shortcut menu of the frame itself.

As an alternative, you might want to share the frame by placing it into a package and registering
it as a component. Technically this is not too difficult. You add a Register procedure to the
frame’s unit, add the unit to a package, and build it. The new component/frame will be in the
Component Palette, like any other component. However when you place this component/frame
on a form you won’t see its sub-components and won’t be able to interact with them as design
time. The running program will behave as expected, but the limited design time support makes
this approach less then ideal.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

632 - Chapter 13: Creating Components

An Active Button

The Windows interface is evolving toward a new standard, including components
that become highlighted as the mouse cursor moves over them. Delphi provides
similar support in many of its built-in components, but what does it take to mimic
this behavior for a simple button component that you create? This might seem a
complex task to accomplish, but it is not.

Usually, the development of a component can be extremely simple, once you know
which virtual function to override or which message to hook onto. The next compo-
nent, the TMdActiveButton class, demonstrates this by handling some internal
Delphi messages to accomplish its task in a very simple way.

note How did I determine which messages were the right ones to use, when they are almost completely
undocumented? By studying the VCL source code. That’s generally a good way to become an
expert component builder. You can also study some of the advanced Delphi books available.

The ActiveButton component handles the cm_MouseEnter and cm_MouseExit inter-
nal Delphi messages, which are received when the mouse cursor enters or leaves the
area corresponding to the component:

type
 TMdActiveButton = class (TButton)
 protected
 procedure MouseEnter (var Msg: TMessage);
 message cm_mouseEnter;
 procedure MouseLeave (var Msg: TMessage);
 message cm_mouseLeave;
 end;

The code you write for these two methods can do whatever you want. For this exam-
ple I’ve simply decided to toggle the bold style of the font of the button itself. You
can see the effect of moving the mouse over one of these components in Figure 13.7.

procedure TMdActiveButton.MouseEnter (var Msg: TMessage);
begin
 Font.Style := Font.Style + [fsBold];
end;

procedure TMdActiveButton.MouseLeave (var Msg: TMessage);
begin
 Font.Style := Font.Style - [fsBold];
end;

You can add other effects at will, including enlarging the font itself, making the but-
ton the default, or increasing its size a little. The best effects usually involve colors,

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 633

but you should inherit from the TBitBtn class to have this support (TButton controls
have a fixed color).

Figure 13.7: An
example of the use of
the ActiveButton
component. Image
from the original book.

A Complex Graphical Component

The graphical component I want to build is an arrow component. You can use such a
component to indicate a flow of information, or an action, for example. This compo-
nent is quite complex, so I’ll show you the various steps instead of looking directly at
the complete source code. The component I’ve added to the MdPack package is only
the final version of this process, which will demonstrate a number of important con-
cepts:

· The definition of new enumerated properties, based on custom enumerated data
types.

· The use of properties of TPersistent-derived classes, such as TPen and TBrush,
and the issues related to their creation and destruction, and to handling their
OnChange events internally in our component.

· The implementation of the Paint method of the component, which provides its
user interface and should be generic enough to accommodate all the possible val-

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

634 - Chapter 13: Creating Components

ues of the various properties, including its Width and Height. The Paint method
plays a substantial role in this graphical component.

· The definition of a custom event handler for the component, responding to user
input (in this case, a double-click on the point of the arrow). This will require
direct handling of Windows messages and the use of the Windows API for
graphic regions.

· The registration of properties in Object Inspector categories and the definition of
a custom category.

Defining an Enumerated Property

After generating the new component with the Component Wizard and choosing
TGraphicControl as the parent class, we can start to customize the component. The
arrow can point in any of four directions: up, down, left, or right. An enumerated
type expresses these choices:

type
 TMdArrowDir = (adUp, adRight, adDown, adLeft);

This enumerated type defines a private data member of the component, a parameter
of the procedure used to change it, and the type of the corresponding property. Two
more simple properties are ArrowHeight and Filled, the first determining the size
of the arrowhead and the second whether to fill the arrowhead with color:

TMdArrow = class (TGraphicControl)
 private
 fDirection: TMdArrowDir;
 fArrowHeight: Integer;
 fFilled: Boolean;
 procedure SetDirection (Value: TMd4ArrowDir);
 procedure SetArrowHeight (Value: Integer);
 procedure SetFilled (Value: Boolean);
 published
 property Width default 50;
 property Height default 20;
 property Direction: TMd4ArrowDir
 read fDirection write SetDirection default adRight;
 property ArrowHeight: Integer
 read fArrowHeight write SetArrowHeight default 10;
 property Filled: Boolean
 read fFilled write SetFilled default False;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 635

note A graphic control has no default size, so when you place it in a form, its size will be a single pixel.
For this reason it is important to add a default value for the Width and Height properties and
set the class fields to the default property values in the constructor of the class.

The three custom properties are read directly from the corresponding field and are
written using three Set methods, all having the same standard structure:

procedure TMdArrow.SetDirection (Value: TMdArrowDir);
begin
 if fDirection <> Value then
 begin
 fDirection := Value;
 ComputePoints;
 Invalidate;
 end;
end;

Notice that we ask the system to repaint the component (by calling Invalidate)
only if the property is really changing its value and after calling the ComputePoints
method, which computes the triangle delimiting the arrowhead. Otherwise, the code
is skipped and the method ends immediately. This code structure is very common,
and we will use it for most of the Set procedures of properties.

We must also remember to set the default values of the properties in the compo-
nent’s constructor:

constructor TMdArrow.Create (AOwner: TComponent);
begin
 // call the parent constructor
 inherited Create (AOwner);
 // set the default values
 fDirection := adRight;
 Width := 50;
 Height := 20;
 fArrowHeight := 10;
 fFilled := False;

In fact, as mentioned before, the default value specified in the property declaration
is used only to determine whether to save the property’s value to disk. The Create
constructor is defined in the public section of the type definition of the new compo-
nent, and it is indicated by the override keyword. It is fundamental to remember
this keyword; otherwise, when Delphi creates a new component of this class, it will
call the constructor of the base class, rather than the one you’ve written for your
derived class.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

636 - Chapter 13: Creating Components

Property Naming Conventions
In the definition of the Arrow component, notice the use of several naming
conventions for properties, access methods, and fields. Here is a summary:

· A property should have a meaningful and readable name.

· When a private data field is used to hold the value of a property, the field
should be named with an f (field) at the beginning, followed by the name
of the corresponding property.

· When a function is used to change the value of the property, the function
should have the word Set at the beginning, followed by the name of the
corresponding property.

· A corresponding function used to read the property should have the word
Get at the beginning, again followed by the property name.

These are just guidelines to make programs more readable. The compiler
doesn’t enforce them. These conventions are described in the Delphi Compo-
nent Writers Guide and are followed by the Delphi’s class completion
mechanism.

Writing the Paint Method

Drawing the arrow in the various directions and with the various styles requires a
fair amount if code. To perform custom painting, you override the Paint method
and use the protected Canvas property.

Instead of computing the position of the arrowhead points in drawing code that will
be executed often, I’ve written a separate function to compute the arrowhead area
and store it in an array of points defined among the private fields of the component
as:

fArrowPoints: array [0..3] of TPoint;

These points are determined by the ComputePoints private method, which is called
every time some of the component properties change. Here is an excerpt of its code:

procedure TMdArrow.ComputePoints;
var
 XCenter, YCenter: Integer;
begin
 // compute the points of the arrowhead

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 637

 YCenter := (Height - 1) div 2;
 XCenter := (Width - 1) div 2;
 case FDirection of
 adUp: begin
 fArrowPoints [0] := Point (0, FArrowHeight);
 fArrowPoints [1] := Point (XCenter, 0);
 fArrowPoints [2] := Point (Width-1, FArrowHeight);
 end;
 // and so on for the other directions

The code computes the center of the component area (simply dividing the Height
and Width properties by two) and then uses it to determine the position of the
arrowhead. Besides changing the direction or other properties, we need to refresh
the position of the arrowhead when the size of the component changes. What we can
do is to override the SetBounds method of the component, which is called by the
VCL every time the Left, Top, Width, and Height properties of a component change:

procedure TMdArrow.SetBounds(ALeft, ATop, AWidth, AHeight: Integer);
begin
 inherited SetBounds (ALeft, ATop, AWidth, AHeight);
 ComputePoints;
end;

Once the component knows the position of the arrowhead, its painting code
becomes simpler. Here is an excerpt of the Paint method:

procedure TMdArrow.Paint;
var
 XCenter, YCenter: Integer;
begin
 // compute the center
 YCenter := (Height - 1) div 2;
 XCenter := (Width - 1) div 2;

 // draw the arrow line
 case FDirection of
 adUp: begin
 Canvas.MoveTo (XCenter, Height-1);
 Canvas.LineTo (XCenter, FArrowHeight);
 end;
 // and so on for the other directions
 end;

 // draw the arrow point, eventually filling it
 if FFilled then
 Canvas.Polygon (fArrowPoints)
 else
 Canvas.PolyLine (fArrowPoints);
end;

You can see an example of the output of this component in Figure 13.8.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

638 - Chapter 13: Creating Components

Figure 13.8: The
output of the Arrow
component. Image
from the original book.

Adding TPersistent Properties

To make the output of the component more flexible, I’ve added to it two new prop-
erties, defined with a class type (specifically, a TPersistent data type, which defines
objects that can be automatically streamed by Delphi). These properties are a little
more complex to handle, because the component now has to create and destroy
these internal objects (as we did with the internal Timer of the clock component).
This time, however, we also export the internal objects using some properties, so
that users can directly change them from the Object Inspector. To update the com-
ponent when these sub-objects change, we’ll also need to handle their internal
OnChange property. Here is the definition of the two new TPersistent-type proper-
ties and the other changes to the definition of the component class:

type
 TMdArrow = class (TGraphicControl)
 private
 FPen: TPen;
 FBrush: TBrush;
 ...
 procedure SetPen (Value: TPen);
 procedure SetBrush (Value: TBrush);
 procedure RepaintRequest (Sender: TObject);
 published
 property Pen: TPen
 read FPen write SetPen;
 property Brush: TBrush
 read FBrush write SetBrush;
 end;

The first thing to do is to create the objects in the constructor and set their OnChange
event handler:

constructor TMdArrow.Create (AOwner: TComponent);
begin

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 639

 ...
 // create the pen and the brush
 FPen := TPen.Create;
 FBrush := TBrush.Create;
 // set a handler for the OnChange event
 FPen.OnChange := RepaintRequest;
 FBrush.OnChange := RepaintRequest;
end;

These OnChange events are fired when one of the properties of these sub-objects
changes; all we have to do is to ask the system to repaint our component:

procedure TMdArrow.RepaintRequest (Sender: TObject);
begin
 Invalidate;
end;

You must also add to the component a destructor, to remove the two graphical
objects from memory (and free their system resources):

destructor TMdArrow.Destroy;
begin
 FPen.Free;
 FBrush.Free;
 inherited Destroy;
end;

The properties related to these two components require some special handling:
instead of copying the pointer to the objects, we should copy the internal data of the
object passed as parameter. The standard := operation copies the pointers, so in this
case we have to use the Assign method instead. Here is one of the two Set proce-
dures:

procedure TMdArrow.SetPen (Value: TPen);
begin
 FPen.Assign(Value);
 Invalidate;
end;

Many TPersistent classes have an Assign method that should be used when we
need to update the data of these objects. Now, to actually use the pen and brush for
the drawing, you have to modify the Paint method, setting the Pen and the Brush
properties of the component Canvas to the value of the internal objects before draw-
ing any line:

procedure TMdArrow.Paint;
begin
 // use the current pen and brush
 Canvas.Pen := FPen;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

640 - Chapter 13: Creating Components

 Canvas.Brush := FBrush;

You can see an example of the new output of the component in Figure 13.9.

Figure 13.9: The
output of the Arrow
component with a thick
pen and a special hatch
brush. Image from the
original book.

Defining a New Custom Event

To complete the development of the Arrow component, let’s add a custom event.
Most of the time, new components use the events of their parent classes. For exam-
ple, in this component, I’ve made some standard events available simply by re-
declaring them in the published section of the class:

type
 TMdArrow = class (TGraphicControl)
 published
 property OnClick;
 property OnDragDrop;
 property OnDragOver;
 property OnEndDrag;
 property OnMouseDown;
 property OnMouseMove;
 property OnMouseUp;

Thanks to this declaration, the above events (originally declared in a parent class)
will now be available in the Object Inspector when the component is installed.

Sometimes, however, a component requires a custom event. To define a brand-new
event, you first need to add to the class a field of the type of the event. This type is
actually a method pointer type (see Chapter 3 for details). Here is the definition I’ve
added in the private section of the TMd4Arrow class:

fArrowDblClick: TNotifyEvent;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 641

In this case I’ve used the TNotifyEvent type, which has only a Sender parameter
and is used by Delphi for many events, including OnClick and OnDblClick events.
Using this field I’ve defined a very simple published property, with direct access to
the field:

property OnArrowDblClick: TNotifyEvent
 read fArrowDblClick write fArrowDblClick;

Notice again the standard naming convention, with event names starting with On.
The fArrowDblClick method pointer is activated (executing the corresponding
function) inside the specific ArrowDblClick dynamic method. This happens only if
an event handler has been specified in the program that uses the component:

procedure TMdArrow.ArrowDblClick;
begin
 if Assigned (FArrowDblClick) then
 FArrowDblClick (self);
end;

This method is defined in the protected section of the type definition to allow future
sub-classes to both call and change it. Basically, the ArrowDblClick method is called
by the handler of the wm_LButtonDblClk Windows message, but only if the double-
click took place inside the arrow’s point. To test this condition, we can use some of
the Windows API’s region functions.

note A region is an area of the screen enclosed by any shape. For example, we can build a polygonal
region using the three vertices of the arrow-point triangle. The only problem is that to fill the sur-
face properly, we must define an array of TPoints in a clockwise direction (see the description of
the CreatePolygonalRgn in the Windows API Help for the details of this strange approach).
That’s what I did in the ComputePoints method.

Once we have defined a region, we can test whether the point where the double-
click occurred is inside the region by using the PtInRegion API call. You can see the
complete source code of this procedure in the following listing:

procedure TMdArrow.WMLButtonDblClk (
 var Msg: TWMLButtonDblClk); // message wm_LButtonDblClk;
var
 HRegion: HRgn;
begin
 // perform default handling
 inherited;

 // compute the arrowhead region
 HRegion := CreatePolygonRgn (
 fArrowPoints, 3, WINDING);
 try

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

642 - Chapter 13: Creating Components

 // check whether the click took place in the region
 if PtInRegion (HRegion, Msg.XPos, Msg.YPos) then
 ArrowDblClick;
 finally
 DeleteObject (HRegion);
 end;
end;

Registering Property Categories

We’ve added to this component some custom properties and a new event. If you
arrange the properties in the Object Inspector by category, all the new elements will
show up in the generic Miscellaneous category. Of course, this is far from ideal, but
we can easily register the new properties in one of the available categories (listed in
Delphi’s Help file).

We can register a property (or an event) in a category by calling one of the four over-
loaded versions of the RegisterPropertyInCategory function343 (defined in the
DsgnIntf unit), and specifying the property name, its type, or the property name and
the component it belongs to. For example, we can add the following lines to the
Register procedure of the unit to register the OnArrowDblClick event in the Input
category and the Filled property in the Visual category:

uses
 DsgnIntf;

procedure Register;
begin
 RegisterComponents('Md', [TMdArrow]);
 RegisterPropertyInCategory (
 TInputCategory, TMdArrow, 'OnArrowDblClick');
 RegisterPropertyInCategory (
 TVisualCategory, TMdArrow, 'Filled');
end;

We can also take one further step and create a brand-new category for the specific
properties of our component, which can make it much simpler for a user to locate its
specific features. To accomplish this we simply inherit a new class from the generic
TPropertyCategory class and override a class function, Name. The Name will be used
to indicate the category in the Object Inspector, while a second class function you
can override, Description, is apparently not used.

343 Property categories are still available but seldom used, and not many components manage
them as described here. I’d say you can safely skip using them.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 643

Here is the code of the custom property category I’ve defined for the Arrow compo-
nent:

interface

type
 TArrowCategory = class (TPropertyCategory)
 class function Name: string; override;
 class function Description: string; override;
 end;

implementation

class function TArrowCategory.Name: string;
begin
 Result := 'Arrow';
end;

class function TArrowCategory.Description: string;
begin
 Result := 'Properties of the Mastering Delphi Arrow component';
end;

procedure Register;
begin
 ...
 RegisterPropertyInCategory (
 TArrowCategory, TMdArrow, 'Direction');
 RegisterPropertyInCategory (
 TArrowCategory, TMdArrow, 'ArrowHeight');
 RegisterPropertyInCategory (
 TArrowCategory, TMdArrow, 'Filled');
end;

Notice that the Filled property was already registered in another existing category.
This is not a problem, because the same property can show up multiple times in the
Object Inspector under different categories, as you can see in Figure 13.10.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

644 - Chapter 13: Creating Components

Figure 13.10: The
Arrow component
defines a custom
property category,
Arrow, as you can see
in the Object Inspector.
Image from the
original book.

To test the arrow component I’ve written a very simple example program,
ArrowDemo, which allows you to modify most of its properties at run time. This
type of test, after you have written a component or while you are writing it, is very
important.

Customizing Windows Controls

One of the most common ways of customizing existing components is to add some
predefined behavior to their event handlers. Every time you need to attach the same
event handler to components of different forms, you should consider adding the
code of the event right into a subclass of the component. An obvious example is that
of edit boxes accepting only numeric input. Instead of attaching to each of them a
common OnChar event handler, we can define a simple new component. This com-
ponent, however, won’t handle the event; events are for component users only.
Instead, the component can either handle the Windows message directly or override
a method, as described in the next two sections.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 645

Overriding Message Handlers: The Numeric
Edit Box

To customize an edit box component to restrict the input it will accept, all you need
to do is handle the wm_Char Windows messages that occur when the user presses
any but a few specific keys (namely, the numeric characters).

One way to respond to a message for a given window (whether it’s a form or a com-
ponent) is to create a new message-response method that you declare using the
message keyword. Delphi’s message-handling system makes sure that your mes-
sage-response method has a chance to respond to a given message before the form
or component’s default message handler does. As we’ll see in the next section,
instead of creating a new method (as we’ll do here) you can override an existing vir-
tual method that responds to a given message. Below is the complete code of the
TMdNumEdit class:

type
 TMdNumEdit = class (TCustomEdit)
 private
 fInputError: TNotifyEvent;
 protected
 function GetValue: Integer;
 procedure SetValue (Value: Integer);
 public
 procedure WmChar (var Msg: TWmChar); message wm_Char;
 constructor Create (Owner: TComponent); override;
 published
 property OnInputError: TNotifyEvent
 read fInputError write fInputError;
 property Value: Integer
 read GetValue write SetValue default 0;
 property AutoSelect;
 property AutoSize;
 property BorderStyle;
 // and so on...

This component inherits from TCustomEdit instead of TEdit so that it can hide the
Text property and surface the Integer Value property instead. Notice that I don’t
create a new field to store this value, because we can use the existing (but now
unpublished) Text property. To do this we’ll simply convert the numeric value to
and from a text string. The TCustomEdit class (or actually the Windows control it
wraps) automatically paints the information from the Text property on the surface
of the component:

function TMdNumEdit.GetValue: Integer;
begin

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

646 - Chapter 13: Creating Components

 // set to 0 in case of error
 Result := StrToIntDef (Text, 0);
end;

procedure TMdNumEdit.SetValue (Value: Integer);
begin
 Text := IntToStr (Value);
end;

The most important method is the response for the wm_Char message. In the body of
this method, the component filters out all the non-numerical characters and raises a
specific event in case of an error:

procedure TMdNumEdit.WmChar (var Msg: TWmChar);
begin
 if not (Char (Msg.CharCode) in ['0'..'9'])
 and not (Msg.CharCode = 8) then
 begin
 Msg.CharCode := 0;
 if Assigned (fInputError) then
 fInputError (Self);
 end;
end;

This method checks each character as the user enters it, testing for numerals and
the Backspace key (which has an ASCII value of 8). The user should be able to use
Backspace in addition to the system keys (the arrow keys and Del), so we need to
check for that value. We don’t have to check for the system keys, because they are
surfaced by a different Windows message, wm_SysChar.

That’s it. Now if you place this component on a form, you can type something in the
edit box and see how it behaves. You might also want to attach a method to the
OnInputError event to provide feedback to the user when a wrong key is typed.

Overriding Dynamic Methods: The Sound
Button

Our next component, TMdSoundButton, plays one sound when you press the button
and another sound when you release it. The user specifies each sound by modifying
two String properties that name the appropriate WAV files for the respective
sounds. Once again, we need to intercept and modify some system messages
(wm_LButtonDown and wm_LButtonUp), but instead of handling the messages by writ-
ing a new message-response method, we’ll override the appropriate second-level
handlers.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 647

note When most VCL components handle a Windows message, they call a second-level message han-
dler (usually a dynamic method), instead of executing code directly in the message-response
method. This makes it simpler for you to customize the component in a derived class. Typically, a
second-level handler will do its own work and then call any event handler that the component
user has assigned.

Here is the code of the TMdSoundButton class, with the two protected methods that
override the second-level handlers, and the two string properties that identify the
sound files. You’ll notice that in the property declarations, we read and write the
corresponding private fields without calling a Get or Set method, simply because we
don’t need to do anything special when the user makes changes to those properties.

type
 TMdSoundButton = class(TButton)
 private
 FSoundUp, FSoundDown: string;
 protected
 procedure MouseDown(Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer); override;
 procedure MouseUp(Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer); override;
 published
 property SoundUp: string
 read FSoundUp write FSoundUp;
 property SoundDown: string
 read FSoundDown write FSoundDown;
 end;

There are several reasons why overriding existing second-level handlers is generally
a better approach than handling straight Windows messages. First, this technique is
more sound from an object-oriented perspective. Instead of duplicating the mes-
sage-response code from the base class and then customizing it, you’re overriding a
virtual method call that the VCL designers planned for you to override. Second, if
someone needs to derive another class from one of your component classes, you’ll
want to make it as easy for them to customize as possible, and overriding second-
level handlers is less likely to induce strange errors (if only because you’re writing
less code). Finally, this will make your component classes more consistent with the
VCL—and therefore easier for someone else to figure out. Here is the code of the
two second-level handlers:

uses
 MMSystem;

procedure TMdSoundButton.MouseDown(Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 inherited MouseDown (Button, Shift, X, Y);

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

648 - Chapter 13: Creating Components

 PlaySound (PChar (FSoundDown), 0, snd_Async);
end;

procedure TMdSoundButton.MouseUp(Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 inherited MouseUp (Button, Shift, X, Y);
 PlaySound (PChar (FSoundUp), 0, snd_Async);
end;

In both cases, you’ll notice that we call the inherited version of the methods before
we do anything else. For most second-level handlers, this is a good practice, since it
ensures that we execute the standard behavior before we execute any custom behav-
ior.

Next, you’ll notice that we call the PlaySound Win32 API function to play the sound.
You can use this function (which is defined in the MmSystem unit to play either
WAV files or system sounds, as the SoundB example demonstrates. Here is a textual
description of the form of this sample program (from the DFM file):

object MdSoundButton1: TMdSoundButton
 Caption = 'Press'
 SoundUp = 'RestoreUp'
 SoundDown = 'RestoreDown'
end

note Selecting a proper value for these sound properties is far from simple. Later in this chapter I’ll
show you how to add a property editor to the component to make the operation simpler.

A Non-Visual Dialog Component

The next component we’ll examine is completely different from the ones we have
seen up to now. After building window-based controls and simple graphic compo-
nents, I’m now going to build a non-visual component.

The basic idea is that forms are components. When you have built a form that might
be particularly useful in a number of projects, you can add it to the Object Reposi-
tory or make a component out of it. The second approach is more complex than the
first one, but it makes using the new form easier, and it allows you to distribute the
form without its source code. As an example, I’ll build a component based on a cus-
tom dialog box, trying to mimic as much as possible the behavior of standard Delphi
dialog box components.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 649

The first step in building a dialog box in a component is to write the code of the dia-
log box itself, using the standard Delphi approach. Just define a new form and work
on it as usual. When a component is based on a form, you can almost visually design
the component. Of course, once the dialog box has been built, you have to define a
component around it in a non-visual way.

The standard dialog box I want to build is based on a list box, because it is common
to let a user choose a value from a list of strings. I’ve customized this common
behavior in a dialog box and then used it to build a component. The simple
ListBoxForm form I’ve built has a list box and the typical OK and Cancel buttons, as
shown in its textual description:

object MdListBoxForm: TMdListBoxForm
 BorderStyle = bsDialog
 Caption = ‘ListBoxForm’
 object ListBox1: TListBox
 OnDblClick = ListBox1DblClick
 end
 object BitBtn1: TBitBtn
 Kind = bkOK
 end
 object BitBtn2: TBitBtn
 Kind = bkCancel
 end
end

The only method of this dialog box form relates to the double-click event of the list
box, which closes the dialog box as though the user clicked the OK button:

procedure TMdListBoxForm.ListBox1DblClick(Sender: TObject);
begin
 ModalResult := mrOk;
end;

Once this form works, we can start changing its source code, adding the definition
of a component and removing the declaration of the global variable for the form.

note For components based on a form, you can use two Pascal source code files: one for the form, and
the other for the component encapsulating it. It is also possible to place both the component and
the form in a single unit, as I’ve done for this example. In theory it would be even nicer to declare
the form class in the implementation portion of this unit, hiding it from the users of the compo-
nent. In practice this is not a good idea. To manipulate the form visually in the Form Designer,
the form class declaration must appear in the interface section of the unit. The rationale behind
this behavior of the Delphi IDE is that, among other things, this constraint minimizes the amount
of code the module manager has to scan to find the form declaration, an operation required often
to maintain the synchronization of the visual form with the form class definition.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

650 - Chapter 13: Creating Components

The most important of these operations is the definition of the TMdListBoxDialog
component, a non-visual component. What determines that this component is non-
visual is that its immediate ancestor class is TComponent. The component has three
published properties and a public one. These are the three published properties:

· Lines is a TStrings object, which is accessed via two methods, GetLines and
SetLines. This second method uses the Assign procedure to copy the new values
to the private field corresponding to this property. This internal object is initial-
ized in the Create constructor and destroyed in the Destroy method.

· Selected is an integer that directly accesses the corresponding private field. It
stores the selected element of the list of strings.

· Title is a string used to change the title of the dialog box.

The public property is SelItem, a read-only property that automatically retrieves the
selected element of the list of strings. Notice that this property has no storage and
no data: it simply accesses other properties, providing a virtual representation of
data:

type
 TMdListBoxDialog = class (TComponent)
 private
 FLines: TStrings;
 FSelected: Integer;
 FTitle: string;
 function GetSelItem: string;
 procedure SetLines (Value: TStrings);
 function GetLines: TStrings;
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 function Execute: Boolean;
 property SelItem: string read GetSelItem;
 published
 property Lines: TStrings read GetLines write SetLines;
 property Selected: Integer read FSelected write FSelected;
 property Title: string read FTitle write FTitle;
 end;

Most of the code of this example is in the Execute method, a function that returns
True or False depending on the modal result of the dialog box. This is consistent
with the Execute method of most standard Delphi dialog box components. The
Execute function creates the form dynamically, sets some of its values using the
component’s properties, shows the dialog box, and if the result is correct, updates
the current selection:

function TMdListBoxDialog.Execute: Boolean;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 651

var
 ListBoxForm: TListBoxForm;
begin
 if FLines.Count = 0 then
 raise EStringListError.Create (‘No items in the list’);
 ListBoxForm := TListBoxForm.Create (self);
 try
 ListBoxForm.ListBox1.Items := FLines;
 ListBoxForm.ListBox1.ItemIndex := FSelected;
 ListBoxForm.Caption := FTitle;
 if ListBoxForm.ShowModal = mrOk then
 begin
 Result := True;
 Selected := ListBoxForm.ListBox1.ItemIndex;
 end
 else
 Result := False;
 finally
 ListBoxForm.Free;
 end;
end;

Notice that the code is contained within a try-finally block, so if a run-time error
occurs when the dialog box is displayed, the form will be destroyed anyway. I’ve also
used exceptions to raise an error if the list is empty when a user runs it. This error is
by design, and using an exception is a good technique to enforce it. The other meth-
ods of the component are quite straightforward. The constructor creates the FLines
string list, which is deleted by the destructor; the GetLines and SetLines methods
operate on the string list as a whole, and the GetSelItem function (listed below)
returns the text of the selected item:

function TMdListBoxDialog.GetSelItem: string;
begin
 if (Selected >= 0) and (Selected < FLines.Count) then
 Result := FLines [Selected]
 else
 Result := ‘’;
end;

Of course, since we are manually writing the code of the component and adding it to
the source code of the original form, we have to remember to write the Register
procedure.

Using the Non-Visual Component

Once you’ve done that and the component is ready, you must provide a bitmap. For
non-visual components, bitmaps are very important because they are used not only

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

652 - Chapter 13: Creating Components

for the Component Palette, but also when you place the component on a form. Now
let’s prepare the bitmap, install the component, and write a simple project to test it.
The form of this test program has a button, an edit box, and our new non-visual
component, as you can see in Figure 13.11.

Figure13.11: The
form of the
ListDialDemo example,
with the new non-
visual component.
Image from the
original book.

Now you can write a few lines of code, corresponding to the OnClick event of the
button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 // select the text of the edit,
 // if corresponding to one of the strings
 MdListDialog1.Selected :=
 MdListDialog1.Lines.IndexOf (Edit1.Text);
 // run the dialog and get the result
 if MdListDialog1.Execute then
 Edit1.Text := MdListDialog1.SelItem;
end;

That’s all you need to run the dialog box we have placed in the component, as you
can see in Figure 13.12. As you’ve seen, this is an interesting approach to the devel-
opment of some common dialog boxes.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 653

Figure 13.12: The
ListDialDemo example
shows the dialog box
I’ve encapsulated in the
ListDial component.
Image from the
original book.

Defining Custom Actions

Besides defining custom components, you can define and register new standard
actions, which will be made available in the Action Editor of the Action List compo-
nent. Creating new actions is not complex. You have to inherit from the TAction
class and override some of the methods of the base class344.

There are basically three methods to override. The HandlesTarget function returns
whether the action object wants to handle the operation for the current target, by
default the control with the focus. The UpdateTarget procedure can set the user
interface of the controls connected with the action, eventually disabling the action if
the operation is currently not available. Finally, you can implement the
ExecuteTarget method to determine the actual code to execute, so that the user can
simply select the action and doesn’t have to implement it.

To show you this approach in practice, I’ve implemented the three cut, copy, and
paste actions for a list box, in a way similar to what the VCL does for an edit box
(although I’ve actually simplified the code a little). I’ve written a base class, which
has some common code to handle the status of the actions, and three derived
classes with the ExecuteTarget code. Here are the four classes:

344 As mentioned earlier, I think the ActionList architecture (and it’s extensions with the Action-
Manager) is a very important element of the VCL architecture). Therefore, the ability of creat-
ing custom actions is relevant.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

654 - Chapter 13: Creating Components

type
 TMdListAction = class (TAction)
 public
 function HandlesTarget (Target: TObject): Boolean; override;
 procedure UpdateTarget (Target: TObject); override;
 end;

 TMdListCutAction = class (TMdListAction)
 public
 procedure ExecuteTarget(Target: TObject); override;
 end;

 TMdListCopyAction = class (TMdListAction)
 public
 procedure ExecuteTarget(Target: TObject); override;
 end;

 TMdListPasteAction = class (TMdListAction)
 public
 procedure UpdateTarget (Target: TObject); override;
 procedure ExecuteTarget (Target: TObject); override;
 end;

The HandlesTarget method is implemented only for the base class, and it activates
the actions only if the target control is a list box and this list box has the focus:

function TMdListAction.HandlesTarget (Target: TObject): Boolean;
begin
 Result := (Target is TListBox) and
 TListBox(Target).Focused;
end;

The UpdateTarget method, instead, has two different implementations. The default
one is provided by the base class and used by the copy and cut actions. These
actions are enabled only if the target list box has at least one item and an item is
currently selected. The status of the Paste action, instead, depends on the Clipboard
status:

procedure TMdListAction.UpdateTarget (Target: TObject);
begin
 Enabled := ((Target as TListBox).Items.Count > 0) and
 ((Target as TListBox).ItemIndex >= 0);
end;

procedure TMdListPasteAction.UpdateTarget (Target: TObject);
begin
 Enabled := Clipboard.HasFormat (CF_TEXT);
end;

Finally, the three ExecuteTarget methods simply perform the corresponding
actions on the target list box:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 655

procedure TMdListCopyAction.ExecuteTarget (Target: TObject);
begin
 with Target as TListBox do
 Clipboard.AsText := Items [ItemIndex];
end;

procedure TMdListCutAction.ExecuteTarget(Target: TObject);
begin
 with Target as TListBox do
 begin
 Clipboard.AsText := Items [ItemIndex];
 Items.Delete (ItemIndex);
 end;
end;

procedure TMdListPasteAction.ExecuteTarget(Target: TObject);
begin
 (Target as TListBox).Items.Add (Clipboard.AsText);
end;

Once you’ve written this code in a unit and added it to a package (in this case the
MdPack package), the final step is to register the new custom actions in a given cat-
egory. This is indicated as the first parameter of the RegisterActions procedure345,
while the second is the list of action classes to register:

procedure Register;
begin
 RegisterActions (‘ListBox’,
 [TMdListCutAction, TMdListCopyAction, TMdListPasteAction],
 nil);
end;

To test the use of these three custom actions I’ve written the ListTest example. This
program has two list boxes and a toolbar with three buttons connected with the
three custom actions and an edit box for entering new values. The program allows a
user to cut, copy, and paste list box items. Nothing special, you might think, but the
strange fact is that the program has absolutely no code!

Writing Property Editors

Writing components is certainly an effective way to customize the Delphi environ-
ment, helping developers to build applications faster without requiring a detailed

345 This is now in the System.Actions unit.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

656 - Chapter 13: Creating Components

knowledge of low-level techniques. The Delphi environment is also quite open to
extensions. In particular, it is easy to extend the Object Inspector by writing custom
property editors and to extend the Form Designer by adding component editors.

note Along with these techniques, there are a number of internal interfaces Delphi offers to add-on tool
developers. Using these interfaces requires an advanced understanding of how the Delphi envi-
ronment works and a fairly good knowledge of many advanced techniques. As these advanced
techniques are not needed by every Delphi developer, they are not discussed in this book. You can
find a detailed description of the traditional Delphi design-time interfaces in Delphi Developer’s
Handbook (Sybex, 1998). As far as I know, there are no books yet detailing the ToolsApi intro-
duced in Delphi 4346. You can find technical information and some examples of these techniques
on my Web site, along with links to other sites where these techniques are presented.

Every property editor must be a subclass of the abstract TPropertyEditor class,
which is defined in the DsgnIntf (Design Interface) system unit. However, Delphi
already defines some specific property editors for strings (the TStringProperty
class), integers (the TIntegerProperty class), characters (the TCharProperty class),
enumerations (the TEnumProperty class), sets (the TSetProperty class), and many
others for colors, fonts, pens, string lists, and so on.

In any custom property editor, you have to redefine the GetAttributes function so
it returns a set of values indicating the capabilities of the editor. The most important
attributes are paValueList and paDialog. The paValueList attribute indicates that
the Object Inspector will show a combo box with a list of values (eventually sorted if
the paSortList attribute is set) provided by overriding the GetValues method. The
paDialog attribute style activates an ellipsis button in the Object Inspector which
executes the Edit method of the editor.

An Editor for the Sound Properties

The sound button we built earlier had two sound-related properties: SoundUp and
SoundDown. These were actually strings, so we were able to display them in the
Object Inspector using a default property editor. However, requiring the user to
type the name of a system sound or an external file is not very friendly, and it’s a bit
error-prone.

346 There is documentation, if not books, covering Delphi IDE ToolsAPI. A good reference is
https://github.com/Embarcadero/OTAPI-Docs

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://github.com/Embarcadero/OTAPI-Docs

Chapter 13: Creating Components - 657

When you need to select a file for a string property, you can reuse an existing prop-
erty editor, the TMPFilenameProperty class. All you have to do is register this editor
for the property using the special RegisterPropertyEditor procedure, as in:

RegisterPropertyEditor (
 TypeInfo (string), TDdhSoundButton,
 ‘SoundUp’, TMPFileNameProperty);

This editor allows you to select a file for the sound, but we want to be able to choose
the name of a system sounds as well. As described earlier, system sounds are prede-
fined names of sounds connected with user operations, associated with actual
sounds files in the Sound page of Windows Control Panel. For this reason, instead
of using this simple approach I’ll build a more complex property editor. My editor
for sound strings allows a user to either choose a value from a drop-down list or dis-
play a dialog box from which to load and test a sound (from a sound file or a system
sound). For this reason, the property editor provides both an Edit and a GetValues
method:

type
 TSoundProperty = class (TStringProperty)
 public
 function GetAttributes: TPropertyAttributes; override;
 procedure GetValues(Proc: TGetStrProc); override;
 procedure Edit; override;
 end;

note The default Delphi convention is to name a property editor class with a name ending with Prop-
erty and all component editors with a name ending with Editor.

The GetAttributes function combines both the paValueList (for the drop down
list) and the paDialog attributes (for the custom edit box), and also sorts the lists
and allows the selection of the property for multiple components:

function TSoundProperty.GetAttributes:
 TPropertyAttributes;
begin
 // editor, sorted list, multiple selection
 Result := [paDialog, paMultiSelect,
 paValueList, paSortList];
end;

The GetValues method simply calls [I guess I originally wanted to write “many
times”, as there is a single procedure passed as parameter, and the program calls it
over and over- Marco] the procedure it receives as parameter multiple times, once
for each string it wants to add to the drop-down list (as you can see in Figure 13.13):

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

658 - Chapter 13: Creating Components

procedure TSoundProperty.GetValues(Proc: TGetStrProc);
begin
 // provide a list of system sounds
 Proc (‘Maximize’);
 Proc (‘Minimize’);
 Proc (‘MenuCommand’);
 Proc (‘MenuPopup’);
 Proc (‘RestoreDown’);
 Proc (‘RestoreUp’);
 Proc (‘SystemAsterisk’);
 Proc (‘SystemDefault’);
 Proc (‘SystemExclamation’);
 Proc (‘SystemExit’);
 Proc (‘SystemHand’);
 Proc (‘SystemQuestion’);
 Proc (‘SystemStart’);
 Proc (‘AppGPFault’);
end;

Figure 13.13: The list
of sounds provides a
hint for the user, who
can also type in the
property value or
double-click to activate
the editor (shown later
in Figure 13.14). Image
from the original book.

note A better approach would be to extract these values from the Windows Registry, where all these
names are listed.

note If you want to further extend this example, Delphi 5 allows you to add graphics to the drop-down
list displayed in the Object Inspector—if you can decide which graphics to attach to particular
sounds.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 659

The Edit method is very straightforward, as it simply creates and displays a dialog
box. You’ll notice that we could have just displayed the Open dialog box directly, but
we decided to add an intermediate step to allow the user to test the sound. This is
similar to what Delphi does with graphic properties. You open the preview first, and
load the file only after you’ve confirmed that it’s correct. The most important step is
to load the file and test it before you apply it to the property. Here is the code of the
Edit method:

procedure TSoundProperty.Edit;
begin
 SoundForm := TSoundForm.Create (Application);
 try
 SoundForm.ComboBox1.Text := GetValue;
 // show the dialog box
 if SoundForm.ShowModal = mrOK then
 SetValue (SoundForm.ComboBox1.Text);
 finally
 SoundForm.Free;
 end;
end;

The GetValue and SetValue methods called above are defined by the base class, the
string property editor. They simply read and write the value of the current compo-
nent’s property that we are editing. As an alternative, you can access the component
you’re editing by using the GetComponent method (which requires a parameter indi-
cating which of the selected components you are working on—0 indicates the first
component). When you access the component directly, you also need to call the
Modified method of the Designer object (a property of the base class property edi-
tor). We don’t need this Modified call in the example, as the base class SetValue
method does this automatically for us.

The Edit method above displays a dialog box, a standard Delphi form that is built
visually, as always, and added to the package hosting the design-time components.
The form is quite simple; a ComboBox displays the values returned by the
GetValues method, and four buttons allow you to open a file, test the sound, and
terminate the dialog box by accepting the values or canceling. You can see an exam-
ple of the dialog box in Figure 13.14. Providing a drop-down list of values and a
dialog box for editing a property causes the Object Inspector to display only the
arrow button that indicates a drop-down list, and to omit the ellipsis button to indi-
cate that a dialog box editor is available.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

660 - Chapter 13: Creating Components

Figure 13.14: The
sound property editor’s
form displays a list of
available sounds, but it
also lets you load a file
and hear the selected
sound. Image from the
original book.

The first two buttons of the form each have a simple method assigned to their
OnClick event:

procedure TSoundForm.btnLoadClick(Sender: TObject);
begin
 if OpenDialog1.Execute then
 ComboBox1.Text := OpenDialog1.FileName;
end;

procedure TSoundForm.btnPlayClick(Sender: TObject);
begin
 PlaySound (PChar (ComboBox1.Text), 0, snd_Async);
end;

Unfortunately, I’ve not found a simple way to determine whether a sound is prop-
erly defined and is available The PlaySound function returns an error code when
played synchronously, but only if it can’t find the default system sound it attempts
to play if it can’t find the sound you asked for. If the requested sound is not avail-
able, it plays the default system sound and doesn’t return the error code. PlaySound
looks for the sound in the Registry first, and if it doesn’t find the sound there,
checks to see if the specified sound file exists.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 661

Installing the Property Editor

After you’ve written this code, you can install the component and its property editor
in Delphi. To accomplish this, you have to add the following statement to the
Register procedure of the unit:

procedure Register;
begin
 RegisterPropertyEditor (TypeInfo(string),
 TMdSoundButton, ‘SoundUp’, TSoundProperty);
 RegisterPropertyEditor (TypeInfo(string),
 TMdSoundButton, ‘SoundDown’, TSoundProperty);
end;

This call registers the editor specified in the last parameter for use with properties
of type string (the first parameter), but only for a specific component and for a
property with a specific name. These last two values can be omitted to provide more
general editors. Registering this editor allows the Object Inspector to show a list of
values and the dialog box called by the Edit method.

To install this component we can simply add its source code file into an existing or
new package. Instead of adding this unit and the others of this chapter to the MdPack
package, I built a second package, containing all the add-ins built in this chapter.
The package is named MdDesPk (which stands for “Mastering Delphi design pack-
age”). What’s new about this package is that I’ve compiled it using the
{$DESIGNONLY} compiler directive. This directive is used to mark packages that
interact with the Delphi environment, installing components and editors, but are
not required at run time by applications you’ve built.

note The source code of all of the add-on tools is in the MdDesPk sub-directory, along with the code of
the package used to install them. There are no examples demonstrating how to use these design-
time tools, because all you have to do is select the corresponding components in the Delphi envi-
ronment and see how they behave.

The property editor’s unit uses the SoundB unit, which defines the TMdSoundButton
component. For this reason the new package should refer to the existing package.
Here is its initial code (I’ll add other units to it later in this chapter):

package MdDesPk;

{$R *.RES}
{$ALIGN ON}
...
{$DESCRIPTION ‘Mastering Delphi DesignTime Package’}
{$DESIGNONLY}

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

662 - Chapter 13: Creating Components

requires
 vcl50,
 Mdpack;

contains
 PeSound in 'PeSound.pas',
 PeFSound in 'PeFSound.pas' {SoundForm};

Writing a Component Editor

Using property editors allows the developer to make a component more user-
friendly. In fact, the Object Inspector represents one of the key pieces of the user
interface of the Delphi environment, and Delphi developers use it quite often. How-
ever, there is a second approach you can adopt to customize how a component
interacts with Delphi: write a custom component editor.

Just as property editors extend the Object Inspector, component editors extend the
Form Designer. In fact, when you right-click on a form at design time, you see some
default menu items, plus the items added by the component editor of the selected
component. Examples of these menu items are those used to activate the Menu
Designer, the Fields Editor, the Visual Query Builder, and other editors of the envi-
ronment. At times, displaying these special editors becomes the default action of a
component when it is double-clicked.

Common uses of component editors include adding an About box with information
about the developer of the component, adding the component name, and providing
specific wizards to set up its properties.

Sub-Classing the TComponentEditor Class

A component editor should inherit from the TComponentEditor class. This class has
four virtual methods you can override (plus a couple of less important methods I’ve
decided to skip here):

· GetVerbCount returns the number of menu items to add to the local menu of the
Form Designer when the component is selected.

· GetVerb is called once for each new menu item, and it should return the text that
should go in the local menu for each.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 663

· ExecuteVerb is called when one of the new menu items is selected. The number
of the item is passed as parameter.

· Edit is called when the user double-clicks on the component in the Form
Designer to activate the default action.

Once you get used to the idea that a verb is nothing but a new menu item with a cor-
responding action to execute, the names of the methods of this interface become
quite intuitive. This interface is actually much simpler than those of property edi-
tors we’ve seen before.

A Component Editor for the ListDialog

Now that I’ve introduced the key ideas about writing component editors, we can
look at an example, an editor for the ListDialog component built earlier. In my com-
ponent editor I simply want to be able to show an About box, add a copyright notice
to the menu (an improper but very common use of component editors), and allow
users to perform a special action: previewing the dialog box connected with the dia-
log component). I also want to change the default action to simply show the About
box after a beep (which is not particularly useful, but it demonstrates the tech-
nique).

To implement this property editor, the program must override the four methods
listed above:

uses
 DsgnIntf;

type
 TMdListCompEditor = class (TComponentEditor)
 function GetVerbCount: Integer; override;
 function GetVerb(Index: Integer): string; override;
 procedure ExecuteVerb(Index: Integer); override;
 procedure Edit; override;
 end;

The first method simply returns the number of menu items I want to add to the
local menu:

function TMdListCompEditor.GetVerbCount: Integer;
begin
 Result := 3;
end;

This method is called only once, before displaying the menu. The second method,
instead, is called once for each menu item, so in this case it is called three times:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

664 - Chapter 13: Creating Components

function TMdListCompEditor.GetVerb (
 Index: Integer): string;
begin
 case Index of
 0: Result := ‘MdTabbedList (©Cantù)’;
 1: Result := ‘&About this component...’;
 2: Result := '&Preview...';
 end;
end;

The effect of this code is to add the menu items to the local menu of the form, as you
can see in Figure 13.15. Selecting any of these menu items simply activates the
ExecuteVerb method of the component editor:

procedure TMdListCompEditor.ExecuteVerb (
 Index: Integer);

begin
 case Index of
 0..1: MessageDlg (
 ‘This is a simple component editor’#13 +
 ‘built by Marco Cantù’#13 +
 ‘for the book “Mastering Delphi”’,
 mtInformation, [mbOK], 0);
 2: with Component as TMdListDialog do
 Execute;
 end;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 13: Creating Components - 665

Figure 13.15: The
custom menu items
added by the property
editor of the ListDialog
component. Image
from the original book.

I decided to handle the first two items in a single branch of the case statement,
although I could have skipped the code for the copyright notice item. The other
command changes calls the Execute method of the component we are editing,
determined using the Component property of the TComponentEditor class. Knowing
the type of the component, we can easily access its methods after a dynamic type
cast.

The last method refers to the default action of the component and is activated by
double-clicking on it in the Form Designer:

procedure.Edit;
begin
 // produce a beep and show the About box
 Beep;
 ExecuteVerb (0);
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

666 - Chapter 13: Creating Components

Registering the Component Editor

To make this editor available to the Delphi environment we need to register it. Once
more we can add to its unit a Register procedure and call a specific registration
procedure for component editors:

procedure Register;
begin
 RegisterComponentEditor (
 TMdListDialog, TMdListCompEditor);
end;

I’ve added this unit to the MdDesPk package, which includes all of the design-time
extensions of this chapter. After installing and activating this package you can create
a new project, place a tabbed list component in it, and experiment with it.

What’s Next

In this chapter we have seen how to define various types of properties, how to add
events, and how to define and override component methods. We have seen different
examples of components, including simple changes to existing ones, new graphical
components, and, in the final section, a dialog box inside a component. While build-
ing these components, we have faced some new Windows programming challenges.
In general, programmers often need to use the Windows API directly when writing
new Delphi components.

Writing components is a very handy technique for reusing software, but to make
your components easier to use you should try to integrate them as much as possible
within the Delphi environment, writing property editors and component editors

There are many more extensions of the Delphi IDE you can write, including custom
Wizards. Delphi, in fact, has a quite extensive ToolsApi, which is partially docu-
mented in some third party books, including my Delphi Developer’s Handbook
(Sybex, 1998). I’ve personally built a number of Delphi extensions, some of which
are available on my Web site, www.marcocantu.com347.

After discussing components and delving a little into the Delphi environment, the
next chapter focuses on Delphi DLLs. We have already met DLLs in many chapters

347 You can see https://www.marcocantu.com/tools/ but also https://github.com/marcocantu/
cantools

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://github.com/marcocantu/cantools
https://github.com/marcocantu/cantools
https://www.marcocantu.com/tools/

Chapter 13: Creating Components - 667

in the past, and it is time for a detailed discussion of their role and how to build
them. In the same chapter I’ll also further discuss the use of Delphi packages intro-
duced in the current chapter, as they are a special type of DLLs.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

668 - Chapter 14: Dynamic Link Libraries and Packages

Chapter 14:

Dynamic Link

Libraries And

Packages

Windows executable files come in two flavors: programs and dynamic link
libraries (DLLs). When you write a Delphi application, you typically generate a pro-
gram file, an EXE. However, Delphi applications often use calls to functions stored
in DLLs. Each time you call a Windows API function directly, you actually access a
DLL. Delphi allows programmers to use run-time DLLs also for the component
library. When you create a package, you basically create a DLL. Delphi can also gen-

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 669

erate plain dynamic link libraries. The New page of the Object Repository includes a
DLL skeleton generator, which generates very few lines of source code.

It is very simple to generate a DLL in the Delphi environment. However, some prob-
lems arise from the nature of DLLs. Writing a DLL in Windows is not always as
simple as it seems, because the DLL and the calling program have to agree on call-
ing conventions, parameters’ types, and other details. This chapter covers the basics
of DLL programming from the Delphi point of view, and it provides some simple
examples of what you can place in a Delphi DLL. While discussing the examples I’ll
also refer to other programming languages and environments, simply because one
of the key reasons for writing a procedure in a DLL is to be able to call it from a pro-
gram written in a different language.

The last part of the chapter will focus on a specific type of dynamic link library, the
Delphi package. These packages are not as easy to use as they first seem, and it took
Delphi programmers several months to figure out how to leverage them effectively.
Here I’m going to share with you some of these interesting tips and techniques.

The Role of DLLs in Windows

Before delving into the development of DLLs in Delphi and other programming lan-
guages, I’ll give you a short technical overview of DLLs in Windows, highlighting the
key elements. We will start by looking at dynamic linking, then see how Windows
uses DLLs, explore the differences between DLLs and executable files, and end with
some general rules to follow when writing DLLs.

What Is Dynamic Linking?

First of all, you need to understand the difference between static and dynamic link-
ing of functions or procedures. When a subroutine is not directly available in a
source file, the compiler adds the subroutine to an internal table, which includes all
external symbols. Of course, the compiler must have seen the declaration of the sub-
routine and know about its parameters and type, or it will issue an error.

After compilation of a normal—static—subroutine, the linker fetches the subrou-
tine’s compiled code from a Delphi compiled unit (or static library) and adds it to
the executable. The resulting EXE file includes all the code of the program and of
the units involved. The Delphi linker is smart enough to include only the minimum

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

670 - Chapter 14: Dynamic Link Libraries and Packages

amount of code of the units used by the program and to link only the functions and
methods that are actually used.

note A notable exception to this rule is the inclusion of virtual methods. The compiler cannot deter-
mine in advance which virtual methods the program is going to call, so it has to include them all.
For this reason, programs and libraries with too many virtual functions tend to generate larger
executable files. While developing the VCL, the Borland developers had to balance the flexibility
obtained with virtual functions against the reduced size of the executable files obtained by limit-
ing the virtual functions.

In the case of dynamic linking, which occurs when your code calls a DLL-based
function, the linker simply uses the information in the external declaration of the
subroutine to set up some tables in the executable file. When Windows loads the
executable file in memory, it first loads all the required DLLs, and then the program
starts. During this loading process, Windows fills the program’s internal tables with
the addresses of the functions of the DLLs in memory348. If for some reason the DLL
is not found, the program won’t even start, often complaining with nonsense error
messages (such as the famous “a device attached to your system is not
functioning”).

Each time the program calls an external function, it uses this internal table to for-
ward the call to the DLL code (which is now located in the program’s address
space). Note that this scheme does not involve two different applications. The DLL
becomes part of the running program and is loaded in the same address space. All
the parameter passing takes place on the stack of the application (since the DLL
doesn’t have a separate stack).

You can see a sketch of how the program calls statically or dynamically linked func-
tions in Figure 14.1. Notice that I haven’t yet discussed compilation of the DLL—
because I wanted to focus on the two different linking mechanisms first.

note The term dynamic linking, when referring to DLLs, has nothing to do with the late-binding fea-
ture of object-oriented programming languages. Virtual and dynamic methods in Object Pascal
have nothing to do with DLLs. Unfortunately, the same term is used for both kinds of procedures
and functions, which causes a lot of confusion. When I speak of dynamic linking in this chapter, I
am referring not to polymorphism but to DLL functions.

348 There is now an exception to this rule for functions maker for delayed binding. The issue is
that with load time mapping, if you are using an older version of the library missing a function
(maybe because you are using an older version of Windows) the loader will stop with an error
due to the missing function. With delayed loading, the DLL is still required to load, but the
function mapping is done at the first invocation, causing an error but not preventing the pro-
gram to run.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 671

There is another, less common approach to using DLLs, which is even more
dynamic than the one we have just discussed. In fact, at run time, you can load a
DLL in memory, search for a function (provided you know its name), and call the
function by name. This approach requires more complex code and is generally
slower. On the positive side, you don’t need to have the DLL available to start the
program. We will use this approach in the DynaCall example later in the chapter.

Figure 14.1: Static
and dynamic linking in
Windows. Graphic
from the original book.

What Are DLLs For?

Now that you have a general idea of how DLLs work, we can focus on the reasons for
using them in Windows:

· If different programs use the same DLL, the DLL is loaded in memory only once,
thus saving system memory. DLLs are mapped into the private address space of
each process (each running application), but their code is loaded in memory only
once. The operating system will try to load the DLL at the same address in each
application’s address space, but if that address is not available in a particular
application’s virtual address space, the DLL code image for that process will have
to be relocated. Note that the relocation happens on a per-process basis, not sys-
tem-wide.

· You can provide a different version of a DLL, replacing the current one. If the
subroutines in the DLL have the same parameters, you can run the program with
the new version of the DLL without having to recompile it. If the DLL has new

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

672 - Chapter 14: Dynamic Link Libraries and Packages

subroutines, it doesn’t matter at all. Problems might arise only if a routine in the
older version of the DLL is missing in the new one.

Versions of DLL Parameters

The most recent Windows API functions often use as a single parameter the pointer to a data
structure, which includes the actual parameters. This approach allows the DLL creator to add
new parameters to the data structure, without affecting the existing code. Typically, in these
cases, the first parameter of the data structure holds its size, which is used to indicate the version
of the structure. This way, the DLL can determine which version of the data structure the
application refers to, simply by looking at this size/version parameter. This is a useful approach
to follow if you think the parameters of a function are likely to change in future versions of the
DLL.

For examples, you can look at the Windows API functions for the common dialog boxes (such as
GetOpenFileName or ChooseColor) in the help file, but many other new API functions use the
same approach.

These generic advantages apply in several cases. If you have a complex algorithm, or
some complex forms required by several applications, you can store them in a DLL.
This will let you reduce the executable’s size and save some memory when you run
several programs using those DLLs at the same time.

The second advantage is particularly applicable to complex applications. If you have
a very big program that requires frequent updates and bug fixes, dividing it into sev-
eral executable files and DLLs allows you to distribute only the changed portions
instead of one single large executable. This makes sense for Windows system
libraries in particular. If Borland (Inprise) releases a new version of the Database
Engine libraries or writes new SQL Links to access other SQL server databases, you
won’t need to recompile your application to take advantage of the changes.

Another common technique is to use DLLs to store nothing except resources. You
can build different versions of a DLL containing strings for different languages and
then change the language at run time, or you can prepare a library of icons and bit-
maps and then use them in different applications. The development of language-
specific versions of a program is particularly important, and Delphi 5 includes sup-
port for it through the Integrated Translation Environment (ITE), described in
Chapter 19349.

Another key advantage, as I already mentioned, is that DLLs are independent of the
programming language. Most Windows programming environments, including

349 This feature is now deprecated, as already mentioned.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 673

most macro languages in end-user applications, allow a programmer to call a sub-
routine stored in a DLL. This means you can build a DLL in Delphi and call it from
C++, Visual Basic, Excel, WordPerfect, and many other Windows applications.

Understanding System DLLs

The Windows system DLLs take advantage of all the key benefits of DLLs I’ve just
highlighted. For this reason, it is worth examining them. First of all, Windows has
many system DLLs. The three central portions of Windows—Kernel, User, and GDI
—are implemented using DLLs350.

In Windows 95 and 98, the three key system libraries are duplicated in 16-bit ver-
sions (KRNL386.EXE, USER.EXE, and GDI.EXE) and 32-bit versions (KERNEL32.DLL,
USER32.DLL, and GDI32.DLL). These two versions often call each other, in a process
called thunking. In Windows NT (and Windows 2000), the system libraries have
only 32-bit code. Other system DLLs are operating-system extensions, such as the
DLLs for common dialog boxes and controls, DDE, OLE, device drivers, fonts,
ActiveX controls, and many others.

In the case of Windows itself, using DLLs is extremely important. In fact, DLLs are
one of the key technical foundations of the Windows operating systems. Since each
application uses the system DLLs for anything from creating a window to producing
output, every program is linked to those DLLs. Let’s take a minute to look at why
you might have different versions of the same library.

First, consider device drivers. When you change your printer, you do not need to
rebuild your application or even buy a new version of the Windows GDI library,
which manages the printer output. You only need to provide a specific driver, which
is a DLL called by the GDI, to access your printer. Each printer type has its own
driver DLL, which makes the system extremely flexible.

From a different point of view, version handling is important for the system itself. If
you have an application compiled for Windows 3.1, you should be able to run it on
any Win32 platform. Each version of Windows has different system code (and
Win32 16-bit support actually corrects some Windows 3.1 quirks), but since each
new version contains the older API functions, the old code still works, even though
it cannot take advantage of the new API functions. However, old code can indeed
take advantage of new features when an existing function’s code changes. An obvi-
ous example is the user interface: If you build an application for Windows 3.1, you

350 These three fundamental DLLs are still a the core of Windows, despite the many enhance-
ments to the Windows API and architecture.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

674 - Chapter 14: Dynamic Link Libraries and Packages

can run it on Windows 95 and 98, and it will automatically have different user inter-
face elements. You have not recompiled your program; it used the features of the
new system libraries, which were linked dynamically to it.

The system DLLs are also used as system-information archives. For example, the
USER DLL maintains a list of all the active windows in the system, and the GDI DLL
holds the list of active pens, brushes, icons, bitmaps, and the like. The free memory
area of these two system DLLs is usually called “free system resources” and plays a
very important role in Windows351.

Differences between DLLs and EXEs

Now that you know the basic elements of dynamic linking and some of the reasons
to use the technique, we can focus on the difference between a normal executable
file (an EXE file) and a dynamic link library (a DLL file). For the most part, the
internal structure of an EXE file and a DLL file is the same. It is when a DLL is
loaded into memory that things change.

As I mentioned earlier, Windows loads the code of a DLL into memory only once.
The same happens with an executable file, even if you run multiple copies. In both
cases a mechanism for counting module usage ensures that the code of the DLL is
discarded when all programs using it terminate.

The key difference between programs and DLLs is that a DLL, even when loaded in
memory, is not a running program. It is only a collection of procedures and func-
tions that other programs can call. These procedures and functions use the stack of
the calling program (the calling thread, to be precise). So another key difference
between a program and a library is that a library doesn’t create its own stack—it
uses the stack of the program calling it. In Win32, because a DLL is loaded into the
application’s address space, any memory allocations of the DLL or any global data it
creates reside in the address space of the main process.

351 Moving towards a full 32-bit system first and a 64-bit operating system now has significantly
reduced the limitations of some of these system memory areas, but depleting them can still
negative affect performance.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 675

Rules for Delphi DLL Writers

What I’ve described so far can be summarized in some rules for DLL programmers.
A DLL function or procedure to be called by external programs must follow these
guidelines:

· It has to be listed in the DLL’s exports clause. This makes the routine visible to
the outside world.

· Exported functions should also be declared as stdcall, to use the standard
Win32 parameter-passing technique instead of the optimized register parame-
ter-passing technique (which is the default in Delphi).

· The types of the parameters of a DLL should be the default Windows types, at
least if you want to be able to use the DLL within other development environ-
ments. There are further rules for exporting strings, as we’ll see in the FirstDll
example.

· A DLL can use global data that won’t be shared by calling applications. Each time
an application loads a DLL, it stores the DLL’s global data in its own address
space, as we will see in the DllMem example.

Win16 and Win32 DLLs

Another important aspect of DLLs is that in Windows, DLLs come in two different
flavors352. There are Windows 3.1 (Win16) DLLs, and Windows NT, 95, or 98
(Win32) DLLs. Libraries written with the 16-bit version of Delphi are of the first
kind. Libraries compiled with 32-bit versions of Delphi are of the second kind.

Unfortunately, as I’ve already mentioned, 16-bit and 32-bit DLLs are not compati-
ble. For example, you cannot call a 16-bit DLL from a 32-bit Delphi program. This is
not a Delphi limitation but a general Windows problem. There is actually a solution:
You can use Microsoft’s thunk compiler to create the proper entry points for the dif-
ferent DLL type. This is what Windows 95 and 98 do to call 16-bit system libraries

352 While 16-bit support has now been removed, the system DLLs still come in two different
flavours, the 64-bit version Windows is now based on and the 32-bit version for compatibility
with 32-bit applications. What’s important, in the operating system and in your code, is that
an executable with a specific “bitness” can only directly loads DLLs with the same “bitness”.
That is true for packages you load in the Delphi IDE, for third party DLLs, for database client
drivers, and any other dynamically linked binary.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

676 - Chapter 14: Dynamic Link Libraries and Packages

from a 32-bit application or to call new 32-bit system libraries from old 16-bit appli-
cations.

However, using the thunk mechanism is quite complex and allows your 32-bit
applications to run only under Windows 95 and 98, but not under Windows NT. In
most cases, a solution to this problem is to create a 16-bit application that accesses
the 16-bit DLL, and then use one of the available techniques (memory-mapped files
or the WM_COPYDATA message) to let the 16-bit application share data with the 32-bit
version of your program. Thunking is also very slow to execute, because it requires
kernel mode switching.

Although parts of the core of Windows 98 are still made of 16-bit DLLs, this 16-bit
world is slowly fading away. For this reason calling 16-bit DLLs from your 32-bit
Delphi programs is less and less common, nowadays.

Using Existing DLLs

We have already used existing DLLs in a number of examples in the book, when
calling Windows API functions. As you might remember, all the API functions are
declared in the system Windows unit. Functions are declared in the interface por-
tion of the unit , as shown here:

function PlayMetaFile(DC: HDC; MF: HMETAFILE): BOOL; stdcall;
function PaintRgn(DC: HDC; RGN: HRGN): BOOL; stdcall;
function PolyPolygon(DC: HDC; var Points; var nPoints;
 p4: Integer): BOOL; stdcall;
function PtInRegion(RGN: HRGN; p2, p3: Integer): BOOL; stdcall;

Then, in the implementation portion, instead of providing each function’s code, the
unit refers to the external definition in a DLL:

const
 gdi32 = ‘gdi32.dll’;

function PlayMetaFile; external gdi32 name ‘PlayMetaFile’;
function PaintRgn; external gdi32 name ‘PaintRgn’;
function PolyPolygon; external gdi32 name ‘PolyPolygon’;
function PtInRegion; external gdi32 name ‘PtInRegion’;

note In Windows.PAS there is a heavy use of the {$EXTERNALSYM identifier} directive. This has
little to do with Delphi itself; it applies to C++Builder. This symbol prevents the corresponding
Pascal symbol from appearing in the C++ translated header file. This helps keep the Delphi and
C++ identifiers in sync, so that code can be shared between the two languages.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 677

The external definition of these functions refers to the name of the DLL they use.
The name of the DLL must include the DLL extension, or the program will work
under Windows 95 and 98 but not under Windows NT. The other element is the
name of the DLL function itself. The name directive is not necessary if the Pascal
function (or procedure) name matches the DLL function name (which is case sensi-
tive).

To call a function that resides in a DLL, you can provide its declaration and external
definition, as shown above, or you can merge the two in a single declaration. Once
the function is properly defined, you can call it in the code of your Delphi applica-
tion just like any other function. There is nothing special about the calling syntax; it
is just a normal function or procedure call.

As an example, I’ve written a very simple DLL in C++, with some trivial functions,
just to show you how to call DLLs from a Delphi application. I won’t explain the C++
code in detail (it is basically C code, anyway) but will focus instead on the calls
between the Delphi application and the C++ DLL. In Delphi programming it is com-
mon to use DLLs written in C or C++.

note With the release of Borland C++ Builder (the Delphi “clone” based on the C++ language), the pos-
sibilities of sharing code between C++ and Object Pascal applications have increased
exponentially. C++ Builder can directly read Pascal units and use Delphi components. What I’m
discussing here is a more generic and traditional approach.

Using a C++ DLL

Suppose you are given a DLL built in C or C++. You’ll generally have in your hands a
.DLL file (the compiled library itself), an .H file (the declaration of the functions
inside the library), and an .LIB file (another version of the list of the exported func-
tions for the C/C++ linker). This .LIB file is totally useless in Delphi, while the .DLL
file is used as is, and the .H file has to be translated into a Pascal unit with the corre-
sponding declarations.

In the following listing, you can see the declaration of the C++ functions I’ve used to
build the CppDll library. The complete source code and the compiled version of the
C++ DLL and of the source code of the Delphi application using it are in the CppDll
directory among the folders you’ve downloaded. You should be able to compile this
code with any C++ compiler; I’ve tested it only with Borland compilers (Borland C+
+ 5 and C++ Builder 3 and 4). Here are the C++ declarations of the functions:

extern “C” __declspec(dllexport)
int WINAPI Double (int n);

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

678 - Chapter 14: Dynamic Link Libraries and Packages

extern “C” __declspec(dllexport)
int WINAPI Triple (int n);
__declspec(dllexport)
int WINAPI Add (int a, int b);

The three functions perform some basic calculations on the parameters and return
the result. Notice that all the functions are defined with the WINAPI modifier, which
sets the proper parameter-calling convention; and they are preceded by the
__declspec(dllexport) declaration, which makes the functions available to the
outside world.

Two of these C++ functions also use the C naming convention (indicated by the
extern “C” statement), but the third one, Add, doesn’t. This affects the way we call
these functions in Delphi. In fact, the internal names of the three functions corre-
spond to their names in the C++ source code file, except for the Add function. Since
we didn’t use the extern “C” clause for this function, the C++ compiler used name
mangling. This is a technique used to include information about the number and
type of parameters in the function name, which the C++ language requires in order
to implement function overloading. The result when using the Borland C++ com-
piler is a funny function name: @Add$qqsii. This is actually the name we have to use
in our Delphi example to call the Add DLL function (which explains why you’ll gen-
erally avoid C++ name mangling in exported functions, and why you’ll generally
declare them all as extern “C”). The following are the declarations of the three func-
tions in the Delphi CallCpp example:

function Add (A, B: Integer): Integer;
 stdcall; external ‘CPPDLL.DLL’ name ‘@Add$qqsii’;
function Double (N: Integer): Integer;
 stdcall; external ‘CPPDLL.DLL’ name ‘Double’;
function Triple (N: Integer): Integer;
 stdcall; external ‘CPPDLL.DLL’;

As you can see, you can either provide or omit an alias for an external function. I’ve
provided one for the first function (there was no alternative, because the exported
DLL function name @Add$qqsii is not a valid Pascal identifier) and for the second,
although in the second case it was unnecessary. If the two names match, in fact, you
can omit the name directive, as I did for the third function above.

Remember to add the stdcall directive to each definition, so that the caller module
(the application) and the module being called (the DLL) use the same parameter-
passing convention. If you fail to do so, you will get random values passed as param-
eters, a bug that is very hard to trace.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 679

note When you have to convert a large C/C++ header file to the corresponding Pascal declarations,
instead of doing a manual conversion you can use a third-party tool to partially automate the
process. One of these tools is HeadConv, written by Bob Swart. You’ll find a copy on his Web site,
http://www.drbob42.com.353

If you are not sure of the actual names of the functions exported by the DLL, you
can simply select the DLL file in the Windows Explorer, right-click on it, and choose
the QuickView command354. The viewer that appears lists some of the low-level
technical information available for each executable file. What we are interested in
right now is the Export Table section, as shown in Figure 14.2.

Notice that each of the three functions has a name and an index number (indicated
as Ordinal). This index number was generally used for binding DLL functions in 16-
bit Windows. In Win32, Microsoft suggests that you bind DLL functions by name.

Figure 14.2:
Windows QuickView
lets you explore a DLL
or an EXE file. Here is
the Export Table of the
file CPPDLL.DLL.
Image from the
original book – notice
that this Windows tool
doesn’t exist any more.

353 This tool is still around, but a bit old… There several other tools for mapping header functions
to Pascal. Once I can recommend is Chet, https://github.com/neslib/Chet.

354 I don’t think this tool (or something similar) is available today as part of the core Windows op-
erating system. Third party utilities exist, including Delphi TDump32, covered below.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://github.com/neslib/Chet

680 - Chapter 14: Dynamic Link Libraries and Packages

As an alternative to QuickView you can use the TDump32 command-line program
that comes with Delphi, which will give you even more details about the internal
structure of the executable file. Note that QuickView and TDump32 can be used for
both executable files and DLLs.

To use this C++ DLL I’ve built a Delphi example, named CallCpp. Its simple form
has three buttons to call each function of the DLL, two SpinEdit components for the
parameters, and a read-only edit box to show the result of the sum. If you click the
first button, the value in the corresponding SpinEdit component is doubled:

procedure TForm1.BtnDoubleClick(Sender: TObject);
begin
 SpinEdit1.Value := Double (SpinEdit1.Value);
end;

The code for the Triple button is very similar. When you click on the third button,
Add, the program adds the values of the two SpinEdit components by calling the
third function of the DLL, and it displays them in the edit box. Figure 14.3 shows an
example of the output after each button has been pressed once.

Figure 14.3: The
output of the CallCpp
example when you
have pressed each of
the buttons. Image
from the original book.

Here is the code of the OnClick event handler for the third button:

procedure TForm1.BtnAddClick(Sender: TObject);
begin
 Edit1.Text := IntToStr (Add (
 SpinEdit1.Value, SpinEdit2.Value));
end;

To run this application, you should have the DLL in the same directory as the
project, in one of the directories on the path, or in the Windows or System directo-
ries. If you move the executable file to a new directory and try to run it, you’ll get a
run-time error indicating that the DLL is missing, as you can see in Figure 14.4.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 681

Figure 14.4: The
error message
displayed when you
run the CallCpp
example and Windows
cannot find the
required DLL. Image
from the original book.

Creating a DLL in Delphi

Besides using DLLs written in other environments, you can use Delphi to build
DLLs that can be used by Delphi programs or with any other development tool that
supports DLLs. Building DLLs in Delphi is so easy that you might overuse this fea-
ture. In general, I suggest you try to build components and packages instead of plain
DLLs. Packages can contain components but also classes in general, allowing you to
write object-oriented code and to reuse it effectively. Placing a collection of func-
tions in a DLL is a more traditional approach to programming, even if the functions
can encapsulate forms and objects.

note In other words, DLLs by default do not fully support objects, but you can provide your own wrap-
ping, use Delphi packages, or use Microsoft’s COM technology (described in the next chapter).

When writing a DLL you generally export subroutines, functions, and procedures. If
you want to export classes and methods from a Delphi DLL you should either build
a package (as described later in this chapter) if you need to use the library only from
Delphi programs or built a COM server (or ActiveX library), as we’ll see in the next
chapter.

In general, when you build complex Delphi applications, you use object-oriented
programming techniques to define your application’s structure. If you later divide
the application’s code among traditional DLLs, you lose this advantage.

It is useful to build libraries of small functions if the same functions have to be
called from different environments. In particular, you can write DLLs in a compiled
language like Object Pascal, and call them from interpreted environments. Of
course, whenever possible, it’s best to build the whole program in Delphi.

As I’ve already mentioned, building a DLL is also useful when a portion of the code
of a program is subject to frequent changes. In this case you can frequently replace

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

682 - Chapter 14: Dynamic Link Libraries and Packages

the DLL, keeping the rest of the program unchanged. Similarly, when you need to
write a program that provides different features to different groups of users, you can
distribute different versions of a DLL to different users.

A First Simple Delphi DLL

As a starting point in exploring the development of DLLs in Delphi, I’ll show you a
very simple library built in Delphi. The primary focus of this example will be to
show the syntax you use to define a DLL in Delphi, but it will also illustrate a few
considerations involved in passing string parameters. To start, select the File New
command and choose the DLL option in the New page of the Object Repository.
This creates a very simple source file that starts with the following definition:

library Project1;

The library statement indicates that we want to build a DLL instead of an exe-
cutable file. Now we can add routines to the library and list them in an exports
statement:

function Triple (N: Integer): Integer; stdcall;
begin
 Result := N * 3;
end;

function Double (N: Integer): Integer; stdcall;
begin
 Result := N * 2;
end;

exports
 Triple, Double;

In this basic version of the DLL, we don’t need a uses statement; but in general, the
main project file includes only the exports statement, while the function declara-
tions are placed in a separate unit. In the final source code of the FirstDLL example
(the version you’ve downloaded), I’ve actually changed the code slightly from the
version listed above, to show a message each time a function is called. There are two
ways to accomplish this. The simplest is to change the code as follows:

uses
 Dialogs;

function Triple (N: Integer): Integer; stdcall;
begin
 ShowMessage (‘Triple function called’);

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 683

 Result := N * 3;
end;

This code requires Delphi to link a lot of VCL code into the application. If you stati-
cally link the VCL into this DLL, the resulting size will be about 200KB. The reason
is that the ShowMessage function displays a VCL form that contains VCL controls
and uses VCL graphics classes; and those indirectly refer to things like the VCL
streaming system and the VCL application and screen objects. For this simple case,
a better alternative is to show the messages using direct API calls, so that the VCL
code is not required:

uses
 Windows;

function Triple (N: Integer): Integer; stdcall;
begin
 MessageBox (0, ‘Triple function called’,
 ‘First DLL’, mb_OK);
 Result := N * 3;
end;

This change in code brings the size of the application down to only about 20 KB. In
the downloaded source code of the FirstDLL example, you’ll find both versions of
the library, one of which is commented. Changing the commented section you can
easily alter the code and do your own experiments.

note This huge difference in size underlines the fact that you should not overuse DLLs in Delphi, to
avoid compiling the code of the VCL in multiple executable files. Of course, you can reduce the
size of a Delphi DLL by using run-time packages, as detailed later in this chapter.

If you run a test program as the CallFrst example (described later) using the API-
based version of the DLL, its behavior won’t be correct. In fact, you can click the
buttons which call the DLL functions several times without first closing the message
boxes displayed by the DLL. This happens because the first parameter of the
MessageBox API call above is zero. Its value should instead be the handle of the pro-
gram’s main form or the application form. We’ll make this change, although for a
different reason, in a following example, FormDLL.

Overloaded Functions in Delphi DLLs

When you create a DLL in C++, overloaded functions (and generally all the func-
tions compiled with a C++ compiler) use name mangling to generate a different

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

684 - Chapter 14: Dynamic Link Libraries and Packages

name for each function, including the type of the parameters right in the name, as
we’ve seen in the CppDll example.

When you create a DLL in Delphi and use overloaded functions (that is, multiple
functions using the same name and marked with the overload directive), Delphi
allows you to export only one of the overloaded functions. It requires you to indicate
which one, in the exports clause, as indicated by this portion of the FirstDll code:

function Triple (C: Char): Integer; stdcall; overload;
begin
 ShowMessage (‘Triple (Char) function called’);
 Result := Ord (C) * 3;
end;

function Triple (N: Integer): Integer; stdcall; overload;
begin
 ShowMessage (‘Triple (Integer) function called’);
 Result := N * 3;
end;

exports
 Triple (N: Integer);

note The reverse is possible as well: You can import a series of similar functions from a DLL and define
them all as overloaded functions in the Pascal declaration. You can refer to the OpenGl.pas unit
for a series of examples of this technique.

Exporting Strings from a DLL

In general, functions in a DLL can use any type of parameter and return any type of
value. There are two exceptions to this rule:

· If you plan to call the DLL from other programming languages, you should prob-
ably try using Windows native data types instead of Delphi-specific types. For
example, to express color values you should use Integers or the Windows
ColorRef type instead of the Delphi native TColor type, doing the appropriate
conversions (as detailed in the FormDLL described in the next section). Other
Delphi types that for compatibility you should avoid using include objects, which
cannot be used by other languages at all, and Pascal strings, which can be
replaced by PChar strings. In other words, every Windows development environ-
ment must support the basic types of the API, and if you stick to them your DLL
will be usable with other development environments.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 685

· Even if you plan to use the DLL only from a Delphi application, you cannot pass
Delphi strings across the DLL boundary without taking some precautions. This is
because of the way Delphi manages strings in memory—allocating, reallocating,
and freeing them automatically. The solution to the problem is to include the
ShareMem system unit both in the DLL and in the program using it. This unit
must be included as the first unit of each of the projects.

In the FirstDLL example I’ve actually included both approaches: One function
receives and returns a Pascal string, and another one receives as parameter a PChar
pointer, which is then filled by the function itself. The first function is very simple:

function DoubleString (S: string; Separator: Char): string; stdcall;
begin
 Result := S + Separator + S;
end;

The second one is quite complex because PChar strings don’t have a simple + opera-
tor, and they are not directly compatible with characters; the separator must be
turned into a string before adding it. Here is the complete code; it uses input and
output PChar buffers, which are compatible with any Windows development envi-
ronment:

function DoublePChar (BufferIn, BufferOut: PChar;
 BufferOutLen: Cardinal; Separator: Char): LongBool; stdcall;
var
 SepStr: array [0..1] of Char;
begin
 // if the buffer is large enough
 if BufferOutLen > StrLen (BufferIn) * 2 + 2 then
 begin
 // copy the input buffer in the output buffer
 StrCopy (BufferOut, BufferIn);
 // build the separator string (value plus null terminator)
 SepStr [0] := Separator;
 SepStr [1] := #0;
 // append the separator
 StrCat (BufferOut, SepStr);
 // append the input buffer once more
 StrCat (BufferOut, BufferIn);
 Result := True;
 end
 else
 // not enough space
 Result := False;
end;

This second version of the code is certainly more complex, but the first one can be
used only from Delphi. Moreover, the first version requires us to include the Share-
Mem unit in the DLL (and in the programs using it) and to deploy the file

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

686 - Chapter 14: Dynamic Link Libraries and Packages

BorlndMM.DLL (the name stands for Borland Memory Manager) along with the
program and the specific library.

Calling the Delphi DLL

How can we use the library we’ve just built? We can call it from within another Del-
phi project or from other environments. As an example, I’ve built the CallFrst
project (stored in the FirstDLL directory).

To access the DLL functions we must declare them as external, as we’ve done with
the C++ DLL. This time, however, we can simply copy and paste the definition of
the functions from the source code of the Delphi DLL, adding the external clause,
as in:

function Double (N: Integer): Integer;
 stdcall; external ‘FIRSTDLL.DLL’;

This declaration is similar to those used to call the C++ DLL. This time, however, we
have no problems with function names. The source code of the example is actually
quite simple. Once they are redeclared as external, the functions of the DLL can
simply be used as if they were local functions. Here are two examples, with calls to
the string-related functions:

procedure TForm1.BtnDoubleStringClick(Sender: TObject);
begin
 // call the DLL function directly
 EditDouble.Text :=
 DoubleString (EditSource.Text, ';');
end;

procedure TForm1.BtnDoublePCharClick(Sender: TObject);
var
 Buffer: string;
begin
 // make the buffer large enough
 SetLength (Buffer, 1000);
 // call the DLL function
 if DoublePChar (PChar (EditSource.Text),
 PChar (Buffer), 1000, '/') then
 EditDouble.Text := Buffer;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 687

Figure 14.5: The
output of the CallFrst
example, which calls
the DLL we’ve built in
Delphi. Image from the
original book.

A Delphi Form in a DLL

Besides writing simple DLLs with functions and procedures, you can place a com-
plete form built with Delphi into a DLL. This can be a dialog box or any other kind
of form, and it can be used not only by other Delphi programs, but also by other
development environments or macro languages.

To build the FormDLL example, I’ve built a simple form with three scrollbars you
can use to select a color and two preview areas for the resulting pen and brush col-
ors. The form also contains two bitmap buttons and has its BorderStyle property
set to bsDialog.

Aside from developing a form as usual, I’ve only added two new subroutines to the
unit that defines the form. In the interface portion of the unit I’ve added the fol-
lowing declarations:

function GetColor (Col: LongInt): LongInt; stdcall;
procedure ShowColor (Col: LongInt;
 FormHandle: THandle; MsgBack: Integer); stdcall;

In both subroutines the Col parameter is the initial color. Notice that I’ve passed it
as a long integer, which corresponds to the Windows COLORREF data type. As men-
tioned before, using the TColor Delphi type might have caused problems with non-
Delphi applications: Even though a TColor is very similar to a COLORREF, these types
don’t always correspond. When you write a DLL, I suggest you use only the Win-
dows native data types (unless you are sure only Delphi programs will use the DLL).

The GetColor function returns the final color (which is the same as the initial color
if the user clicks on the Cancel button). The value is returned immediately because

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

688 - Chapter 14: Dynamic Link Libraries and Packages

the function shows the form as a modal form. The ShowColor procedure, instead,
simply displays the form (as a modeless form) and returns immediately. For this
reason the form needs a way to communicate back to the calling form. In this case
I’ve decided to pass as parameters the handle for the window of the calling form and
the ID of the message to use to communicate back with it.

In the next sections you’ll see how to write the code of the two subroutines; and
you’ll also see what problems arise, particularly when you place a modeless form in
a DLL. Of course, I’ll also provide a few alternative fixes.

Using the DLL Form as Modal

When you want to place a Delphi component (such as a form) in a DLL, you can
only provide functions that create, initialize, or run the component or access its
properties and data. The simplest approach is to have a single function that sets the
data, runs the component, and returns the result, as in the modal version. Here is
the code of the function, added to the implementation portion of the unit that
defines the form:

function GetColor (Col: LongInt): LongInt; stdcall;
var
 FormScroll: TFormScroll;
begin
 // default value
 Result := Col;
 try
 FormScroll := TFormScroll.Create (Application);
 try
 // initialize the data
 FormScroll.SelectedColor := Col;
 // show the form
 if FormScroll.ShowModal = mrOK then
 Result := FormScroll.SelectedColor;
 finally
 FormScroll.Free;
 end;
 except
 on E: Exception do
 MessageDlg (‘Error in FormDLL: ‘ +
 E.Message, mtError, [mbOK], 0);
 end;
end;

An important element is the structure of the GetColor function. The code creates
the form at the beginning, sets some initial values, and then runs the form, eventu-

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 689

ally extracting the final data. What makes this different from the code we generally
write in a program is the use of exception handling:

· A try-except block protects the whole function, so that any exception generated
by the function will be trapped, displaying a proper message. The reason for han-
dling every possible exception is that the calling application might be written in
any language, in particular one that doesn’t know how to handle exceptions.
Even when the caller is a Delphi program, it is sometimes useful to use the same
protective approach.

· A try-finally block protects the operations on the form, ensuring that the form
object will be properly destroyed, even when an exception is raised. This kind of
code is often used within Delphi programs, as well as in exportable DLLs.

By checking the return value of the ShowModal method, the program determines the
result of the function. I’ve set the default value before entering the try block to
ensure it will always be executed (and also to avoid the compiler warning indicating
that the result of the function might be undefined).

Now that we have updated the form and written the code of the unit, we can move
to the project source code, which (temporarily) becomes the following:

library FormDLL;

uses
 ScrollF in ‘SCROLLF.PAS’ {FormScroll};

exports
 GetColor;
end.

We can now use a Delphi program to test the form we have placed in the DLL. The
UseCol example is in the same directory as the previous DLL, FormDLL (and both
projects are part of the FormDLL project group, the file FormDll.BPG). The form of
the UseCol example contains a button to call the GetColor function of the DLL.
Here is the definition of this function and the code of the Button1Click method:

function GetColor (Col: LongInt): LongInt;
 stdcall; external ‘FormDLL.DLL’;

procedure TForm1.Button1Click(Sender: TObject);
var
 Col: LongInt;
begin
 Col := ColorToRGB (Color);
 Color := GetColor (Col)
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

690 - Chapter 14: Dynamic Link Libraries and Packages

Running this program (see Figure 14.6) displays the dialog box, using the current
background color of the main form. If you change the color and click OK, the pro-
gram uses the new color as the background color for the main form.

Figure 14.6: The
execution of the UseCol
test program when it
calls the dialog box we
have placed in the
FormDLL. Image from
the original book.

If you execute this as a modal dialog box, almost all the features of the form work
fine. You can see the fly-by hints, the flat speed buttons in the toolbar behave prop-
erly, and you get no extra entry in the task bar. This might be obvious, but is not
what will happen when we use the form inside the DLL as a modeless form. Even
with modal forms, however, I recommend synchronizing the application objects of
the DLL and executable file, as described in the next section.

A Modeless Form in a DLL

The second subroutine of the FormDLL example uses a different approach. As men-
tioned, it receives three parameters: the color, the handle of the main form, and the
message number for notification when the color changes. These values are stored in
the private data of the form:

procedure ShowColor (Col: LongInt;
 FormHandle: THandle; MsgBack: Integer); stdcall;
var
 FormScroll: TFormScroll;
begin
 FormScroll := TFormScroll.Create (Application);
 try
 // initialize the data

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 691

 FormScroll.FormHandle := FormHandle;
 FormScroll.MsgBack := MsgBack;
 FormScroll.SelectedColor := Col;
 // show the form
 FormScroll.Show;
 except
 on E: Exception do
 begin
 MessageDlg (‘Error in FormDLL: ‘ +
 E.Message, mtError, [mbOK], 0);
 FormScroll.Free;
 end;
 end;
end;

When the form is activated, it checks to see if it was created as a modal form (simply
testing the FormHandle field). In this case, the form changes the caption and the
behavior of the OK button, as well as the overall style of the Cancel button (you can
see the modified buttons in Figure 14.7):

procedure TFormScroll.FormActivate(Sender: TObject);
begin
 // change buttons for modeless form
 if FormHandle <> 0 then
 begin
 BitBtn1.Caption := ‘Apply’;
 BitBtn1.OnClick := ApplyClick;
 BitBtn2.Kind := bkClose;
 end;
end;

Figure 14.7: When
the DLL-based form is
used as a modeless
form, its buttons are
slightly modified (as
you can see comparing
this image with that of
Figure 14.6). Image
from the original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

692 - Chapter 14: Dynamic Link Libraries and Packages

The ApplyClick method I’ve manually added to the form simply sends the notifica-
tion message to the main form, using one of the parameters to send back the
selected color:

procedure TFormScroll.ApplyClick(Sender: TObject);
begin
 // notify to the main form
 SendMessage (FormHandle, MsgBack, SelectedColor, 0);
end;

Finally, the form’s OnClose event destroys the form object:

procedure TFormScroll.FormClose(Sender: TObject;
 var Action: TCloseAction);
begin
 // used by the modeless form
 Action := caFree;
end;

Now let us move back to the demo program. The second button of the UseForm
example’s form has the following code:

procedure TForm1.BtnSelectClick(Sender: TObject);
var
 Col: LongInt;
begin
 Col := ColorToRGB (Color);
 ShowColor (Col, Handle, wm_user);
end;

The form also has a message-handling method, connected with the wm_user mes-
sage. This method reads the value of the parameter corresponding to the color and
sets it:

procedure TForm1.UserMessage(var Msg: TMessage);
begin
 Color := Msg.WParam;
end;

Running this program produces some strange effects. Basically, the modeless form
and the main form are not synchronized, so they both show up in the Windows
Taskbar; and when you minimize the main form, the other one remains on the
screen. The two forms behave as if they were part of separate applications, and the
reason is that two Delphi programs (the DLL and the EXE) have two separate global
Application objects, and only the Application object of the executable file has an
associated window.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 693

To test this situation I’ve added a button to both the main form and the DLL form,
showing the numeric value of the Application object’s handle. Here is the code for
one of them:

procedure TFormScroll.spApplicationClick(Sender: TObject);
begin
 ShowMessage (‘Application Handle: ‘ +
 IntToStr (Application.Handle));
end;

For the form in the DLL you’ll invariably get the value 0, while for the form in the
executable you get a numeric value determined each time by Windows.

To fix the problem we can add to the DLL an initialization function that passes the
handle of the application window to the library. In practice, we copy the Handle of
the Application object of the executable to the same property of the Application
object of the DLL. This is enough to synchronize the two Application objects and
make the two forms behave as in a simple Delphi program. Here is the code of the
function in the DLL:

procedure SyncApp (AppHandle: THandle); stdcall;
begin
 Application.Handle := AppHandle;
end;

And here is the call to it in the executable file:

procedure TForm1.BtnSyncClick(Sender: TObject);
begin
 SyncApp (Application.Handle);
 BtnSync.Enabled := False;
end;

note Assigning the handle of the application object of the DLL is not a workaround for a bug, but a
documented operation required by VCL. The VCL Application object supports assignment to
its Handle property (contrary to most other Handle properties of the VCL) specifically to allow
programmers to tie DLL-based forms into the environment of a host application.

I’ve connected this code to a button, instead of executing it automatically at startup,
to let you test the behavior in the two different cases. Before you press the Sync App
button, the secondary modeless form behaves oddly. If you close it, synchronize the
applications, and then create another instance of the modeless form, it will behave
almost correctly. The only visible problem is that the flat speed buttons of the mode-
less form won’t be highlighted when the mouse moves over them. We’ll see how to
fix this problem using run-time packages at the end of the chapter.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

694 - Chapter 14: Dynamic Link Libraries and Packages

note Technically this behavior of the speed buttons depends on the fact that the controls in the DLL
form don’t receive the cm_MouseEnter and cm_MouseLeave messages, because the DLL’s
Application.Idle method is never called. The DLL’s Application object, in fact, is not run-
ning the application’s message loop. You can activate it by exporting from the DLL a function that
calls the internal Application.Idle routine, and call that function from the host application
when its message loop goes idle.As I mentioned, however, all these problems and few others can
be solved by using run-time packages.

Calling a Delphi DLL from Visual Basic for
Applications

We can also display this color dialog box from other programming languages. Call-
ing this DLL from C or C++ is easy. To link the application, you need to generate an
import library (using the IMPLIB command line utility) and add the resulting LIB file
to the project. Since I’ve already used a C++ compiler in this chapter, this time I will
write a similar example using Microsoft Word for Windows and Visual Basic for
Applications instead.

To start, open Microsoft Word. Then open its Macro dialog box (with the Tools
Macro menu item or a similar command, depending on your version of Word), type
a new macro name, such as “DelphiColor,” and click the Create button. You can
now write the BASIC code, which declares the function of our DLL and calls it. The
BASIC macro uses the result of the DLL function in two ways. By calling Insert, it
adds to the current document a description of the color with the amount of Red,
Green, and Blue; and by calling Print it displays the numeric value in the status
bar:

Declare Function GetColor Lib “FormDLL”(Col As Long) As Long
Sub MAIN
 NewColor = GetColor(0)
 Print “The code of the color is “ + Str$(NewColor)
 Insert “Red:” + Str$(NewColor Mod 256) + Chr$(13)
 Insert “Green:” + Str$(Int(NewColor / 256) Mod 256) + Chr$(13)
 Insert “Blue:” + Str$(Int(NewColor / (256 * 256))) + Chr$(13)
End Sub

Unfortunately, there is no easy way to use RGB colors in Word, since Word’s color
schemes are based on fixed color codes. Here is an example of the output of this
macro:

Red: 141
Green: 109
Blue: 179

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 695

The nice thing is that I produced the three lines of text above by running the macro
while I was writing the text of this chapter. You can find the text of this macro in the
file WORDCALL.TXT, in the directory containing this DLL. If you want to test it,
remember to first copy the DLL file into one of the directories of the path or into the
Windows system directory. Of course, you need Microsoft Word to run this pro-
gram. However, other Microsoft Office applications (and the macro languages of
other office programs) probably require very similar code.

note A better way to integrate Delphi code with Office applications is to use OLE Automation, instead
of writing custom DLLs and calling them from the macro language. We’ll see examples of OLE
Automation in Chapter 16.

Calling a DLL Function at Run Time

Now that we know how to access resources in a DLL at run time, we might want to
use this approach to access a function. I’ve built a very simple example showing this
and made it quite flexible. We will look at the example first, and then consider some
general cases in which this approach might be useful. The example is named
DynaCall and uses the FirstDLL library we built earlier in this chapter (to make the
program work, I’ve copied the DLL into the same folder as the DynaCall example).
Instead of declaring the Double and Triple functions and using them directly, this
example obtains the same effect with somewhat more complex code. The advantage,
however, is that if new functions are added to the DLL, we won’t have to revise the
program’s source code and recompile it to access those new functions.

The form displayed by this example simply contains a button, an edit box, and a
SpinEdit component. Clicking the button executes the only method of the program.
First, the method calls the LoadLibrary function. Then, if the handle of the library
instance is valid, the program calls the GetProcAddress API function. This function
searches the DLL’s exports table, looking for the name of the function passed as a
parameter. If GetProcAddress finds a match, it returns a pointer to the requested
procedure. Now we can simply cast this function pointer to the proper data type and
call it. The output of the program and the effect of this call are visible in Figure 14.8.
Here is the (quite complex) code:

type
 TIntFunction = function (I: Integer): Integer; stdcall;

const
 DllName = ‘Firstdll.dll’;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

696 - Chapter 14: Dynamic Link Libraries and Packages

procedure TForm1.Button1Click(Sender: TObject);
var
 HInst: THandle;
 FPointer: TFarProc;
 MyFunct: TIntFunction;
begin
 HInst := LoadLibrary (DllName);
 if HInst > 0 then
 try
 FPointer := GetProcAddress (HInst,
 PChar (Edit1.Text));
 if FPointer <> nil then
 begin
 MyFunct := TIntFunction (FPointer);
 SpinEdit1.Value := MyFunct (SpinEdit1.Value);
 end
 else
 ShowMessage (Edit1.Text + ‘ DLL function not found’);
 finally
 FreeLibrary (HInst);
 end
 else
 ShowMessage (DllName + ‘ library not found’);
end;

Figure 14.8: The
output of the DynaCall
program. Image from
the original book.

How do you call a procedure in Delphi, once you have a pointer to it? One solution
is to convert the pointer to a procedural type and then call the procedure using the
procedural-type variable, as in the listing above. Notice that the procedural type you
define must be compatible with the definition of the procedure in the DLL. This is
the Achilles’ heel of this method—there is no check of the parameter types.

What is the advantage of this approach? In theory, you can use it to access any func-
tion of any DLL at any time. In practice, it is useful when you have different DLLs
with compatible functions or a single DLL with several compatible functions, as in
our case. What we can do is to call the Double and Triple methods simply by enter-
ing their names in the edit box. Now, if someone gives us a DLL with a new function

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 697

receiving an Integer as parameter and returning an Integer, we can call it simply by
entering its name in the edit box. We don’t even need to recompile the application.

With this code, the compiler and the linker ignore the existence of the DLL. When
the program is loaded, the DLL is not loaded immediately. We might make the pro-
gram even more flexible and let the user enter the name of the DLL to use. In some
cases, this is a great advantage. A program may switch DLLs at run time, something
the direct approach does not allow. Note that this approach to loading DLL func-
tions is common in macro languages and is used by many visual programming
environments. Also, the code of the Word macro we saw earlier in this chapter uses
this approach to load the DLL and to call the external function. Well, you don’t want
to recompile Word, do you?

Only a system based on a compiler and a linker, such as Delphi, can use the direct
approach, which is generally more reliable and also a little bit faster. I think the
indirect loading approach of the DynaCall example is useful only in special cases,
but it can be extremely powerful.

A DLL in Memory: Code and Data

We can use this technique, based on the GetProcAddress API function, to test which
memory address of the current process a function has been mapped to, with the fol-
lowing code:

procedure TForm1.Button3Click(Sender: TObject);
var
 HDLLInst: THandle;
begin
 HDLLInst := LoadLibrary (‘dllmem’);
 Label1.Caption := Format (‘Address: %p’, [
 GetProcAddress (HDLLInst, ‘SetData’)]);
 FreeLibrary (HDLLInst);
end;

This code displays in a label the memory address of the function, within the address
space of the calling application: If you run two programs using this code they’ll gen-
erally both show the same address. This demonstrates that the code is loaded only
once at a common memory address. Even if the code is loaded only once, the mem-
ory address will be different in case the DLL had to be relocated in one of the
processes but not the other, or each process relocated the DLL to a different base
address.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

698 - Chapter 14: Dynamic Link Libraries and Packages

If the code of the DLL is loaded only once, what about the global data? Basically
each copy of the DLL has its own copy of the data, in the address space of the calling
application. However, it is indeed possible to share global data between applications
using a DLL. The most common technique for sharing data is to use memory-
mapped files. I’ll use this technique for a DLL, but it can be used also to share data
directly among applications.

This example is called DllMem and uses a project group with the same name, as in
past examples of this chapter. The DllMem project group includes the DllMem
project (the DLL itself) and the UseMem project (the demo application).

The DLL code has a simple project file, which exports four subroutines:

library dllmem;

uses
 SysUtils,
 DllMemU in ‘DllMemU.pas’;

exports
 SetData, GetData,
 GetShareData, SetShareData;

end.

The actual code is in the secondary unit (DllMemU.pas), which has the code of the
four routines that read or write two global memory locations. These hold an integer
and a pointer to an integer. Here are the variable declarations and the two set rou-
tines:

var
 PlainData: Integer = 0; // not shared
 ShareData: ^Integer; // shared

procedure SetData (I: Integer); stdcall;
begin
 PlainData := I;
end;

procedure SetShareData (I: Integer); stdcall;
begin
 ShareData^ := I;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 699

Sharing Data with Memory-Mapped Files

For the data that isn’t shared, there isn’t anything else to do. To access the shared
data, however, the DLL has to create a memory-mapped file and then get a pointer
to this memory area. These two operations require two Windows API calls:

· CreateFileMapping requires as parameters the filename (or $FFFFFFFF to use a
virtual file in memory), some security and protection attributes, the size of the
data, and an internal name (which must the same to share the mapped file from
multiple calling applications).

· MapViewOfFile requires as parameters the handle of the memory mapped file,
some attributes and offsets, and the size of the data (again).

Here is the source code of the initialization section, executed every time the DLL
is loaded into a new process space (that is, once for each application that uses the
DLL):

var
 hMapFile: THandle;

const
 VirtualFileName = ‘ShareDllData’;
 DataSize = sizeof (Integer);

initialization
 // create memory mapped file
 hMapFile := CreateFileMapping ($FFFFFFFF, nil,
 Page_ReadWrite, 0, DataSize, VirtualFileName);
 if hMapFile = 0 then
 raise Exception.Create (‘Error creating memory mapped file’);

 // get the pointer to the actual data
 ShareData := MapViewOfFile (
 hMapFile, File_Map_Write, 0, 0, DataSize);

When the application terminates and the DLL is released, it has to free the pointer
to the mapped file and the file mapping itself:

finalization
 UnmapViewOfFile (ShareData);
 CloseHandle (hMapFile);

The code of the program using this DLL, UseMem, is very simple. The form of this
application has four edit boxes (two with an UpDown control connected), five but-
tons, and a label. The first button saves the value of the first edit box in the DLL
data, getting the value from the connected UpDown control:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

700 - Chapter 14: Dynamic Link Libraries and Packages

procedure TForm1.Button1Click(Sender: TObject);
begin
 SetData (UpDown1.Position);
end;

If you press the second button, the program copies the DLL data to the second edit
box:

procedure TForm1.Button2Click(Sender: TObject);
begin
 Edit2.Text := IntToStr(GetData);
end;

The third button is used to display the memory address of a function, with the
source code shown at the beginning of this section, and the last two buttons have
basically the same code as the first two, but they call the SetShareData procedure
and GetShareData function.

If you run two copies of this program, you can see that each copy has its own value
for the plain global data of the DLL, while the value of the shared data is common.
Set different values in the two programs and then get them in both, and you’ll see
what I mean. This situation is illustrated in Figure 14.9.

Figure 14.9: If you
run two copies of the
UseMem program,
you’ll see that the
global data in the
USEMEM .DLL is not
shared.

note Memory mapped files reserve a minimum of a 64KB range of virtual addresses and consume
physical memory in 4KB pages. The 4 byte Integer data in shared memory of the example is
rather expensive, especially if you use the same approach for sharing multiple values. If you need
to share several variables, you should place them all in a single shared memory area (accessing
the different variables using pointers or building record structure for all of them).

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 701

Using Delphi Packages

In Delphi, component packages are an important type of DLL. Packages allow you to
bundle a group of components and then link the components either statically
(adding their compiled code to the executable file of your application) or dynami-
cally (keeping the component code in a DLL, the run-time package that you’ll
distribute along with your program). We saw in the last chapter how to build a pack-
age. Now I want to underline advantages and disadvantages of the two forms of
linking for a package. There are many elements to keep in mind:

· Using a package as a DLL makes the executable files much smaller.

· Using a statically linked package allows you to distribute only part of its code.
Generally the size of the executable file of an application plus the size of the
required package DLLs that it requires is much bigger than the size of the stati-
cally linked program. The linker includes only the code actually used by the
program, whereas a package must link in all the functions and classes declared in
the interface sections of all the units contained in the package.

· If you distribute several Delphi applications based on the same packages, you
might end up distributing less code, because the run-time packages are shared.
In other words, once the users of your application have the standard Delphi run-
time packages, you can ship them very small programs. This even allows you to
distribute the programs through the Internet.

· If you run several Delphi applications based on the same packages, you can save
some memory space at run time: The code of the run-time packages is loaded in
memory only once between the multiple Delphi applications.

· Don’t worry too much about distributing a large executable file. Keep in mind
that when you make minor changes to a program, you can use any of various
tools to create a patch file, so that you distribute only a file containing the differ-
ences, not a complete copy of the files.

Packages for Versioning of Applications

A very important and often misunderstood element, however, is the distribution of
updated packages. When you update a DLL, you can ship the new version, and the
executable programs requiring this DLL will generally still work (unless you’ve
removed existing exported functions or changed some of their parameters).

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

702 - Chapter 14: Dynamic Link Libraries and Packages

When you distribute a Delphi package, instead, if you update the package changing
anything in the interface portion of any unit exported by the package, you’ll need to
recompile all the applications which use the package. You can only modify code in
the implementation section of the units of the package to avoid recompiling the exe-
cutable files using it.

The DCU files in Delphi have a version tag based on a checksum computed from the
interface portion of the unit. When you change the interface portion of a unit, every
other unit based on it should be recompiled. The compiler compares the checksum
of the unit of previous compilations with the new checksum, and decides whether
the dependent unit has to be recompiled. This is why you have to recompile each
unit when you get a new version of Delphi, which has modified system units.

A package is a collection of units. In Delphi 3 a checksum of the package, obtained
from the checksum of the units it contains and the checksum of the packages it
requires, was added as an extra entry function to the package library, so that the
executable based on an older version of the package would fail at start-up.

Delphi 4 and 5 have relaxed the runtime constraints of the package. The design time
constraints on DCU files still remain identical, though. The checksum of the pack-
ages is not checked anymore, and so you can directly modify the units that are part
of a package and deploy a new version of the package to be used with the existing
executable file. Since methods are referenced by name, you cannot remove any
existing method. You cannot even change its parameters, because of name mangling
techniques.

Removing a method referenced from the calling program will stop the program dur-
ing the loading process. However, if you do other changes, the program might fail
unexpectedly during its execution. For example, if you replace a component with a
similar one, the calling program might still able to access the component in that
memory location, although it is now a different component!

If you decide to follow this treacherous road of changing the interface of units in a
package without recompiling all the programs using it, you should try to limit your
changes at most. When you add new properties or non-virtual methods to the form,
you should be able to maintain full compatibility with existing programs already
using the package. Also adding fields and virtual methods might affect the internal
structure of the class, leading to problems with existing programs which expect a
different class data and VMT layout. Of course, this applies to the binary compati-
bility between the EXE and the BPL. Any change in the interface of a unit of the
package, in fact, breaks the DCU/DCP compatibility of any units that refer to yor
package.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 703

warn
ing

Here I’m referring to the distribution of compiled programs divided between EXE and packages,
not to the distribution of components to other Delphi developers. In this latter case the versioning
rules are more stringent, and you must take extra care in package versioning.

Having said this, I recommend never change the interface of units exported by your
packages. To accomplish this you can add to your package a unit with form creation
functions (as in the DLL with forms I’ve build earlier), and use it to access another
unit which defines the form. Although there is no way to hide a unit that’s linked
into a package, if you never used the class defined in a unit directly, but only
through other routines, you’ll have more flexibility in modifying it. You can also use
form inheritance to modify a form within a package wihtout really affecting the orig-
inal version.

The most stringent rule for pacjages is the followin one used by component writers.
For long-term deployment and maintenance of code in packages, plan on having a
major release with minor maintenance releases. A major release of your package
will require all your client programs to be recompiled from source; the packages file
itself should be renamed with a new version number, and the interface section of
the units can be modified. Maintenance releases of that package should be
restricted to implementation changes to preserve full compatibility with existing
executable files and units.

Executable Files and DLLs Sharing the VCL
Packages

In the FormDll example, we faced a problem: When you place forms inside a DLL,
you don’t get the proper behavior for the flat buttons even if you synchronize the
two application objects. Moreover, both the executable file and the DLL contain the
compiled code of the VCL library, leading to a useless duplication. In the last section
we’ve seen that a radically alternative approach is to compile the form into a pack-
age, instead of a DLL.

Another solution to this problem is the use of run-time packages for both the EXE
and the DLL, so that no code will be duplicated. As a side effect, there will be only
one Application object, shared by the program and the DLL, instead of two sepa-
rate objects, so we don’t need the synchronization code any more.

Another simplification to the program comes from the fact that the modeless form
inside the DLL can communicate back to the main form by accessing the list of the
forms (available to the shared global Screen object) or simply using the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

704 - Chapter 14: Dynamic Link Libraries and Packages

Application.MainForm property. In the FormDllP example I’ve changed the second
routine exported by the DLL to this simpler version:

procedure ShowColor (Col: LongInt); stdcall;

I’ve modified the code by removing the references to the form handle and the call-
back message, and I’ve rewritten the code of the Apply button to use the main form
instead of sending a user-defined Windows message to its handle:

procedure TFormScroll.ApplyClick(Sender: TObject);
begin
 // access the main form directly
 Application.MainForm.Color := SelectedColor;
end;

The problem is that if you now try to write this code (which is not the final version
in the source code files), the behavior is not at all what you might expect. The main
form and the form in the DLL are not synchronized at all, there are two entries in
the Taskbar, and it still has all the other problems of the first version of the FormDll
example. The problem lies in the fact that when you run the program the DLL is ini-
tialized before the application, so it is the DLL that initializes the Forms unit of the
VCL. Within a DLLthe VCL creates the Application object but doesn’t create the
corresponding window.

There are two radically different approaches to this initialization issue: One is to
change the initialization order by loading the DLL dynamically after the application
has started, the second is to add some extra initialization code in the program.

Dynamically Loading the DLL with Packages

The first solution is demonstrated by the FirstDLLD library and UseDyna example,
which dynamically loads the DLL build with run-time packages. The main program
loads the DLL at startup, in the OnCreate event handler of the form:

procedure TForm1.FormCreate(Sender: TObject);
begin
 hInstDll := LoadLibrary ('FormDllD.dll');
 if hInstDll <= 0 then
 raise Exception.Create ('FormDllD library not found');
end;

In the program I haven’t declared the functions exported by the DLL, to avoid the
implicit link of the library. Instead I’ve declared two procedure types:

type
 TGetColorProc = function (Col: LongInt): LongInt; stdcall;
 TShowColorProc = procedure (Col: LongInt); stdcall;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 705

These types are used for converting the generic pointer returned by the
GetProcAddress function, as we’ve already seen in the DynaCall example:

procedure TForm1.BtnChangeClick(Sender: TObject);
var
 Col: LongInt;
 GetColorProc: TGetColorProc;
 FPointer: TFarProc;
begin
 FPointer := GetProcAddress (hInstDll, 'GetColor');
 if FPointer = nil then
 raise Exception.Create ('GetColor DLL function not found');
 GetColorProc := TGetColorProc (FPointer);
 // original code
 Col := ColorToRGB (Color);
 Color := GetColorProc (Col);
end;

Using dynamic loading the correct approach officially supported by Delphi. Still,
you have to call the functions dynamically, which requires a little extra coding.

Fixing the Initialization Code

An alternative solution is to keep the external functions defined in the main pro-
gram and let the DLL start first and initialize the VCL, and the VCL create the
Application object without the connected window. In fact, we can add one line of
code to the library to ask for the creation of the window of the Application object
during the library initialization process (before the executable creates its own main
objects). We accomplish this by writing the code in the initialization section of one
of the units of the DLL:

initialization
 Application.CreateHandle;

As this code is in the DLL, the application fails to load its icon. The solution is actu-
ally very simple. In the OnCreate event handler of the main form (in the main
program), simply reload the current icon:

procedure TForm1.FormCreate(Sender: TObject);
begin
 // reload the icon of the application
 Application.Icon.Handle :=
 LoadIcon (HInstance, ‘MAINICON’);
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

706 - Chapter 14: Dynamic Link Libraries and Packages

Exploring the Structure of a Package

You might wonder if it is possible to know whether a package has been linked in at
design-time or used as run-time package. Not only is this possible in Delphi, but you
can also explore the overall structure of an application.

A component can use the undocumented ModuleIsPackage global variable, declared
in the SysInit unit. You shouldn’t ever need this, but it is technically possible (for a
component) to have different code depending whether it is packaged or not. The fol-
lowing code extracts the name of the run-time package hosting the component, if
any:

var
 fPackName: string;
begin
 // get package name
 SetLength (fPackName, 100);
 if ModuleIsPackage then
 begin
 GetModuleFileName (HInstance,
 PChar (fPackName), Length (fPackName));
 fPackName := PChar (fPackName) // string length fixup
 end
 else
 fPackName := 'Not packaged';

Besides accessing package information from within a component (as in the code
above), you can also do so from a special entry point of the package libraries, the
GetPackageInfoTable function. This function returns some specific package infor-
mation that Delphi stores as resources and includes in the package DLL.
Fortunately, we don’t need to use low-level techniques to access this information,
since Delphi provides some high-level functions to manipulate it.

There are basically two functions you can use to access package information:

· GetPackageDescription returns a string that contains a description of the pack-
age. To call this function, you must supply the name of the module (the package
library) as the only parameter.

· GetPackageInfo doesn’t directly return information about the package. Instead,
you pass it a function that it calls for every entry in the package’s internal data
structure. In practice, GetPackageInfo will call your function for every one of the
package’s contained units and required packages. In addition, GetPackageInfo
sets several flags in an Integer variable.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 707

These two function calls allow us to access internal information about a package,
but how do we know which packages our application is using? You could determine
this by looking at an executable file using low-level functions, but Delphi helps you
again by supplying a simpler approach. The EnumModules function doesn’t directly
return information about an application’s modules but allows you to pass it a func-
tion, which it calls for each module of the application, the main executable file, and
for each of the packages the application relies on.

To demonstrate this approach, I’ve built a simple example program that displays the
module and package information in a TreeView component. Each first-level node
corresponds to a module, and within each module I build a subtree that displays the
contained and required packages for that module, as well as the package description
and compiler flags (RunOnly and DesignOnly). You can see the output of this exam-
ple in Figure 14.10.

Figure 14.10: The
output of the PackInfo
example, with the
details of the packages
it uses. Image from the
original book.

In addition to the TreeView component, I’ve added several other components to the
main form, but hidden them from view: a DBEdit, a Chart, and a FilterComboBox. I
added these components simply to include more run-time packages in the applica-
tion, beyond the ubiquitous VCL50.DPL. The only method of the form class is
FormCreate, which calls the module enumeration function:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

708 - Chapter 14: Dynamic Link Libraries and Packages

procedure TForm1.FormCreate(Sender: TObject);
begin
 EnumModules(ForEachModule, nil);
end;

The EnumModules function accepts two parameters. The first is the callback function
(in our case, ForEachModule), and the second is a pointer to a data structure that the
callback function will use (in our case, nil, since we didn’t need this). The callback
function must accept two parameters, an HInstance value and an untyped pointer,
and must return a Boolean value. The EnumModules function will in turn call our
callback function for each module, passing the instance handle of each module as
the first parameter and the data structure pointer (nil in our example) as the sec-
ond:

function ForEachModule (HInstance: Longint;
 Data: Pointer): Boolean;
var
 Flags: Integer;
 ModuleName, ModuleDesc: string;
 ModuleNode: TTreeNode;
begin
 with Form1.TreeView1.Items do
 begin
 SetLength (ModuleName, 200);
 GetModuleFileName (HInstance,
 PChar (ModuleName), Length (ModuleName));
 ModuleName := PChar (ModuleName); // fixup
 ModuleNode := Add (nil, ModuleName);

 // get description and add fixed nodes
 ModuleDesc := GetPackageDescription (PChar (ModuleName));
 ContNode := AddChild (ModuleNode, ‘Contains’);
 ReqNode := AddChild (ModuleNode, ‘Requires’);

 // add information if the module is a package
 GetPackageInfo (HInstance, nil,
 Flags, ShowInfoProc);
 if ModuleDesc <> ‘’ then
 begin
 AddChild (ModuleNode,
 ‘Description: ‘ + ModuleDesc);
 if Flags and pfDesignOnly = pfDesignOnly then
 AddChild (ModuleNode, ‘Design Only’);
 if Flags and pfRunOnly = pfRunOnly then
 AddChild (ModuleNode, ‘Run Only’);
 end;
 end;
 Result := True;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 14: Dynamic Link Libraries and Packages - 709

As you can see in the code above, the ForEachModule function begins by adding the
module name as the main node of the tree (by calling the Add method of the
TreeView1.Items object and passing nil as the first parameter). It then adds two
fixed child nodes, which are stored in the ContNode and ReqNode variables declared
in the implementation section of this unit.

Next, the program calls the GetPackageInfo function and passes it another callback
function, ShowInfoProc, which I’ll discuss shortly. The program adds the details for
the main module (see Figure 14.11), simply because this will provide a list of the
application’s units. At the end of this function, we add more information if the mod-
ule is a package, such as its description and compiler flags (we know it’s a package if
its description isn’t an empty string).

Figure 14.11: The
PackInfo example also
lists the units that are
part of the current
application. Image
from the original book.

Earlier, I mentioned passing another callback function, the ShowInfoProc proce-
dure, to the GetPackageInfo function, which in turn calls our callback function for
each contained or required package of a module. This procedure creates a string
that describes the package and its main flags (added within parentheses), and then
inserts that string under one of the two nodes (ContNode and ReqNode), depending
on the type of the module. We can determine the module type by examining the
NameType parameter. Here is the complete code of our second callback function:

procedure ShowInfoProc (const Name: string;
 NameType: TNameType; Flags: Byte; Param: Pointer);
var
 FlagStr: string;
begin
 FlagStr := ‘ ‘;
 if Flags and ufMainUnit <> 0 then
 FlagStr := FlagStr + ‘Main Unit ‘;
 if Flags and ufPackageUnit <> 0 then

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

710 - Chapter 14: Dynamic Link Libraries and Packages

 FlagStr := FlagStr + ‘Package Unit ‘;
 if Flags and ufWeakUnit <> 0 then
 FlagStr := FlagStr + ‘Weak Unit ‘;
 if FlagStr <> ‘ ‘ then
 FlagStr := ‘ (‘ + FlagStr + ‘)’;
 with Form1.TreeView1.Items do
 case NameType of
 ntContainsUnit:
 AddChild (ContNode, Name + FlagStr);
 ntRequiresPackage:
 AddChild (ReqNode, Name);
 end;
end;

Here, you’ll notice that the Flags parameter doesn’t contain flag style information,
as the online help seems to imply. If you want to investigate this topic further,
examine the SysUtils unit.

What’s Next

In this chapter we have seen how you can call functions that reside in DLLs created
in C++ or other languages, how to create DLLs using Delphi itself, and how to use
strings and place Delphi forms inside a library. DLLs have been one of the tradi-
tional approaches to writing applications using multiple programming languages
and environments. Today, COM and OLE provide more advanced techniques.

Another technique for exporting objects from DLLs is to use packages, although
there are many issues related to this technique. When considering DLLs and other
alternatives, keep in mind that although Delphi and Windows share many elements,
they also have different “views” of programming. Whenever possible, follow the
Delphi object-oriented approach over the Windows procedural approach, and you’ll
probably benefit a lot. Actually, the advantages of object orientation are so impor-
tant that Microsoft has introduced some object-oriented concepts right into the
system. In short, OLE and COM are examples of these built-in techniques.

The following chapters are fully devoted to these topics: COM and OLE, OLE Auto-
mation, OLE Documents, and ActiveX controls.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 15: COM Programming - 711

Chapter 15: COM

Programming

According to Microsoft, COM technology will have a fundamental role in the evolu-
tion of the Windows platform355. Microsoft originally used the term OLE to refer to
this technology, then started using more often the term COM, and now calls the cur-
rent version COM+. COM is not a single technology but a basic infrastructure of the
operating system, which is applied under many different circumstances. This chap-
ter shows that COM programming is simpler than you probably think. In this
chapter, we’ll build our first COM object as well as integrate our COM objects with
the Windows shell. Type libraries, Automation, and other topics will be covered in
the next chapter. I will stick to the basic elements to let you understand the role of
this technology without delving heavily into the details.

355 Even if Microsoft later introduced the .NET framework, the new WinRT APIs, and many other
technologies, COM remains the foundation of Windows programming and is still the founda-
tion or at least a way to interact with newer APIs. In other words, COM is still around and rele-
vant, even if some of its elements (like OLE) are not commonly used these days.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

712 - Chapter 15: COM Programming

What Is OLE? And What Is COM?

Part of the confusion related to COM technology comes from the fact that Microsoft
has used different names for it for marketing reasons. Everything started with
Object Linking and Embedding (OLE, for short), which was an extension of the
DDE (Dynamic Data Exchange) model. Using the Clipboard allows you to copy
some raw data, and using DDE allows you to connect parts of two documents.
Object Linking and Embedding allows you to copy the data from a server applica-
tion to the client application, along with some information regarding the server or a
reference to some information stored in the Windows Registry. The raw data might
be copied along with the link (Object Embedding) or kept in the original file (Object
Linking). Object Linking and Embedding documents were later renamed OLE Doc-
uments and are now called Active Documents.356

Microsoft updated OLE to OLE 2 and started adding new features, such as OLE
Automation and OLE Controls. The next step was to build the Windows 95 shell
using OLE technology and interfaces and then to rename the OLE Controls (previ-
ously known also as OCX) as ActiveX controls, changing the specification to allow
for lightweight controls suitable for distribution over the Internet.

As this technology was extended and became increasingly important to the Win-
dows platform, Microsoft changed the name to OLE, and then to COM, and now to
COM+ for Windows 2000. These changes in naming are only partially related to
technological changes and are driven to a large extent by marketing purposes.

What, then, is COM? Basically, the Component Object Model, or COM, is a technol-
ogy that defines a standard way for a client module and a server module to
communicate through a specific interface. Here, “module” indicates an application
or a library (a DLL); the two modules may execute on the same computer or on dif-
ferent machines connected via a network. Many interfaces are possible, depending
on the role of the client and server, and you can add new interfaces for specific pur-
poses. These interfaces are implemented by server objects. A server object usually
implements more than one interface, and all the server objects have a few common
capabilities, because they must all implement the IUnknown interface.

The good news is that Delphi is fully compliant with COM. When you look at the
source code, Object Pascal seems to be easier to use than C++ or other languages for
writing COM objects. This simplicity mainly derives from the incorporation of inter-

356 I’m not certain which is the name Microsoft uses today, but this mechanism is still available in
Microsoft Office applications and similar third party solutoins.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 15: COM Programming - 713

face types into the Object Pascal language357. By the way, interfaces are also similarly
used to integrate Java with COM on the Windows platform.

The purpose of COM interfaces is to communicate between two software modules,
two executable files, or one executable file and a DLL. Implementing COM objects
in DLLs is generally simpler, because in Win32, a program and the DLL it uses
reside in the same memory address space. This means that if the program passes a
memory address to the DLL, the address remains valid. When you use two exe-
cutable files, COM has a lot of work to do behind the scenes to let the two
applications communicate. This mechanism is called marshaling. Note that a DLL
implementing COM objects is described as an in-process server, whereas when the
server is a separate executable, it is called an out-of-process server. However, when
DLLs are executing on another machine (DCOM) or inside a host environment
(MTS), they are also out-of-process.

Implementing IUnknown

Before we start looking to an example of COM development, I would like to intro-
duce a few basics of COM. The first is that every COM object must implement the
IUnknown interface358. This is the base interface from which every Delphi interface
inherits, and Delphi provides a couple of different classes with ready-to-use imple-
mentations of IUnknown, including TInterfacedObject and TComObject. The first
can be used to have an internal COM object, while the latter must be used to export
an object from a server. As I’ll discuss in Chapter 16, several other classes inherit
from TComObject and provide support for more interfaces, which are required by
Automation servers or ActiveX controls.

The IUnknown interface has three methods: Add, Release, and QueryInterface. Here
is the definition of the IUnknown interface (extracted from the System unit):

type
 IUnknown = interface
 [‘{00000000-0000-0000-C000-000000000046}’]
 function QueryInterface(const IID: TGUID;

357 Interfaces can also be used to map to .NET objects and they are used to map to WinRT, which
is not complaint with COM in terms of memory management, but it is in terms of methods in-
vocation.

358 This interface can also be used via the newer IInterface alias, which makes sense when not
using COM – it’s a new name, but the functionally is identical.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

714 - Chapter 15: COM Programming

 out Obj): Integer; stdcall;
 function _AddRef: Integer; stdcall;
 function _Release: Integer; stdcall;
 end;

The _AddRef and _Release methods are used to implement reference counting. The
QueryInterface method handles the type information and type compatibility of the
objects.

note In the code above, you can see an example of an out parameter, a parameter passed back from
the method to the calling program but without an initial value passed by the calling program to
the method. The out parameters have been added to Delphi’s Object Pascal language specifically
to support COM. It’s also important to note that while Delphi’s language definition for the inter-
face type is designed for compatibility with COM, Delphi interfaces do not require COM. This was
already highlighted in Chapter 3, where I build a complex interface-based example with no COM
support whatsoever.

You don’t usually need to implement these methods, as you can inherit from one of
the Delphi classes already supporting them. The most important class is
TComObject, defined in the ComObj unit. When you build a COM server, you’ll gen-
erally inherit from this class. Because TComObject is a complex class, this excerpt
shows only its key elements:

type
 TComObject = class(TObject, IUnknown, ISupportErrorInfo)
 private
 FNonCountedObject: Boolean;
 FRefCount: Integer;
 protected
 { IUnknown }
 function IUnknown.QueryInterface = ObjQueryInterface;
 function IUnknown._AddRef = ObjAddRef;
 function IUnknown._Release = ObjRelease;
 { ISupportErrorInfo }
 function InterfaceSupportsErrorInfo(const iid: TIID):
 HResult; stdcall;
 public
 constructor Create;
 destructor Destroy; override;
 procedure Initialize; virtual;
 function ObjAddRef: Integer; virtual; stdcall;
 function ObjQueryInterface(const IID: TGUID; out Obj): HResult;
 virtual; stdcall;
 function ObjRelease: Integer; virtual; stdcall;
 property RefCount: Integer read FRefCount;
 end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 15: COM Programming - 715

This class implements the IUnknown interface (using the ObjAddRef,
ObjQueryInterface, and ObjRelease methods, as indicated by the method-mapping
statements in the protected portion of the class) and the ISupportErrorInfo inter-
face (through the InterfaceSupportsErrorInfo method). The implementation of
reference counting for the TComObject class has been extended to support thread-
ing. Instead of using Inc and Dec, the code uses the thread-safe
InterlockedIncrement and InterlockedDecrement API functions, as you can see in
the source code of the class:

function TComObject.ObjAddRef: Integer;
begin
 Result := InterlockedIncrement(FRefCount);
end;

function TComObject.ObjRelease: Integer;
begin
 Result := InterlockedDecrement(FRefCount);
 if Result = 0 then Destroy;
end;

As you can see, the implementation of Release destroys the object when there are
no more references to it. At first sight, the need to call this method each time you
operate on an object seems like a lot of work. However, you might remember from
Chapter 3 that when you’re using interface variables to refer to objects, Delphi auto-
matically adds the reference-counting calls to the compiled code, which
automatically destroys unreferenced objects. This labor-saving feature makes Del-
phi a convenient tool for COM development.

The most complex method is QueryInterface, which in Delphi is actually imple-
mented through the GetInterface method of the TObject class:

function TComObject.ObjQueryInterface(
 const IID: TGUID; out Obj): HResult;
begin
 if GetInterface(IID, Obj) then
 Result := S_OK
 else
 Result := E_NOINTERFACE;
end;

The role of the QueryInterface method is twofold:

· QueryInterface is used for type checking. The program can ask an object the fol-
lowing questions: Are you of the type I’m interested in? Do you implement the
interface I want to call? And the specific methods? If the answer is no, the pro-
gram can look for another object, maybe asking another server.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

716 - Chapter 15: COM Programming

· If the answer is yes, QueryInterface usually returns a pointer to the object, using
its reference output parameter (out).

To understand the role of the QueryInterface method, it is important to keep in
mind that a COM object can implement multiple interfaces, as the event TComObject
does. When you call QueryInterface, you might ask for one of the possible inter-
faces of the object, using the TGUID parameter.

Globally Unique IDentifiers

The QueryInterface method has a special parameter of the TGUID type. This is an ID
that identifies any COM server class and any interface in the system. When you
want to know whether an object supports a specific interface, you ask the object
whether it implements the interface that has a given ID (which for the default OLE
interfaces is determined by Microsoft).

Another ID is used to indicate a specific class, a specific server. The Windows Reg-
istry stores this ID, with indications of the related DLL or executable file. The
developers of an OLE server define the class identifier.

Both of these IDs are known as GUIDs, or Globally Unique IDentifiers. If each
developer uses a number to indicate its own OLE servers, how can we be sure that
these values are not duplicated? The short answer is that we cannot. The real
answer is that a GUID is such a long number (with 16 bytes, or 128 bits, or a number
with 38 digits!) that it is statistically impossible to come up with two random num-
bers having the same value. Moreover, programmers should use the specific API call
CoCreateGuid (directly or through their development environment), to come up
with a valid GUID that reflects some system information.

In fact, GUIDs created on machines with network cards are guaranteed to be
unique, because network cards contain unique serial numbers that form a base for
the GUID creation. GUIDs created on machines with CPU IDs (such as the Pentium
III) should also be guaranteed unique, even without a network card. With no unique
hardware identifier, GUIDs are statistically unlikely to ever duplicate.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 15: COM Programming - 717

note Besides being careful not to copy the GUID from someone else’s program (which can result in two
completely different COM objects using the same GUID), you should never make up your own ID
by entering a casual sequence of numbers. Windows checks the IDs, and using a casual sequence
won’t generate a valid ID. An OLE server with an invalid ID is not recognized, and you won’t get
an error message! Windows also won’t include an API or technique to validate a GUID. The risk
with creating class IDs or Interface IDs by hand is that you could coincidentally duplicate a GUID
that is already in use somewhere else in the system. However, to avoid this problem, simply press
Ctrl+Shift+G in the Delphi editor, and you will get a new, properly defined GUID.

Delphi defines a TGUID data type (in the System unit) to hold these numbers:

type
 TGUID = record
 D1: Integer;
 D2: Word;
 D3: Word;
 D4: array [0..7] of Byte;
 end;

This structure is actually quite odd but is required by Windows. You can assign a
value to a GUID using the standard hexadecimal notation, as in this code fragment:

const
 Class_ActiveForm1: TGUID =
 ‘{1AFA6D61-7B89-11D0-98D0-444553540000}’;

If you need to generate a GUID manually and not in the Delphi environment, you
can simply call the CoCreateGuid Windows API function, as demonstrated by the
NewGuid example (see Figure 15.1). This example is so simple that I’ve decided not
to list its code. (You can find the source code for this application along with the
chapter’s other examples in the Chapter 15 folder on GitHub.)

Figure 15.1: An
example of the GUIDs
generated by the
NewGuid example.
Values depend on my
computer and the time
I run this program.
Image from the
original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

718 - Chapter 15: COM Programming

To handle GUIDs, Delphi provides the GUIDToString function and the opposite
StringToGUID function. You can also use the corresponding Windows API functions,
such as StringFromGuid2, but in this case, you must use the WideString type instead
of the string type. Any time OLE is involved, you have to use the WideString type,
unless you use Delphi functions that automatically do the required conversion for
you. Actually, OLE API functions use the PWChar type (pointer to null-terminated
arrays of wide characters), but simply casting a WideString to PWChar does the trick.

note Keep in mind that GUIDs come in different flavors. The two most important types are Interface
IDs (or IID), which refer to an interface, and Class IDs (or CLSID), which refer to a specific object
in a server. These two kinds of IDs both use the GUID style.

The Role of Class Factories

When we register the GUID of a COM object in the Registry, we can use a specific
API function to create the object, such as the CreateComObject API:

function CreateComObject (const ClassID: TGUID): IUnknown;

This API function will look into the Registry, find the server registering the object
with the given GUID, load it, and, if the server is a DLL, call the DLLGetClassObject
method of the DLL. This is a function every in-process server must provide and
export:

function DllGetClassObject (const CLSID, IID: TGUID;
 var Obj): HResult; stdcall;

This API function receives as parameters the requested class and interface, and it
returns an object in its reference parameter. The object returned by this function is
a class factory.

Now, what is a class factory? As the name suggests, a class factory is an object capa-
ble of creating other objects. Each server can have multiple objects. The server
exposes the class factory, and the class factory can create one of these various
objects. Each object, then, can have a number of interfaces. One of the many advan-
tages of the Delphi simplified approach to COM development is that the system can
provide a class factory for us. For this reason, I’m not going to add a class factory to
our simple example.

The call to the CreateComObject API doesn’t stop at the creation of the class factory,
however. After retrieving the class factory, CreateComObject calls the
CreateInstance method of the IClassFactory interface. This method creates the

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 15: COM Programming - 719

requested object and returns it. If no error occurs, this object becomes the return
value of the CreateComObject API.

By setting up this mechanism (including the class factory and the
DLLGetClassObject call), you make it very simple to create objects.
CreateComObject is just a simple function call with a complex behavior behind the
scenes. What’s great in Delphi is that the complex mechanism is handled for you by
the run-time system. So it’s time to start looking in detail at how Delphi makes COM
really easy to master.

Class Factories and Other Delphi COM Classes

Besides the TComObject class, Delphi includes several other predefined COM
classes. We’ll use them in the following sections, but here is a list of the most impor-
tant COM classes of the Delphi VCL:

· TInterfacedObject, defined in the System unit, inherits from TObject and
implements the IUnknown interface. It is used only for internal objects.

· TComObject, defined in the ComObj unit, inherits from TObject and implements
both the IUnknown interface and the ISupportErrorInfo interface. Unlike
TInterfacedObject, this class also has a related class factory.

· TTypedComObject, defined in the ComObj unit, inherits from TComObject and
implements the IProvideClassInfo interface (in addition to the IUnknown and
ISupportErrorInfo interfaces already implemented by the base class,
TComObject).

· TAutoObject, defined in the ComObj unit, inherits from TTypedComObject and
implements also the IDispatch interface.

· TActiveXControl, defined in the AxCtrls unit, inherits from TAutoObject and
implements a number of interfaces (IPersistStreamInit, IPersistStorage,
IOleObject, and IOleControl, to name just a few).

For each of these classes, Delphi also defines a class factory. The class factory
classes form another hierarchy, with the same structure. Their names are
TComObjectFactory, TTypedComObjectFactory, TAutoObjectFactory, and
TActiveXControlFactory. Class factories are important, and every COM server
requires them. Usually we simply use class factories by creating an object in the ini-
tialization section of the unit defining the corresponding server object class.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

720 - Chapter 15: COM Programming

A First COM Server

There is no better way to understand COM than to build a simple COM server
hosted by a DLL. A library hosting a COM object is indicated in Delphi as an
ActiveX library. For this reason we can start the development of this project by
selecting File New, moving to the ActiveX page, and selecting the ActiveX Library
option. This generates a project file I’ve saved as FirstCom. This is the complete
source code:

library FirstCom;

uses
 ComServ;

exports
 DllGetClassObject,
 DllCanUnloadNow,
 DllRegisterServer,
 DllUnregisterServer;

{$R *.RES}

begin
end.

The four functions exported by the DLL are required for COM compliance and are
used by the system as follows:

· To access the class library (DllGetClassObject).

· To check whether the server has destroyed all its objects and can be unloaded
from memory (DllCanUnloadNow).

· To add or remove information about the server in the Windows Registry
(DllRegisterServer and DllUnregisterServer).

You generally don’t have to implement these functions, because Delphi provides a
default implementation in the ComServ unit. For this reason, in the code of our
server we only need to export them.

COM Interfaces and Objects

Now that we have the structure of our COM server in place, we can start developing
it. The first step is to write the code of the interface we want to implement in the
server. The interface can be very similar to the code of an abstract class, listing all

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 15: COM Programming - 721

the methods we want to make available from our server. (I have already discussed
Object Pascal interfaces in Chapter 3.) Here is the code of a simple interface, which
you should add to a separate unit (called NumIntf in the example):

type
 INumber = interface
 [‘{B4131140-7C2F-11D0-98D0-444553540000}’]
 function GetValue: Integer; stdcall;
 procedure SetValue (New: Integer); stdcall;
 procedure Increase; stdcall;
 end;

The IID was added to the code by pressing the Ctrl+Shift+G key combination.

After declaring the custom interface, we can add the actual object to the server. To
accomplish this, we can use the COM Object Wizard (available in the ActiveX page
of the usual File New dialog box). You can see this Wizard’s dialog box in Figure
15.2. Here you should enter the name of the class of the server, the interface you
want to implement, and a description. I’ve disabled the generation of the type
library to avoid introducing too many topics at once. You should also choose an
instancing and a threading model, as described in the related sidebar.

Figure 15.2: The
COM Object Wizard.
Image from the
original book.

The code generated by the COM Object Wizard is actually quite simple. The inter-
face contains the definition of the class to fill with methods and data:

type
 TNumber = class(TComObject, INumber)
 protected
 {Declare INumber methods here}
 end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

722 - Chapter 15: COM Programming

The server class inherits from the TComObject class, which I discussed in the last
section. In the code generated by the wizard, after the server class comes the defini-
tion of the GUID for the server:

const
 Class_Number: TGUID =
 ‘{5B2EF181-3AAE-11D3-B9F1-00000100A27B}’;

Finally there is some code in the initialization section (which uses most of the
options we’ve set up in the wizard’s dialog box):

initialization
 TComObjectFactory.Create(ComServer, TNumber,
 Class_Number, ‘Number’, ‘Number Server’,
 ciMultiInstance, tmApartment);

This code creates an object of the TComObjectFactory class, passing as parameters
the global ComServer object, a class reference to the class we’ve just defined, the
GUID for the class, the server name, the server description, and the instancing and
threading models we want to use.

The global ComServer object, defined in the ComServ unit, is a manager of the class
factories available in the server library. It uses its own ForEachFactory method to
look for the class supporting a given COM object request, and it keeps track of the
number of allocated objects. As we’ve already seen, in fact, the ComServ unit imple-
ments the functions required by the DLL to be a COM library.

Having examined the source code generated by the wizard, we can now complete it
by adding to the TNumber class the methods required for implementing the INumber
interface. First, write the declaration of the methods:

type
 TNumber = class(TComObject, INumber)
 private
 fValue: Integer;
 public
 function GetValue: Integer; virtual; stdcall;
 procedure SetValue (New: Integer); virtual; stdcall;
 procedure Increase; virtual; stdcall;
 end;

At this point, simply activate class completion by pressing Shift+Ctrl+C and fill the
methods with the proper code. This is so straightforward that I’m not going to list it
here; you can find the source code in the FirstCom folder.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 15: COM Programming - 723

COM Instancing and Threading Models
When you create a COM server, you should choose a proper instancing
and threading model, which can significantly affect the behavior of the
COM server.

Instancing affects only out-of-process servers (any COM server in a sepa-
rate executable file, rather than a DLL) and can assume three values:

· Multiple indicates that when several client applications require the COM
object, the system starts multiple instances of the server.

· Single indicates that even when several client applications require the
COM object, there is only one instance of the server application; it creates
multiple internal objects to service the requests.

· Internal indicates that the object can only be created inside the server;
client applications cannot ask for one.

The second decision relates to the thread support of the COM object,
which is valid for in-process servers only (DLLs). The threading model is a
joint decision of the client and the server application: if both sides agree
on one model, it is used for the connection. If no agreement is found,
COM can still set up a connection using marshaling, which can slow down
the operations. Also keep in mind that a server must not only publish its
threading model in the Registry (as a result of setting the option in the
wizard), it must also follow the rules for that threading model in the code.
Here are the key highlights of the various threading models:

· The single model indicates no real support for threads. The requests
reaching the COM server are serialized, so that the client can perform one
operation at a time.

· The apartment model, or single-threaded apartment, indicates that only
the thread that created the object can call its methods. This means that the
requests for each server object are serialized, but other objects of the same
server can receive requests at the same time. For this reason, the server
object must take extra care only to access global data of the server (using
critical sections, mutexes, or some of the other synchronization techniques
described in Chapter 17). This is the threading model generally used for
ActiveX controls inside Internet Explorer.

· The Free model, or multithread apartment, indicates that the client has no
restrictions, which means that multiple threads can use the same object at

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

724 - Chapter 15: COM Programming

the same time. For this reason, every method of every object must protect
itself and the nonlocal data it uses against multiple simultaneous calls.
This threading model is more complex to support for a server than the sin-
gle and apartment models, because even access to the object’s own
instance data must be handled with thread-safe care.

· The final option, Both, indicates that the server object supports both the
apartment model and the free model.

Initializing the COM Object

If you look back at the definition of the TComObject class, you will notice it has a
non-virtual constructor. (Actually, it has multiple non-virtual constructors, which
I’ve omitted from the listing.) Each TComObject constructor calls the virtual
Initialize method. For this reason, if you want to customize the creation of an
object and then initialize it, you should not define a new constructor (which will
never be called). What you should do is override its Initialize method, as I’ve
done in the TNumber class. Here is the final version of this class:

type
 TNumber = class(TComObject, INumber)
 private
 fValue: Integer;
 public
 function GetValue: Integer; virtual; stdcall;
 procedure SetValue (New: Integer); virtual; stdcall;
 procedure Increase; virtual; stdcall;
 procedure Initialize; override;
 destructor Destroy; override;
 end;

As you can see, I’ve also overridden the destructor of the class, because I wanted to
test the automatic destruction of the COM objects provided by Delphi. Here is the
code for this pseudo-constructor and the destructor:

procedure TNumber.Initialize;
begin
 inherited;
 fValue := 10;
end;

destructor TNumber.Destroy;
begin
 inherited;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 15: COM Programming - 725

 MessageBox (0, ‘Object Destroyed’,
 ‘TDLLNumber’, mb_OK); // API call
end;

In the first method, calling the inherited version is good practice, even though the
TComObject.Initialize method has no code in this version of Delphi. The destruc-
tor, instead, must call the base class version. This is the code required to make our
COM object work properly and to let us know when an object is actually destroyed.

Testing the COM Server

Now that we’ve finished writing our COM server object, we can register and use it.
To register this server, you can simply compile its code and then use the Run Reg-
ister ActiveX Server menu command in Delphi. You do this to register the server on
your own machine, with the results you can see in Figure 15.3.

Figure 15.3: The new
registered server in
Windows RegEdit.
Image from the
original book.

When you distribute this server, you should install it on the client computers. To
accomplish this you can write a REG file to install the server in the Registry. How-
ever, this is not really the best approach, because the server already includes a
function you can activate to register the server. This function can be activated by the
Delphi environment, as we’ve seen, or in a few other ways:

· You can pass the COM server DLL as a command-line parameter to Microsoft’s
RegSvr32.exe program, found in the Windows/system directory.

· You can use the similar TRegSvr.exe demo program that ships with Delphi. (The
compiled version is in the Bin directory, and its source code is in the ActiveX
sub-directory of the Demos directory.)

· You can let an installation builder program call the registration function of the
server.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

726 - Chapter 15: COM Programming

Having registered the server, we can now turn to the client side of our example. This
time the example is called TestCOM and is stored in a separate directory. In fact, the
program loads the server DLL through the OLE/COM mechanism, thanks to the
server information present in the Registry, so it’s not necessary for the client to
know which directory the server resides in.

The form displayed by this program is very similar to the one we’ve used to test the
object inside the DLL. In the client program, you must include the source code file
with the interface and redeclare the COM server GUID. Of course, the code of the
program’s FormCreate method should be updated to create the required COM
objects. The program starts with all the buttons disabled (at design time), and it
enables them only after an object has been created. This way, if an exception is
raised while creating one of the objects, the buttons related to the object won’t be
enabled:

procedure TForm1.FormCreate(Sender: TObject);
begin
 // create first object
 Num1 := CreateComObject (Class_Number) as INumber;
 Num1.SetValue (SpinEdit1.Value);
 Label1.Caption := ‘Num1: ‘ + IntToStr (Num1.GetValue);
 Button1.Enabled := True;
 Button2.Enabled := True;

 // create second object
 Num2 := CreateComObject (Class_Number) as INumber;
 Label2.Caption := ‘Num2: ‘ + IntToStr (Num2.GetValue);
 Button3.Enabled := True;
 Button4.Enabled := True;
end;

Notice in particular the call to CreateComObject and the following as cast. The API
call starts the COM object-construction mechanism I’ve already described in detail.
This call also dynamically loads the server DLL. The return value is an IUnknown
object. This object must be converted to the proper interface type before assigning it
to the Num1 and Num2 fields, which now have the interface type INumber as their data
type:

type
 TForm1 = class(TForm)
 ...
 private
 Num1, Num2 : Inumber;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 15: COM Programming - 727

note To downcast an interface to the actual type, always use the as cast, which for interfaces performs
a QueryInterface call behind the scenes. This provides some protection, because it raises an
exception if the interface you are casting to is not supported by the given object. In the case of
interfaces, the as cast is the only way to extract an interface from another interface. If you write a
plain cast of the form INumber(CreateComObject (Class_Number)), the program will
crash, even if the cast seems to make sense as in the case above. Casting an interface pointer to
another interface pointer is an error. Period. Never do it.

In Figure 15.4 you can see the output of this test program, which is very similar to
the previous version. Notice that this time, Num2 shows the initial value of the object
at start-up, as set up in its Initialize method. Notice also that I’ve added one more
button, which creates a third temporary COM object:

procedure TForm1.Button5Click(Sender: TObject);
var
 Num3: INumber;
begin
 // create a new temporary COM object
 Num3 := CreateComObject (Class_Number) as INumber;
 Num3.SetValue (100);
 Num3.Increase;
 ShowMessage (‘Num3: ‘ + IntToStr (Num3.GetValue));
end;

Figure 15.4: The
output of the TestCom
example, a COM client.
Image from the
original book.

Pressing this button, you simply get the value of the number following 100. To see
why I added this method to the example, you need to press the button a second
time, after the message showing the result. Now you get a second message, indicat-
ing that the object has been destroyed. This demonstrates that simply letting an
interface object go out of scope automatically calls the object’s Release method,
decreases the object’s reference count, and destroys the object if its reference count

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

728 - Chapter 15: COM Programming

reaches zero. Chapter 3 described this reference-counting mechanism in more
detail.

The same happens to the other two objects as soon as the program terminates. Even
if the program doesn’t explicitly destroy the two objects in the FormDestroy method,
they are indeed destroyed, as the message shown by their Destroy destructor clearly
demonstrates. This happens because they were declared to be of an interface type,
and Delphi is going to use reference counting for them.

Using Interface Properties

As a further small step, we can extend the example by adding a property to the
INumber interface. When you add a property to an interface, you indicate the data
type and then the read and write directives. You can have read-only or write-only
properties, but the read and write clauses must always refer to a method because
interfaces don’t hold anything else but methods.

Here is the updated interface, which is part of the PropCom example:

type
 INumberProp = interface
 [‘{B36C5800-8E59-11D0-98D0-444553540000}’]
 function GetValue: Integer; stdcall;
 procedure SetValue (New: Integer); stdcall;
 property Value: Integer
 read GetValue write SetValue;
 procedure Increase; stdcall;
 end;

I’ve given this interface a new name and, what’s even more important, a new inter-
face ID. I could have inherited the new interface type from the previous one, but
this would have provided no real advantage. COM by itself doesn’t really support
inheritance, and from the perspective of COM, all interfaces are different simply
because they have a different interface ID. Needless to say, in Delphi we can use
inheritance to improve the structure of the code of the interfaces and of the server
objects implementing them.

In the PropCom example I’ve updated the server class declaration simply by writ-
ing:

type
 TDllNumber = class (TComObject, INumberProp)
 ...

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 15: COM Programming - 729

This class also has a new server object ID. The client program, saved in the TestProp
directory, can now simply use the Value property instead of the SetValue and
GetValue methods. Here is a small excerpt from the FormCreate method:

Num1 := CreateComObject (Class_NumPropServer) as INumberProp;
Num1.Value := SpinEdit1.Value;
Label1.Caption := ‘Num1: ‘ + IntToStr (Num1.Value);

The difference between using methods and properties for an interface is only syn-
tactical, because interface properties cannot access private data as class properties
can. By using properties, we can make the code a little more readable.

Calling Virtual Methods

We’ve built a couple of examples based on COM; but you might still feel uncomfort-
able with the idea of a program calling methods of objects that are created within a
DLL. How is this possible if those methods are not exported by the DLL? The COM
server, the DLL, creates an object and returns it to the calling application. By doing
this, the DLL creates an object with a virtual method table. (Remember that all the
interface methods are virtual by default.)

Because every object embeds a pointer to its virtual method table, the main pro-
gram receives an object, and also a way to work on it, by calling its virtual methods.
The main program doesn’t need to know the memory address of those methods,
because the objects know it, exactly as they do with a polymorphic call. But COM is
even more powerful than this: you don’t even have to know which programming
language was used to create the object, provided its VMT follows the standard dic-
tated by COM.

note The COM-compatible VMT implies also a strange effect. The method names are not important,
provided their address is in the proper position in the VMT. This is why you can map a method of
an interface to an actual function implementing it.

To round up things, we can say that COM provides a language-independent binary
standard for objects. The object you share among modules are compiled, and their
VMT has a determined structure, which is determined by COM and not by the
development environment you’ve used.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

730 - Chapter 15: COM Programming

Using a Shell Interface

In the last section, we built a fully standard COM object, packaged it as an in-
process server, and used it from a standard client. However, the COM interface we
implemented was a custom interface we’d built. Now we can try to build clients and
servers related to the Windows shell interfaces, which are all based on COM. The
original Windows API was basically a collection of functions, but all the most recent
APIs are generally based on COM.

The following sections use some existing servers that are part of the Windows shell;
in this case, we’ll write a client application and use the COM servers provided by the
system. This case illustrates the difference from the traditional use of the Windows
API calls. I’m also going to write some COM servers to be used by the Windows sys-
tem, particularly the Explorer. This case illustrates the difference from the
traditional development of a callback function invoked by the system.

Creating Shortcuts

One of the simplest shell interfaces we can use in a client application is the
IShellLink interface. This interface relates to Windows shortcuts and allows pro-
grammers to access the information of an existing shortcut or to create a new one.
In the ShCut example, I’m going to create various types of shortcuts, all referring to
the program itself. Of course, once you understand how to do this, you can easily
extend the example and create shortcuts for any program or file.

The example has an edit box for the name of the shortcut, a few check boxes, and
two buttons. When the Create button is pressed, the text in the edit box is used as
the name of a new shortcut, which is placed in the current directory, on the desktop,
or in the start menu. These options are not exclusive; a user can create multiple
shortcuts at once.

The most important code is at the very beginning of this method. The
CreateComObject call creates a system object, as indicated by the GUID passed as a
parameter. The result of this call (which is an IUnknown interface) is converted both
to an IShellLink interface and to an IPersistFile interface:

uses
 ComObj, ActiveX, ShlObj, Registry;

procedure TForm1.Button1Click(Sender: TObject);
var

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 15: COM Programming - 731

 AnObj: IUnknown;
 ShLink: IShellLink;
 PFile: IPersistFile;
 FileName: string;
 WFileName: WideString;
 Reg: TRegIniFile;
begin
 // access the two interfaces of the object
 AnObj := CreateComObject (CLSID_ShellLink);
 ShLink := AnObj as IShellLink;
 PFile := AnObj as IPersistFile;

Actually, we could have written the three lines of code above using this shorter nota-
tion:

ShLink := CreateComObject (CLSID_ShellLink) as IShellLink;
PFile := ShLink as IPersistFile;

If you look at similar examples built in other languages, you’ll notice that to access
the IPersistFile interface, the programs use custom calls to the QueryInterface
method. The two as expressions basically call QueryInterface for us.

Once we have the IShellLink interface, we can call some of its methods, such as
SetPath and SetWorkingDirectory:

 // get the name of the application file
 FileName := ParamStr (0);
 // set the link properties
 ShLink.SetPath (PChar (FileName));
 ShLink.SetWorkingDirectory (PChar (
 ExtractFilePath (FileName)));

Once we’ve set up the shell link object, we have to save it, depending on the status of
the three check boxes, calling the Save method of the IPersistFile interface of the
object. The simplest version is the one used to save the link in the current directory:

 // save the file in the current dir
 if cbDir.Checked then
 begin
 // using a WideString
 WFileName := ExtractFilePath (FileName) +
 EditName.Text + ‘.lnk’;
 PFile.Save (PWChar (WFileName), False);
 end;

The call to the Save method (which creates the physical LNK file) requires a “pointer
to wide char” parameter. The simplest way to obtain this is to declare a long string
and then cast it to a PWChar. Do not try casting a plain string to PWChar—the com-
piler will not complain, but the program won’t work!

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

732 - Chapter 15: COM Programming

To create the shortcut on the desktop or in the Start menu, we should first deter-
mine the corresponding system folder by looking up the proper value in the
Registry. By writing the program this way, we ensure it will work on different ver-
sions of Windows and on localized versions as well. Here is the source code for the
last two check boxes:

 // save on the desktop
 if cbDesktop.Checked then
 begin
 Reg := TRegIniFile.Create(
 ‘Software\MicroSoft\Windows\CurrentVersion\Explorer’);
 WFileName := Reg.ReadString (‘Shell Folders’, ‘Desktop’, ‘‘) +
 ‘\’ + EditName.Text + ‘.lnk’;
 Reg.Free;
 PFile.Save (PWChar (WFileName), False);
 end;
 // save in the Start Menu
 if cbStartMenu.Checked then
 begin
 Reg := TRegIniFile.Create(
 ‘Software\MicroSoft\Windows\CurrentVersion\Explorer’);
 WFileName := Reg.ReadString (‘Shell Folders’, ‘Start Menu’, ‘‘) +
 ‘\’ + EditName.Text + ‘.lnk’;
 Reg.Free;
 PFile.Save (PWChar (WFileName), False);
 end;

To look up the information in the Registry I’ve used the TRegIniFile class, although
there are other related classes in the VCL, such as the TRegistry class. The effect of
running this program and pressing the button is that Windows will add a new link
in the directory of the project, on the desktop, or in the Start menu. You can see an
example of the program in Figure 15.5.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 15: COM Programming - 733

Figure 15.5: The
simple user interface of
the ShCut example,
and two shortcuts
created with it in the
project folder and on
the desktop. Image
from the original book.

The “To-Do File” Application

As a second example of integrating a Delphi program with the system shell, I’ve
tried to write a simple real-world application, which uses file dragging and a context
menu handler. I’ll start with the file dragging first, because this will actually intro-
duce some of the techniques used by the context menu handler.

As I mentioned, this application is actually useful; you can use it to create a sort of
“to-do list.” It is based on a Paradox table that stores filenames and notes about the
files. The form of the application has a DBGrid component showing only a single
column containing the filenames and a memo control hosting the notes related to
the current file. You can see this form at design time in Figure 15.6.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

734 - Chapter 15: COM Programming

Figure 15.6: The form
of the ToDoFile
example at design
time. Image from the
original book.

note Using a single-column DBGrid is the only way in Delphi to show a list of the available records in a
listbox format. The alternative, of course, is to fill a listbox with custom code and then manually
navigate in the database table when the selection in the listbox changes. This manual approach is,
of course, less efficient when we have many records, because the program needs to scan them all
to fill the listbox, while the DBGrid loads only the record it currently displays.

Notice that the navigator component has no “new record” button, and the DBGrid is
set up as a read-only component. In fact, a user should not be able to create new
records except by dragging a file onto the form and is not allowed to change the file-
name field in any way (except by deleting it). All the user can do is edit the notes
field, entering a description of the operations to be done on the file.

Creating the Database

To create the database table for this example, I’ve used the FieldDefs property to
define the structure and set the StoreDefs property to True to save the table defini-
tion along with the form DFM file. The table has two fields, a string field called
Filename and a memo field called Notes. Of course, you can also create the table at
design time, using the table component’s local menu. The program, however, calls
the CreateTable method in the OnCreate event handler, unless this has already
been done:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 15: COM Programming - 735

procedure TToDoFileForm.FormCreate(Sender: TObject);
begin
 // eventually create the table
 if not Table1.Exists then
 Table1.CreateTable;
 // activate the table
 Table1.Activate;
 // accept dragging to the form
 DragAcceptFiles (Handle, True);
end;

Dragging Files to the Form

As you can see in the listing above, the form initialization code also registers the
window with the system as a file-dragging target, by calling the DragAcceptFiles
Windows API function. As a result, the application’s cursor changes to the typical
“drag accept” icon when a file is dragged over it. You can see an example of this cur-
sor in Figure 15.7.

Figure 15.7: The
drag-accept cursor
displayed by the
ToDoFile application
as a user drags a file
over it. Image from the
original book.

When a file-dragging operation is performed, the system sends the window a
wm_DropFiles message. This message passes (among its other parameters) a handle
to a file-drop structure from which you can extract information by using the
DragQueryFile API function. When this API function is called with the $FFFFFFFF
parameter, it returns the number of files dragged to the window; when it is called
with a numeric parameter it fills a buffer with the name of that file. For this reason,

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

736 - Chapter 15: COM Programming

the code of a wm_DropFiles message handler gets the number of files first and then
loops for each of the files, as the following listing demonstrates:

procedure TToDoFileForm.DropFiles(var Msg: TWmDropFiles);
var
 nFiles, I: Integer;
 Filename: string;
begin
 // get the number of dropped files
 nFiles := DragQueryFile (Msg.Drop, $FFFFFFFF, nil, 0);
 // for each file
 try
 for I := 0 to nFiles - 1 do
 begin
 // allocate memory
 SetLength (Filename, 80);
 // read the file name
 DragQueryFile (Msg.Drop, I, PChar (Filename), 80);
 // normalize file
 Filename := PChar (Filename);
 // add a new record
 Table1.InsertRecord ([Filename, ‘‘]);
 end;
 finally
 DragFinish (Msg.Drop);
 end;
 // open the (last) record in edit mode
 Table1.Edit;
 // move the input focus to the memo
 DBMemo1.SetFocus;
end;

As you can see in the code above, for every new file the program inserts a new
record, with the corresponding filename and an empty field for the notes. Then, for
the last file being dragged, the program opens the record in edit mode and moves
the focus to the memo control, so that a user can fill the notes for the file.

Creating a Context-Menu Handler

Now that we have the base program running, we can add a shell extension to the
system to let the user simply select a file and “send” it to the application without
having to do the dragging operation, which is not always handy when there are
many programs running. A context menu extension is one of the available Windows

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 15: COM Programming - 737

shell extensions and is activated every time a user right-clicks on a file in the Win-
dows Explorer359.

Technically, a context menu is a COM server exposing an internal object that is
going to be created and used by the system. A context-menu COM object must
implement two different interfaces, IContextMenu and IShellExtInit. The first
interface defines specific actions for the context menu, such as defining the number
of menu items to add and their text, while the second interface defines a way to
access the file or files the user is operating on. This is the resulting definition of the
COM server object class:

type
 TToDoMenu = class(TComObject, IUnknown,
 IContextMenu, IShellExtInit)
 private
 fFileName: string;
 protected
 {Declare IContextMenu methods here}
 function QueryContextMenu(Menu: HMENU; indexMenu,
 idCmdFirst, idCmdLast, uFlags: UINT): HResult; stdcall;
 function InvokeCommand(
 var lpici: TCMInvokeCommandInfo): HResult; stdcall;
 function GetCommandString(idCmd, uType: UINT;
 pwReserved: PUINT; pszName: LPSTR;
 cchMax: UINT): HResult; stdcall;
 {Declare IShellExtInit methods here}
 function IShellExtInit.Initialize = InitShellExt;
 function InitShellExt (pidlFolder: PItemIDList;
 lpdobj: IDataObject; hKeyProgID: HKEY): HResult; stdcall;
 end;

Notice that the class implements the Initialize method of the IShellExtInit
interface with a differently named method, InitShellExt. The reason is that I
wanted to avoid confusion with the Initialize method of the TComObject base
class, which is the hook we have to initialize the object, as described earlier in this
chapter. Let us examine InitShellExt method first; it is definitely the most com-
plex one:

function TToDoMenu.InitShellExt(pidlFolder: PItemIDList;
 lpdobj: IDataObject; hKeyProgID: HKEY): HResult; stdcall;
var
 medium: TStgMedium;
 fe: TFormatEtc;
begin

359 In Windows 11 the UI has changed and this feature remains available in a second level menu.
Notice how Windows 11 Explorer first level and second level local menus are build on different
technologies, which makes the user experience really odd, in my opinion.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

738 - Chapter 15: COM Programming

 Result := E_FAIL;
 // check if the lpdobj pointer is nil
 if Assigned (lpdobj) then
 begin
 with fe do
 begin
 cfFormat := CF_HDROP;
 ptd := nil;
 dwAspect := DVASPECT_CONTENT;
 lindex := -1;
 tymed := TYMED_HGLOBAL;
 end;
 // transform the lpdobj data to a storage medium structure
 Result := lpdobj.GetData(fe, medium);
 if not Failed (Result) then
 begin
 // check if only one file is selected
 if DragQueryFile (medium.hGlobal, $FFFFFFFF, nil, 0) = 1 then
 begin
 SetLength (fFileName, 1000);
 DragQueryFile (medium.hGlobal, 0, PChar (fFileName), 1000);
 // realign string
 fFileName := PChar (fFileName);
 Result := NOERROR;
 end
 else
 Result := E_FAIL;
 end;
 ReleaseStgMedium(medium);
 end;
end;

The initial portion of the method transforms the pointer to the IDataObject inter-
face, which we receive as a parameter, into the same data structure used in a file
drop operation, so that we can read the file information by using the DragQueryFile
function again. This complex way of coding is actually the simplest one you can use!
At the end of this operation, we have the value of the filename. Any selection of mul-
tiple files is not accepted.

We can now look at the methods of the IContextMenu interface. The first,
QueryContextMenu, is used to add new items to the local menu of the file. In this
case, we add a new menu item (calling the InsertMenu API function) only if the
ToDoFile application is running. We can determine this by searching for a window
corresponding to the TToDoFileForm class, which should be unique in the system.
The result of the function is the number of items added to the menu:

function TToDoMenu.QueryContextMenu(Menu: HMENU;
 indexMenu, idCmdFirst, idCmdLast, uFlags: UINT): HResult;
begin
 // add entry only if the program is running

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 15: COM Programming - 739

 if FindWindow (‘TToDoFileForm’, nil) <> 0 then
 begin
 // add a new item to context menu
 InsertMenu (Menu, indexMenu,
 MF_STRING or MF_BYPOSITION, idCmdFirst,
 ‘Send to ToDoFile’);
 // return the number of menu items added
 Result := 1;
 end
 else
 Result := 0;
end;

Now that items have been added to the menu, a user can select them. While he or
she moves over the items, a descriptive message is displayed in the status bar of the
Windows Explorer, as you can see in Figure 15.8. The menu ID (idCmd) we receive
in the GetCommandString method is simply the relative number, starting with zero,
of the items we have added to the menu. When the cursor is over an item, we simply
copy a string with its description to the buffer provided by the system:

function TToDoMenu.GetCommandString(idCmd, uType: UINT;
 pwReserved: PUINT; pszName: LPSTR; cchMax: UINT): HRESULT;
begin
 if idCmd = 0 then
 begin
 // return help string for menu item
 strCopy (pszName, ‘Add file to the ToDoFile database’);
 Result := NOERROR;
 end
 else
 Result := E_INVALIDARG;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

740 - Chapter 15: COM Programming

Figure 15.8: As a user
moves over the new
item of the local menu
of the Windows
Explorer, a description
is displayed in the
status bar. Image from
the original book.

The final step is the operation to do once a menu item is actually selected. The
InvokeCommand method receives a pointer to a structure holding the request. This
method follows a standard pattern of first checking that the request is valid by look-
ing at the two 16-bit words of the lpici.lpVerb value. After these preliminary (but
required) steps, we check the value to see which menu item was activated; or, if the
context menu has only one item, as in this case, we simply test for a value of zero.
The following is the skeleton of the code, before we add the specific action:

function TToDoMenu.InvokeCommand (
 var lpici: TCMInvokeCommandInfo): HResult;
begin
 Result := NOERROR;
 // make sure we are not being called by an application
 if HiWord(Integer(lpici.lpVerb)) <> 0 then
 begin
 Result := E_FAIL;
 Exit;
 end;
 // make sure we aren’t being passed an invalid argument number
 if LoWord(lpici.lpVerb) > 0 then
 begin
 Result := E_INVALIDARG;
 Exit;
 end;
 // execute the command specified by lpici.lpVerb
 if LoWord(lpici.lpVerb) = 0 then

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 15: COM Programming - 741

 begin
 // actual code still missing here
 end
end;

Sending Data to Another Application with
wm_CopyData

Because we have the filename the user is operating on, all we have to do in the con-
text-menu handler is send this name to the main form of the ToDoFile application.
The problem is that the context-menu handler DLL runs in the Windows Explorer
process, so it cannot send the value of a memory pointer to another process. This
would simply be useless; as in Windows 32, different applications have separate
memory address spaces.

We saw in the last chapter that one way to share data among applications is to use a
memory-mapped file. Another technique, which is actually better in this case, is to
use the wm_CopyData message. This is a special Windows message, which can be
used to send a memory buffer to another application: Windows will resolve all the
memory conversion problems for us. A program basically fills the CopyDataStruct
data structure with the data and indicates its length, and then must use the
SendMessage API to forward it to a destination window. For this reason we need to
use FindWindow again to get the handle of the main window of the ToDoFile applica-
tion. Here is the rest of the code of the InvokeCommand method:

var
 hwnd: THandle;
 cds: CopyDataStruct;
begin
 ...
 if LoWord(lpici.lpVerb) = 0 then
 begin
 // get the handle of the window
 hwnd := FindWindow (‘TToDoFileForm’, nil);
 if hwnd <> 0 then
 begin
 // prepare the data to copy
 cds.dwData := 0;
 cds.cbData := length (fFileName);
 cds.lpData := PChar (fFileName);
 // activate the destination window
 SetForegroundWindow (hwnd);
 // send the data
 SendMessage (hwnd, wm_CopyData,
 lpici.hWnd, Integer (@cds));
 end;
 end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

742 - Chapter 15: COM Programming

note Before sending the data, we must activate the destination window by calling the
SetForegroundWindow API. This is necessary because we are going to activate a window that
was created by another thread, something Windows doesn’t normally do. Notice also that if you
write this call in the ToDoFile application as it receives the wm_CopyData message, it will pro-
duce no effect at all.

As the context-menu handler sends data to it, the application has to be extended to
handle the wm_CopyData message. In this event handler we receive the same struc-
ture we sent for the other side, although between the send operation done by the
context menu handler and the receive operation done by the application. Windows
takes care of mapping the data properly to the other address space. As a result,
extracting the filename is actually very simple, but keep in mind that this is so only
because Windows does a lot of work behind the scenes. Using a plain Windows mes-
sage other than wm_CopyData will never work!

Here is the code I’ve added to the form of the ToDoFile application. It does several
things: It restores the application if it was minimized, retrieves the name of the file,
inserts a new record in the database table, copies the filename, and moves the focus
to the memo control once more.

procedure TToDoFileForm.CopyData(var Msg: TWmCopyData);
var
 Filename: string;
begin
 // restore the window if minimized
 if IsIconic (Application.Handle) then
 Application.Restore;

 // extract the filename from the data
 Filename := PChar (Msg.CopyDataStruct.lpData);
 // insert a new record
 Table1.Insert;
 // set up the file name
 Table1.FieldByName (‘Filename’).AsString := Filename;
 // move the input focus to the memo
 DBMemo1.SetFocus;
end;

Registering the Shell Extension

After writing this shell extension, we must register it. With the usual Run Register
ActiveX command, we can register the server in the system, but we still have to pro-
vide some extra information to register it as a shell extension, in this case for any
type of file. There are several approaches, besides manually editing the Registry.
You can write a REG file, along this line:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 15: COM Programming - 743

REGEDIT4

[HKEY_CLASSES_ROOT\CLSID\{CDF05220-DB84-11D1-B9F1-004845400FAA}]
@= “ToDoFile Context Menu”
[HKEY_CLASSES_ROOT\CLSID\{CDF05220-DB84-11D1-B9F1-004845400FAA}
 \InProcServer32]
@= “c:\\md5code\\Part4\\15\\ToDoFile\\ToDoShll.dll”
“ThreadingModel” = “Apartment”

[HKEY_CLASSES_ROOT*\shellex\ContextMenuHandlers\
 {CDF05220-DB84-11D1-B9F1-004845400FAA}]
@= ““

The first part of this file corresponds to the registration already done by installing
the server, while the final part adds the server as a context menu handler for all files
(as indicated by the * symbol under the HKEY_CLASSES_ROOT path).

A totally different but much better approach is to add the registration information
right into the COM server library. The default registration takes place in the
TComObjectFactory class, when the UpdateRegistry method is executed. We can
modify the default registration by inheriting a class from the standard class factory
class and overriding this method:

type
 TToDoMenuFactory = class (TComObjectFactory)
 public
 procedure UpdateRegistry (Register: Boolean); override;
 end;

In this method we should either add the entry in the Registry or delete it, depending
on the value of the Boolean parameter:

procedure TToDoMenuFactory.UpdateRegistry(Register: Boolean);
var
 Reg: TRegistry;
begin
 inherited UpdateRegistry (Register);

 Reg := TRegistry.Create;
 try
 // register or remove the menu handler
 if Register then
 Reg.CreateKey (
 ‘\HKEY_CLASSES_ROOT*\ShellEx\ContextMenuHandler\’ +
 GUIDToString (Class_ToDoMenuMenu))
 else
 Reg.DeleteKey (
 ‘\HKEY_CLASSES_ROOT*\ShellEx\ContextMenuHandler\’ +
 GUIDToString (Class_ToDoMenuMenu));
 finally
 Reg.Free;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

744 - Chapter 15: COM Programming

 end;
end;

In the initialization section of the COM object unit, we also need to create a new
global object of this class instead of the base class factory class:

initialization
 TToDoMenuFactory.Create (
 ComServer, TToDoMenu, Class_ToDoMenuMenu,
 ‘ToDoMenu’, ‘ToDoMenu Shell Extension’,
 ciMultiInstance, tmApartment);

Now you can simply register the server and set it up as a context menu handler by
using the Delphi Run Register ActiveX Server menu command, the RegSrv32
application, or most of the tools used to create installation programs.

What’s Next?

In this chapter I have discussed the foundations of Microsoft’s COM technology.
We’ve seen how Delphi supports COM and how Delphi makes the development of
Explorer extensions very simple.

Next chapter opens up COM to its higher-level techniques, covering Automation,
Documents, and Controls. Now that we know the foundations, exploring these
COM-technologies will be definitely simpler.

We’ll get back to other elements related to COM when discussing Internet and dis-
tributed applications, in Chapter 20.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 745

Chapter 16:

Automation And

ActiveX

After the last chapter, which was devoted to the foundations of Microsoft’s COM
architecture, it is time to look into some of the actual high-level Windows program-
ming techniques based on COM. We’ll start by discussing Automation and the role
of Type Libraries. Also, we’ll see how to work properly with Delphi data types in
Automation servers and clients360.

Later on we’ll focus on the use of the Automation support provided by Microsoft
Office applications, made even simpler in Delphi 5 thanks to some ready-to-use
components that embed Office server programs and documents.

360 While the COM foundations are still very important today, the topics covered in this chapter
have loft some of their relevance. In any case, they are still supported by Windows and by Dle-
phi today.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

746 - Chapter 16: Automation and ActiveX

In the final part of the chapter, we’ll explore the use of embedded objects, with the
OleContainer component, and the development of OLE Controls or ActiveX Con-
trols. But let’s begin with more foundation material.

OLE Automation

In the last chapter, we saw that you can use COM to let an executable file and a
library share objects and that this can be used to interact with the Windows shell.
Most of the time, however, users want applications that can talk to each other. One
of the approaches you can use for this goal is OLE Automation. After presenting a
couple of examples that use custom interfaces based on type libraries, I’ll cover the
development of Word and Excel OLE controllers, showing how to transfer database
information to those applications.

note The current Microsoft documentation uses the term Automation instead of OLE Automation, and
it uses the terms active document and compound document instead of OLE Document. This book
uses this new terminology along with the older “OLE” terminology incorporated into many Delphi
component names and other identifiers.

In Windows, applications don’t live in separate worlds; users often want them to
interact. The Clipboard and DDE offer a very simple way for applications to interact,
as users can copy and paste data between applications. However, more and more
programs offer an OLE Automation interface to let other programs drive them.
Beyond the obvious advantage of programmed automation compared to manual
user operations, these interfaces are completely language-neutral, so you can use
Delphi, C++, Visual Basic, or a macro language to drive an OLE Automation server
regardless of the programming language used to write it.

OLE Automation is very simple to implement in Delphi, thanks to the extensive
work the VCL and the compiler do to shield developers from its intricacies. To sup-
port OLE Automation, Delphi provides a simple wizard and a powerful Type Library
editor, and it supports dual interfaces.

When you use an in-process DLL, the client application can simply use the server
and call its methods directly, because they are in the same address space. When you
use OLE Automation, the situation is more complex. The client (called the con-
troller) and the server are two separate applications running in different address
spaces. For this reason, the system must dispatch the method calls using a complex
mechanism called marshaling (something I won’t cover in detail). What is impor-

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 747

tant to know is that there are two ways a controller can call the methods exposed by
a server:

· It can simply ask for the execution of a method, passing its name in a string, in a
way similar to the dynamic call to a DLL. This is what Delphi does when you use
a variant to call the OLE Automation server. This technique is very easy to use,
but it is rather slow and provides very little compiler type-checking.

· It can import the definition of a Delphi interface for the object on the server and
call its methods in a more direct way (simply dispatching a number). This tech-
nique, based on interfaces, allows the compiler to check the types of the
parameters and produces faster code, but it requires a little more effort from the
programmer. Also, you end up binding your controller application to a specific
version of the server. A variation of this technique involves the use of dispatch
interfaces, based on the definition of the interfaces.

In the following examples, we’ll use all these techniques and compare them a little
further.

Introducing Type Libraries

The most important difference between the two approaches is that the second gen-
erally requires a Type Library, one of the foundations of OLE and COM. A Type
Library is basically a collection of type information. This collection generally
describes all of the elements (the objects, the interfaces, and other type informa-
tion) made available by a server. The key difference between a Type Library and
other descriptions of these elements (such as some C or Pascal code) is that a Type
Library is language-independent. The type elements are defined by OLE as a subset
of the standard elements of programming languages, and any development tool can
use them. Why do we need this information?

As mentioned before, a simple OLE Automation controller can use variants and
have no type information about the server it is using. This means that, behind the
scenes, every function call has to be dispatched to the server using the Inovke
method of IDispatch, passing the function name as a string parameter, and hoping
the name corresponds to an existing function of the server.

Although this sounds difficult, a small code fragment using the old Automation
interface of Microsoft Word, registered as Word.Basic, illustrates how simple it is
for a programmer:

var

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

748 - Chapter 16: Automation and ActiveX

 VarW: Variant;
begin
 VarW := CreateOleObject ('Word.Basic');
 VarW.FileNew;
 VarW.Insert ('Mastering Delphi by Marco Cantu');

note As we’ll see later, Word 97 still registers the Word.Basic interface, which corresponds to the
internal WordBasic macro language, but it also registers the new interface Word.Application,
which corresponds to the VBA macro language. We’ll also see that Delphi 5 provides some compo-
nents that simplify the connection with Microsoft Office applications.

These three lines of code start Word (unless it was already running), create a new
document, and add a few words to it. You can see the effect of this code in Figure
16.1. A variant is a type-variant data type. It can assume as its value different data
types, including a COM object supporting the IDispatch interface. Variants are
type-checked at run time; this is why the compiler can compile the code even if it
doesn’t know about the methods of the OLE Automation server.

Unfortunately, the Delphi compiler has no way to check whether the methods exists.
Doing all the type checks at run time is risky, because if you make even a minor
spelling error in a function name, you get no warning whatsoever of your error until
you run the program and reach that line of code. For example, if you type
VarW.Isnert, the compiler will not complain about the misspelling at all, but at run
time, you’ll get an error. Because it doesn’t recognize the name, Word assumes the
method does not exist.

Although the OLE IDispatch interface supports the approach we’ve just seen, it is
also possible—and safer—for a server to export the description of its interfaces and
objects using a Type Library. This Type Library can then be converted by a specific
tool (such as Delphi) into definitions written in the language you want to use to
write your client or controller program (such as Object Pascal). This makes it possi-
ble for a compiler to check whether the code is correct.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 749

Figure 16.1: This
Word document is
being created and
composed by a Delphi
application, WordTest.
Image from the
original book.

Once the compiler has done its checks, it can use either of two different techniques
to send the request to the server. It can use a plain VTable (that is, an entry in an
interface type declaration), or it can use a dispinterface (dispatch interface). We
used an interface type declaration in the last chapter, so it should be familiar. A
dispinterface is basically a way to map each entry in an interface to a number.
Calls to the server can then be dispatched by number. We can consider this an inter-
mediate technique, in between dispatching by function name and using a direct call
in the VTable.

note The term dispinterface is actually a keyword. A dispinterface is automatically generated by
the Type library editor for every interface. Along with dispinterface, Delphi uses other related
keywords: dispid indicates the number to associate with each element; readonly and
writeonly are optional specifiers for properties.

The term used to describe this ability to connect to a server in two different ways,
using a more dynamic or a more static approach, is dual interfaces. This means that
in writing an OLE controller you can choose to access the methods of a server in two
ways: you can use late binding and the mechanism provided by the dispinterface,
or you can use early binding and the mechanism based on the VTables, the interface
types.

It is important to keep in mind that (along with other considerations) different tech-
niques result in faster or slower execution. Looking up a function by name (and
doing the type checking at run time) is the slowest approach, using a dispinterface
is much faster, and using the direct VTable call is the fastest approach. We’ll do this
kind of test in the TlibCli example, later in this chapter.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

750 - Chapter 16: Automation and ActiveX

Writing an OLE Automation Server

We’ll start by writing an OLE Automation server. To create an OLE Automation
object, you can use Delphi’s Automation Object Wizard. Simply start with a new
application, open the Object Repository by selecting File New, move to the
ActiveX page, and choose Automation Object. In the resulting Automation Object
Wizard (shown in Figure 16.2) enter the name of the class (without the initial T,
because this will be added automatically for you), and click OK. Delphi will now
open the Type Library editor.

Figure 16.2: Delphi’s
Automation Object
Wizard. Image from
the original book.

As you can see in Figure 16.2, Delphi can generate OLE Automation servers that
also export events. Simply select the corresponding check box of the Automation
Object Wizard, and Delphi will add the proper entries in the Type Library and in the
source code it generates.

The Type Library Editor

The Type Library editor is the tool you can use to define a Type Library in Delphi.
Figure 16.3 shows its window after I’ve added some elements to it. The Type Library
editor allows you to add methods and properties to the OLE Automation server
object we’ve just created. Once this is done, it can generate both the Type Library
(TLB) file and the corresponding Object Pascal source code.

To build a simple example, we can add to the server a property and a method. In the
editor, we actually add these two elements to the interface, which should be called
IFirstServer. Simply select it, and then click the Method button of the toolbar.
(The names of these buttons can be displayed by using the local menu of the tool-

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 751

bar.) Now you have to give it a name, such as ChangeColor. You can type the name
either in the Tree View control on the left side of the window or in the Name edit
box on the right side. Delphi automatically defines the new method as a function in
the Invoke Kind box and (as you’ll see on the Parameters page) assigns it an
HRESULT return value and no parameters. This corresponds to the Pascal definition:

procedure ChangeColor; safecall;

There are two reasons for this difference in the type of method. The first is that in
the IDL language used by COM, all methods are indicated as functions (following
the C language style); the second is that Delphi handles the HRESULT error codes
automatically in every method that uses the safecall calling convention.

Figure 16.3: The
Type Library editor,
showing the details of
an interface. Image
from the original book.

note The methods contained in OLE Automation interfaces in Delphi generally use the safecall call-
ing convention. This wraps a try-except block around each method and provides a default
return value indicating error or success.

Now we can add a property to the interface by clicking the Property button of the
Type Library editor’s toolbar. Again we can type a name for it, such as Value, and
select a data type in the Type combo box. Besides selecting one of the many types
already listed, you can also enter other types directly, particularly interfaces of other
objects. Keep in mind, however, that OLE Automation supports only a subset of

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

752 - Chapter 16: Automation and ActiveX

Delphi types. In this example, we can simply select the long type, which corre-
sponds to Delphi’s Integer type.

If you look again in the Parameters page for this example (see Figure 16.4), you can
see that both the Set and Get (actually called Put and Get in the COM jargon) meth-
ods have the HRESULT return value.

You can also see that while the Put method uses the property’s data type as its
parameter (as with Delphi properties), the Get method uses a pointer to the type as
its out parameter. This definition corresponds to the following elements of the Pas-
cal interface:

function Get_Value: Integer; safecall;
procedure Set_Value(Value: Integer); safecall;
property Value: Integer read Get_Value write Set_Value;

Figure 16.4: The
Parameters page of the
Type Library editor.
Image from the
original book.

Clicking the Refresh button on the Type Library editor toolbar generates the Pascal
version of the interface. We’ll examine it shortly, but first I want you to focus on the
Text page of the editor, which includes the definition we’ve just created, written in
the IDL language:

interface IFirstServer: IDispatch
{
 [id(0x00000001)]
 HRESULT _stdcall ChangeColor(void);
 [propget, id(0x00000002)]

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 753

 HRESULT _stdcall Value([out, retval] long * Value);
 [propput, id(0x00000002)]
 HRESULT _stdcall Value([in] long Value);
};

Fortunately, Delphi’s Type Library editor saves you from writing similar code by
hand, and the Delphi environment options (in the Type Library page) include a
radio button to select Pascal or IDL in the text displayed by the Type Library editor.

The Code of the Server

Now we can close the Type Library editor and save the changes. This operation adds
three items to the project: the Type Library file, a corresponding Pascal definition,
and the declaration of the server object. The Type Library is connected to the project
using a resource-inclusion statement, added to the source code of the project file:

{$R *.TLB}

You can always reopen the Type Library editor by using the View Type Library
command or by selecting the proper TLB file in the normal File Open dialog box of
Delphi.

As mentioned earlier, the Type Library is also converted into an interface definition
and added to a new Pascal unit. This unit is quite long, so I’ve listed in the book only
its key elements. The most important part is the new interface declaration:

type
 IFirstServer = interface(IDispatch)
 [‘{89855B42-8EFE-11D0-98D0-444553540000}’]
 procedure ChangeColor; safecall;
 function Get_Value: Integer; safecall;
 procedure Set_Value(Value: Integer); safecall;
 property Value: Integer read Get_Value write Set_Value;
 end;

Then comes the dispinterface, which associates a number with each element of
the IFirstServer interface:

type
 IFirstServerDisp = dispinterface
 [‘{89855B42-8EFE-11D0-98D0-444553540000}’]
 procedure ChangeColor; dispid 1;
 property Value: Integer dispid 2;
 end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

754 - Chapter 16: Automation and ActiveX

The last portion of the file includes the so-called CoClass (also shown in the Type
Library editor), a class used to create an object on the server (and for this reason
used on the client side of the application, not on the server side):

type
 CoFirstServer = class
 class function Create: IFirstServer;
 class function CreateRemote(
 const MachineName: string): IFirstServer;
 end;

All the declarations of this file (there are some others I’ve skipped) can be consid-
ered an internal, hidden implementation support. You don’t need to understand
them fully in order to write most OLE Automation applications.

Finally, Delphi generates a file with the declaration of the actual object. This unit is
added to the application and is the one we’ll work on to finish the program. This
unit declares the class of the server object, which must implement the interface
we’ve just defined:

type
 TFirstServer = class(TAutoObject, IFirstServer)
 protected
 function Get_Value: Integer; safecall;
 procedure ChangeColor; safecall;
 procedure Set_Value(Value: Integer); safecall;
 end;

Delphi already provides us with the skeleton code of the methods, so you only need
to fill the lines in between. This is the final code of the server object methods of the
TLibDemo example:

function TFirstServer.Get_Value: Integer;
begin
 Result := ServerForm.Value;
end;

procedure TFirstServer.ChangeColor;
begin
 ServerForm.ChangeColor;
end;

procedure TFirstServer.Set_Value(Value: Integer);
begin
 ServerForm.Value := Value;
end;

In this case, the three methods simply refer to a property and two methods I’ve
added to the form. In general, you should not add code related to the user interface

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 755

inside the class of the server object. It is better to refer to a user interface element,
such as a form class, and let it perform the actions.

I’ve added a property to the form because I want to change the Value property and
have a side effect (displaying the value in an edit box). The server object, in this
example, simply exposes some properties and methods of the application. Here is
the part of the declaration of the TServerForm class I’ve edited manually:

type
 TServerForm = class(TForm)
 ...
 private
 CurrentValue: Integer;
 protected
 procedure SetValue (NewValue: Integer);
 public
 property Value: Integer
 read CurrentValue write SetValue;
 procedure ChangeColor;
 end;

The implementation of these methods is quite straightforward, and you can easily
guess what their code looks like. What’s important is the SetValue method, which
might produce a side effect:

procedure TServerForm.SetValue (NewValue: Integer);
begin
 if NewValue <> CurrentValue then
 begin
 CurrentValue := NewValue;
 UpDown1.Position := CurrentValue;
 end;
end;

The form of this example has an edit box with an associated UpDown component as
well as a couple of buttons to show the current value and change the color. You can
see this form at design time in Figure 16.5.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

756 - Chapter 16: Automation and ActiveX

Figure 16.5: The form
of the TLibDemo
example at design
time. Image from the
original book.

Registering the Automation Server

The unit containing the server object has one more statement, added by Delphi to
the initialization section:

initialization
 TAutoObjectFactory.Create(ComServer, TFirstServer,
 Class_FirstServer, ciMultiInstance);
end.

note In this case, I’ve selected multiple instancing. For the various instancing styles possible in COM,
see the sidebar “COM Instancing and Threading Models” in Chapter 15.

This is not very different from the creation of class factories we saw in the examples
of the last chapter. Combined with the call to the Initialize method of the
Application object, which Delphi adds by default to the project source code of any
program, the initialization code above makes the registration of this server
straightforward.

You can add the server information to the Windows Registry by running this appli-
cation on the target machine (the computer where you want to install the OLE
automation server), passing to it the /regserver parameter on the command line.
You can do this by selecting Start Run, by using the Explorer or File Manager, or
by running the program within Delphi after you’ve entered a command-line param-
eter (using the Run Parameters command). Another command-line parameter,
/unregserver, is used to remove this server from the Registry.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 757

Writing a Client for Our Server

Now that we have built a server, we can prepare a simple client program to test it.
This client can connect to the server either by using variants or by using the new
Type Library. This second approach can be implemented manually or by using the
new Delphi 5 techniques for wrapping components around Automation servers.
We’ll actually try out all of these approaches.

Create a new application—I’ve called it TLibCli—and then open the Type Library file
of the server, after (optionally) copying it to the project’s directory. Simply save the
Type Library file, using Delphi’s File Save menu command, and a new version of
the interface declarations will be generated for you. Of course, in this case you could
have grabbed the Pascal declarations from the server source code, but I’m trying to
follow a more general approach, which also applies when you haven’t written the
server yet. In fact, you can usually extract the Type Library directly from the exe-
cutable file of the server or from a DLL shipped with the program.

note Do not add the Type Library to the client application, though, because we are writing the OLE
Automation controller, not a server. The Delphi project of a controller should not include the
Type Library of the server it connects to.

You can simply refer to the Pascal file generated by the Type Library editor in the
code of the main form:

uses
 TlibdemoLib_TLB;

I’ve already mentioned that one of the elements of this unit generated by the Type
Library is the creation class, or CoClass, a special class with two class functions you
can use to create a server object locally or remotely (using DCOM). I’ve already
shown you the interface of this class, but here is the implementation:

class function CoFirstServer.Create: IFirstServer;
begin
 Result := CreateComObject(Class_FirstServer)
 as IFirstServer;
end;

class function CoFirstServer.CreateRemote(
 const MachineName: string): IFirstServer;
begin
 Result := CreateRemoteComObject(MachineName,
 Class_FirstServer) as IFirstServer;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

758 - Chapter 16: Automation and ActiveX

You can use the first of these two functions, Create, to create a server object (and
possibly start the server application) on the same computer. You can use the second
function, CreateRemote, to create the server on a different computer, as long as your
version of the operating system supports DCOM.

The two functions are simply a shortcut of the CreateComObject call, which allows
you to create an instance of a COM object if you know its GUID. As an alternative,
you can also use the CreateOleObject function, which requires as parameter the
registered name of the server. There is another difference between these two cre-
ation functions: CreateComObject returns an object of the IUnknown type, whereas
CreateOleObject returns an object of the IDispatch type.

In my example I’m going to use the CoFirstServer.Create shorthand. When you
create the server object you get as return value an IFirstServer interface. You can
use it directly or store it in a variant variable. Here is an example of the first
approach:

var
 MyServer: Variant;
begin
 MyServer := CoFirstServer.Create;
 MyServer.ChangeColor;

This code, based on variants, is not very different from that of the first controller we
built in this chapter (the one that used Microsoft Word). Here is the alternative
code, which has exactly the same effect:

var
 IMyServer: IFirstServer;
begin
 IMyServer := CoFirstServer.Create;
 IMyServer.ChangeColor;

Interfaces, Variants, and Dispatch Interfaces:
Testing the Speed Difference

As I mentioned in the section introducing type libraries, one of the differences
between these approaches is speed. It is actually quite complex to assess the exact
performance of each technique because there are many factors involved. I’ve added
to the TLibCli example a simple test, just to give you an idea. Here is the code of the
test, a loop that accesses the Value of the server. The total value is displayed only to
fool the optimizer, which might otherwise remove some of the code. The real output
of the program relates to the timing, which is determined by calling the

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 759

GetTickCount API function before and after executing the loop. (Two alternatives
are to use Delphi’s own time functions, which are slightly less precise, or to use the
very precise timing functions of the multimedia support unit, MMSystem.) Here is
the code of one of the methods; they are quite similar:

procedure TClientForm.BtnIntfClick(Sender: TObject);
var
 I, K: Integer;
 Ticks: Cardinal;
begin
 Screen.Cursor := crHourglass;
 try
 Ticks := GetTickCount;
 K := 0;
 for I := 1 to 100 do
 K := K + IMyServer.Value;
 Ticks := GetTickCount - Ticks;
 ListResult.items.Add (Format (
 ‘Interface: %d - Seconds %.3f’, [K, Ticks / 1000]));
 finally
 Screen.Cursor := crDefault;
 end;
end;

With this program you can compare the output obtained by calling this method
based on an interface, the corresponding version based on a variant, and even a
third version based on a dispatch interface. An example of the output (which is
added to a list box so you can do several tests and compare the results) is shown in
Figure 16.6. Obviously, the timing depends on the speed of your computer, and you
can also alter the results by increasing or decreasing the maximum value of the loop
counter.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

760 - Chapter 16: Automation and ActiveX

Figure 16.6: The
TLibCli OLE
Automation controller
can access the server in
different ways, with
different performance
results. Notice the
server window in the
background. Image
from the original book.

We’ve already seen how you can use the interface and the variant. What about the
dispatch interface? You can simply declare a variable of the dispatch interface type,
in this case:

var
 DMyServer: IFirstServerDisp;

Then you can use it to call the methods as usual, after you’ve assigned an object to it
by casting the object returned by the CoClass:

DMyServer := CoFirstServer.Create as IFirstServerDisp;

Looking at the timing and at the internal code of the example, there is apparently
very little difference between the use of the interface and of the dispatch interface,
because the two are actually connected. In other words, we can say that dispatch
interfaces are a technique in between variants and interfaces, but they deliver
almost all of the speed of interfaces.

The Scope of Automation Objects

Another important element to keep in mind is the scope of the automation objects.
Variants and interface objects use reference-counting techniques, so if a variable
that is related to an interface object is declared locally in a method, at the end of the
method the object will be destroyed and the server may terminate (if all the objects

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 761

created by the server have been destroyed). For example, writing a method with this
code produces very little effect:

procedure TClientForm.ChangeColor;
var
 IMyServer: IFirstServer;
begin
 IMyServer := CoFirstServer.Create;
 IMyServer.ChangeColor;
end;

Unless the server is already active, a copy of the program is created, and the color is
changed, but then the server is immediately closed as the interface-typed object
goes out of scope. The alternative approach I’ve used in the TLibCli example is to
declare the object as a field of the form and create the COM objects at start-up, as in
this procedure:

procedure TClientForm.FormCreate(Sender: TObject);
begin
 IMyServer := CoFirstServer.Create;
end;

With this code as the client program starts, the server program is immediately acti-
vated. At the program termination, the form field is destroyed and the server closes.
A further alternative is to declare the object in the form but then create it only when
it is used, as in these two code fragments:

// MyServerBis: Variant;
if varType (MyServerBis) = varEmpty then
 MyServerBis := CoFirstServer.Create;
MyServerBis.ChangeColor;

// IMyServerBis: IFirstServer;
if not Assigned (IMyServerBis) then
 IMyServerBis := CoFirstServer.Create;
ImyServerBis.ChangeColor;

note A variant is initialized to the varEmpty type when it is created. If you instead assign the value
null to the variant, its type becomes varNull. Both varEmpty and varNull represent variants
with no value assigned, but they behave differently in expression evaluation. The varNull value
always propagates through an expression (making it a null expression), while the varEmpty
value quietly disappears.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

762 - Chapter 16: Automation and ActiveX

The Server in a Component

When creating a client program for our server or any other Automation server, we
can use a new Delphi 5 approach, namely, wrapping a component around our COM
server. Actually, if you look at the final portion of the TlibdemoLib_TLB file, you can
find the following declaration:

 // OLE Server Proxy class declaration
 TFirstServer = class(TOleServer)
 private
 FIntf: IFirstServer;
 FProps: TFirstServerProperties;
 function GetServerProperties: TFirstServerProperties;
 function GetDefaultInterface: IFirstServer;
 protected
 procedure InitServerData; override;
 function Get_Value: Integer;
 procedure Set_Value(Value: Integer);
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 procedure Connect; override;
 procedure ConnectTo(svrIntf: IFirstServer);
 procedure Disconnect; override;
 procedure ChangeColor;
 property DefaultInterface: IFirstServer
 read GetDefaultInterface;
 property Value: Integer
 read Get_Value write Set_Value;
 published
 property Server: TFirstServerProperties
 read GetServerProperties;
 end;

This is a new component, derived from TOleServer, that the system registers in the
Register procedure, which is part of the unit. If you add this unit to a package, the
new server component will become available on the Delphi Component Palette. You
can also import the Type Library of the new server (with the Project Import Type
Library menu command), add the server to the list (by pressing the Add button and
selecting the server’s executable file), and install it in a new or existing package.
The component will be placed in the Servers page of the Palette. The Import Type
Library dialog box indicating these operations is visible in Figure 16.7.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 763

Figure 16.7: The
Import Type Library
dialog box can be used
to import an
Automation Server
object as a new Delphi
component. Image
from the original book.

I’ve created a new package, AutoPack, available in the directory of the TlibDemo
project. In this package, I’ve added the directive LIVE_SERVER_AT_DESIGN_TIME in
the Directories/Conditionals page of the Project Options dialog box of the package.
This enables an extra feature that you don’t get by default: at design time the server
component will have an extra property that lists as subitems all the properties of the
Automation server. You can see an example in Figure 16.8, taken from the simple
TLibComp example at design time.

note The LIVE_SERVER_AT_DESIGN_TIME directive should be used with care with the most complex
Automation servers (including programs such as Word, Excel, PowerPoint, and Visio). In fact this
setting requires the application to be in a particular mode before you can use some properties of
their automation interfaces. For example, you’ll get exceptions if you touch the Word server
before a document has been opened in Word. That’s why this feature is not active by default in
Delphi—it’s problematic at design time for many servers.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

764 - Chapter 16: Automation and ActiveX

Figure 16.8: A server
component, with the
live properties at
design time. Image
from the original book.

As you can see, the Object Inspector shows that the component has few properties.
AutoConnection indicates when to start up the server component at design time and
as soon as the client program starts. As an alternative, the Automation server is
started the first time one of its methods is called. Another property, ConnectKind,
indicates how to establish the connection with the server. It can always start a new
instance (ckNewInstance), use the running instance (ckRunningInstance, which
causes an access violation if the server is not already running), or select the current
instance or start a new one if none is available (ckRunningOrNew). Finally, you can
ask for a remote server with ckRemote and directly attach a server in the code after a
manual connection with ckAttachToInterface.

OLE Data Types

OLE and COM do not support all of the data types available in Delphi. This is partic-
ularly important for OLE Automation, because the client and the server are often
executed in different address spaces, and the system must move the data from one
side to the other. Also keep in mind that OLE interfaces should be accessible by pro-
grams written in any language.

COM data types include basic data types such as Integer, SmallInt, Byte, Single,
Double, WideString, Variant, and WordBool (but not Boolean). Here is the mapping
of some basic data types, available in the Type Library editor, to the corresponding
Delphi types:

OLE Type Delphi Type

BSTR WideString

byte ShortInt

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 765

CURRENCY Currency

DATE TDateTime

DECIMAL TDecimal

double Double

float Single

GUID GUID

int SYSINT

long Integer

LPSTR PChar

LPWSTR PWideChar

short SmallInt

unsigned char Byte

unsigned int SYSUINT

unsigned long UINT

unsigned short Word

VARIANT OleVariant

Notice that SYSINT is currently defined as an Integer, so don’t worry about the
apparently strange type definition. Besides the basic data types, you can also use
OLE types for complex elements such as fonts, string lists, and bitmaps, using the
IFontDisp, IStrings, and IPictureDisp interfaces. The following sections describe the
details of a server that provides a list of strings and a font to a client.

Exposing Strings Lists and Fonts

The ListServ example is a practical demonstration of how you can expose two com-
plex types, such as a list of strings and a font, from an OLE Automation server
written in Delphi. I’ve chosen these two specific types simply because they are both
supported by Delphi.

The IFontDisp interface is actually provided by Windows and is available in the
ActiveX unit. The AxCtrls Delphi unit extends this support by providing conversion
methods like GetOleFont and SetOleFont. The IStrings interface is provided by
Delphi in the StdVCL unit, and the AxCtrls unit provides conversion functions for
this type (along with a third type I’m not going to use, TPicture).

The server we are building has a very simple form containing a list-box component.
It includes an automation object built around the following interface:

type

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

766 - Chapter 16: Automation and ActiveX

 IListServer = interface (IDispatch)
 [‘{323C4A84-E400-11D1-B9F1-004845400FAA}’]
 function Get_Items: IStrings; safecall;
 procedure Set_Items(const Value: IStrings); safecall;
 function Get_Font: IFontDisp; safecall;
 procedure Set_Font(const Value: IFontDisp); safecall;
 property Items: IStrings read Get_Items write Set_Items;
 property Font: IFontDisp read Get_Font write Set_Font;
 end;

The server object has the same four methods listed in its interface as well as some
private data storing the status, the initialization function, and the destructor:

type
 TListServer = class (TAutoObject, IListServer)
 private
 fItems: TStrings;
 fFont: TFont;
 protected
 function Get_Font: IFontDisp; safecall;
 function Get_Items: IStrings; safecall;
 procedure Set_Font(const Value: IFontDisp); safecall;
 procedure Set_Items(const Value: IStrings); safecall;
 public
 destructor Destroy; override;
 procedure Initialize; override;
 end;

The code of the methods is actually quite simple. The pseudoconstructor creates the
internal objects, and the destructor destroys them. Here is the first of the two:

procedure TListServer.Initialize;
begin
 inherited Initialize;
 fItems := TStringList.Create;
 fFont := TFont.Create;
end;

The Set and Get methods are quite simple, as well. They copy information from the
OLE interfaces to the local data and then from this to the form and vice versa. Here
is the code of the two methods of the strings (the other two, for the font, are quite
similar, so I’ve not listed them here):

function TListServer.Get_Items: IStrings;
begin
 // get the listbox items, converting them
 GetOleStrings (ListServForm.Listbox1.Items, Result);
end;

procedure TListServer.Set_Items(const Value: IStrings);
begin

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 767

 // convert the strings received as parameter
 SetOleStrings (ListServForm.Listbox1.Items, Value);
end;

After we’ve compiled and registered the server, we can turn our attention to the
client application. This simply embeds the Pascal translation of the Type Library of
the server, as in the previous example, and then implements an object that uses the
interface.

Instead of creating the server when the object starts, the client program creates it
when it is required. I’ve described this technique earlier, but the problem is that
because there are several buttons a user can click, and we don’t want to impose an
order, every event should have a handler like this:

if not Assigned (ListServ) then
 ListServ := CoListServer.Create;

This kind of code duplication is quite dangerous, so I’ve decided to use an alterna-
tive approach. I’ve defined a property corresponding to the interface of the server
and defined a read method for it. The property is mapped to some internal data I’ve
defined with a different name to avoid the error of using it directly. Here are the
definitions added to the form class:

private
 fInternalListServ: IListServer;
 function GetListSrv: IListServer;
public
 property ListSrv: IListServer
 read GetListSrv;

The implementation of the Get method can simply check whether the object already
exists. This code is going to be repeated often, but that should not slow down the
application noticeably:

function TListCliForm.GetListSrv: IListServer;
begin
 // eventually create the server
 if not Assigned (fInternalListServ) then
 fInternalListServ := CoListServer.Create;
 Result := fInternalListServ;
end;

The rest of the code of the client application is quite simple, and you can see an
example of the program running (along with the server) in Figure 16.9. This is an
example of the selection of a font, which is then sent to the server:

procedure TListCliForm.btnFontClick(Sender: TObject);
var

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

768 - Chapter 16: Automation and ActiveX

 NewFont: IFontDisp;
begin
 // select a font and apply it
 if FontDialog1.Execute then
 begin
 GetOleFont (FontDialog1.Font, NewFont);
 ListSrv.Font := NewFont;
 end;
end;

There are also several methods related to the strings, which you can see by looking
at the source code of the program.

Figure 16.9: The
ListCli and ListServ
applications share
complex data, namely
fonts and lists of
strings. Image from the
original book.

Using Office Programs

So far, we’ve built both the client and the server side of the OLE Automation con-
nection. If your aim is just to let two applications you’ve built cooperate, this is
certainly a useful technique, although it is not the only one. We’ve seen some alter-
native data-sharing approaches in the last two chapters (using memory-mapped
files and the wm_CopyData message). The real value of OLE Automation is that it is a
standard, so you can use it to integrate your Delphi programs with other applica-
tions your users own. A typical example is the integration of a program with office
applications, such as Microsoft Word and Microsoft Excel, or even with stand-alone
applications, such as AutoCAD.

The integration with these applications provides a two-fold advantage:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 769

· You can let your users work in an environment they know, for example, generat-
ing reports and memos from database data in a format they can easily
manipulate.

· It allows you to avoid implementing complex functionality from scratch, such as
writing your own word-processing code inside a program. Instead of just reusing
simple components, you can reuse complex applications.

There are also some drawbacks with this approach, which are certainly worth men-
tioning:

· The user must own the application you plan to integrate with, and they may also
need a recent version of it to support all the features you are using in your pro-
gram.

· You have to learn a new programming language and programming structure,
often with limited documentation at hand. It is true, of course, that you are still
using Pascal, but the code you write depends on the OLE data types, the types
introduced by the server, and in particular, a collection of interrelated classes
that are often difficult to understand.

· You might end up with a program that works only with a specific version of the
server application, particularly if you try to optimize the calls by using interfaces
instead of variants. In particular, Microsoft does not attempt to maintain script
compatibility between major releases of Word or other Office applications.

We’ve already seen a small source code excerpt from the WordTest example, but
now I want to complete the coverage of this simple but interesting test program by
providing a few extra features.

Sending Data to Microsoft Word

Delphi 5 has simplified the use of Microsoft Office applications by preinstalling
some ready-to-use components that wrap the Automation interface of these servers.
These components, available in the Servers page of the Palette, have been installed
using the same technique I’ve demonstrated in the last section. What I want to
underline here is that the real Delphi 5 innovation lies in this technique of creating
components to wrap existing Automation servers, rather than in the availability of
the predefined server components.

Technically it is possible to use variants to interact with Automation servers, as
we’ve seen in the section “Introducing Type Libraries.” Using interfaces and the
type libraries is certainly better because the compiler helps you catch errors in the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

770 - Chapter 16: Automation and ActiveX

source code and produces faster code. Thanks to the new server component, this
process is also quite simple.

I’ve written a program, called DBOffice, which uses Delphi 5 predefined compo-
nents to send a table to Word and to Excel. In both cases, you can use the
application object, the document/worksheet object, or a combination of the two.
There are other specialized components, for tasks such as handling Excel charts, but
this example will suffice to introduce use of the built-in Office components.

In case of Microsoft Word, I use only a document object with default settings. The
code used to send the table to word starts by adding some text to a document:

procedure TFormOff.BtnWordClick(Sender: TObject);
begin
 WordDocument1.Activate;
 // insert title
 WordDocument1.Range.Text := ‘American Capitals from ‘ +
 Table1.TableName;
 WordDocument1.Range.Font.Size := 14;

This code follows the typical while loop, which scans the database table and has the
following code inside:

while not Table1.EOF do
begin
 // send the two fields
 WordDocument1.Range.InsertParagraphAfter;
 WordDocument1.Paragraphs.Last.Range.Text :=
 Table1.FieldByName (‘Name’).AsString + #9 +
 Table1.FieldByName (‘Capital’).AsString;
 Table1.Next;
end;

The final part of the code gets a little more complex. It works on a selection and on a
row of the table, respectively stored in two variables of the Range and Row types
defined by Word and available in the Word 97 unit.

procedure TFormOff.BtnWordClick(Sender: TObject);
var
 RangeW: Word97.Range;
 v1: Variant;
 ov1: OleVariant;
 Row1: Word97.Row;
begin
 // code above...
 RangeW := WordDocument1.Content;
 v1 := RangeW;
 v1.ConvertToTable (#9, 19, 2);
 Row1 := WordDocument1.Tables.Item(1).Rows.Get_First;
 Row1.Range.Bold := 1;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 771

 Row1.Range.Font.Size := 30;
 Row1.Range.InsertParagraphAfter;
 ov1 := ‘ ‘;
 Row1.ConvertToText (ov1);
end;

As you can see in the last statement above, in order to pass a parameter, you must
first save it in an OleVariant variable, because many parameters are passed by ref-
erence, so you cannot pass a constant value. This implies that if there are many
parameters, you must still define a number of parameters, even if you are fine with
the default values. An alternative, often useful, is to use a temporarily variant vari-
able and apply the method on it, because variants don’t require a strict type
checking on the parameters. This technique is used in the code above to call the
ConvertToTable method, which has more than 10 parameters.

Building an Excel Table

In the case of Excel, I’ve used a slightly different approach and worked with the
application object. The code creates a new Excel spreadsheet, fills it with a database
table, and formats the result. It uses an Excel internal object, Range, which is not to
be confused with a similar type available in Word (the reason this type is prefixed
with the name of the unit defining the Excel Type Library). Here is the complete
code:

procedure TFormOff.BtnExcelClick(Sender: TObject);
var
 RangeE: Excel97.Range;
 I, Row: Integer;
 Bookmark: TBookmarkStr;
begin
 // create and show
 ExcelApplication1.Visible [0] := True;
 ExcelApplication1.Workbooks.Add (NULL, 0);
 // fill is the first row with field titles
 RangeE := ExcelApplication1.ActiveCell;
 for I := 0 to Table1.Fields.Count - 1 do
 begin
 RangeE.Value := Table1.Fields [I].DisplayLabel;
 RangeE := RangeE.Next;
 end;
 // add field data in following rows
 Table1.DisableControls;
 try
 Bookmark := Table1.Bookmark;
 try
 Table1.First;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

772 - Chapter 16: Automation and ActiveX

 Row := 2;
 while not Table1.EOF do
 begin
 RangeE := ExcelApplication1.Range [‘A’ + IntToStr (Row),
 ‘A’ + IntToStr (Row)];
 for I := 0 to Table1.Fields.Count - 1 do
 begin
 RangeE.Value := Table1.Fields [I].AsString;
 RangeE := RangeE.Next;
 end;
 Table1.Next;
 Inc (Row);
 end;
 finally
 Table1.Bookmark := Bookmark;
 end;
 finally
 Table1.EnableControls;
 end;
 // format the section
 RangeE := ExcelApplication1.Range [‘A1’, ‘E’ + IntToStr (Row - 1)];
 RangeE.AutoFormat (3, NULL, NULL, NULL, NULL, NULL, NULL);
end;

You can see the effect of this code in Figure 16.10. Notice that in the code I don’t
handle any events of the Office applications, but many are available. Handling these
events was quite complex in the past, but they now become as simple to handle as
events of native Delphi components. The presence of these events is a reason to
have specific objects for documents and other specific elements: you might want to
know when the user closes a document, therefore this is an event of the document
object, not of the application object.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 773

Figure 16.10: The
Excel spreadsheet
generated by the
DbOffice application.
Image from the
original book.

note When using the Office server components, one of the key problems is the lack of adequate docu-
mentation. Although Microsoft distributes some of it with the high-end version of the Office suite,
this is certainly not Delphi friendly. A totally alternative approach to solve the problem is to use
“Office Partner,” a set of components from DeVries Data Systems, Inc. (www.dvdata.com).
These components map the Office servers, like those available in Delphi, but they also provide
extensive property editors that allow you to work visually with the internal structure of these
servers. With these property editors, you can create documents, paragraphs, tables, and all the
other internal objects even at design time! From my experience, this can really save a lot of time.

Using Compound Documents

Compound Documents, or Active Documents, is Microsoft’s name for the technol-
ogy that allows in-place editing of a document within another one (for example, a
picture in a Word document). This is the technology that originated the term OLE,
but although it is still in use, its role is definitely more limited than Microsoft envi-
sioned when it was introduced in the early 1990s. Compound documents actually
have two different capabilities, object linking and embedding (hence the term
OLE):

· Embedding an object in a compound document corresponds to a smart version
of the copy and paste operations you make with the Clipboard. The key differ-
ence is that when you copy an OLE object from a server application and paste it
into a container application, you copy both the data and some information about

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

774 - Chapter 16: Automation and ActiveX

the server (its GUID). This allows you to activate the server application from
within the container to edit the data.

· Linking an object to a compound document instead copies only a reference to the
data and the information about the server. You generally activate object linking
by using the Clipboard and making a Paste Link operation. When editing the
data in the container application, you’ll actually modify the original data, which
is stored in a separate file.

Because the server program refers to an entire file (only part of which might be
linked in the client document), the server will be activated in a stand-alone window,
and it will act upon the entire original file, not just the data you’ve copied. When
you have an embedded object, instead, the container might support visual (or in-
place) editing, which means that you can modify the object in context, inside the
container’s main window. The server and container application windows, their
menus, and their toolbars are merged automatically, allowing the user to work
within a single window on a number of different object types—and therefore with a
number of different OLE servers—without leaving the window of the container
application.

Another key difference between embedding and linking is that the data of an
embedded object is stored and managed by the container application. The container
saves the embedded object in its own files. By contrast, a linked object physically
resides in a separate file, which is handled by the server exclusively, even if the link
refers only to a small portion of the file.

In both cases, the container application doesn’t have to know how to handle the
object and its data—not even how to display it—without the help of the server.
Accordingly, the server application has a lot of work to do, even when you are not
editing the data. Container applications often make a copy of the image of an OLE
object and use the bitmap to represent the data, which speeds up some operations
with the object itself. The drawback of this approach is that many commercial OLE
applications end up with bloated files (because two copies of the same data are
saved). If you consider this problem along with the relative slowness of OLE and the
amount of work necessary to develop OLE servers, you can understand why the use
of this powerful approach is still somewhat limited, compared with what Microsoft
envisioned a few years ago.

Compound document containers can support OLE in varying degrees. You can place
an object in a container by inserting a new object, by pasting or paste-linking one
from the Clipboard, by dragging one from another application, and so on.

Once the object is placed inside the container, you can then perform operations on
it, using the server’s available verbs, or actions. Usually the edit verb is the default

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 775

action—the action performed when you double-click on the object. For other
objects, such as video or sound clips, play is defined as the default action. You can
typically see the list of actions supported by the current contained object by right-
clicking on it. The same information is available in many programs via the Edit
Object menu item, which has a submenu that lists the available verbs for the current
object.

note Delphi provides no visual support for building compound document servers. You can always write
a server implementing the proper interfaces. Compound document container support, instead, is
easily available through the OleContainer component.

The OLE Container Component

To create a simple OLE container application in Delphi, place an OleContainer com-
ponent in a form. Then select the component, and right-click to activate its local
menu, which will have an Insert Object command. When you select this command,
Delphi displays the standard OLE Insert Object dialog box. This dialog box allows
you to choose from one of the server applications registered on the computer.

Once the OLE object is inserted in the container, the local menu of the control con-
tainer component will have several more custom menu items. The new menu items
include commands to change the properties of the OLE object, insert another one,
copy the existing object, or remove it. The list also includes the verbs, or actions, of
the object (such as Edit, Open, or Play). Once you have inserted an OLE object in
the container, the corresponding server will launch to let you edit the new object. As
soon as you close the server application, Delphi updates the object in the container
and displays it at design time in the form of the Delphi application you are develop-
ing.

If you look at the textual description of a form containing a component with an
object inside, you’ll notice a Data property, which contains the actual data of the
OLE object. Although the client program stores the data of the object, it doesn’t
know how to handle and show that without the help of the proper server (which
must be available on the computer where you run the program). This means that the
OLE object is embedded.

To fully support compound documents, a program should provide a menu and a
toolbar or panel. These extra components are important because in-place editing
implies a merging of the user interface of the client and that of the server program.
When the OLE object is activated in place, some of the pull-down menus of the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

776 - Chapter 16: Automation and ActiveX

server application’s menu bar are added to the menu bar of the container applica-
tion.

OLE menu merging is handled almost automatically by Delphi. You only need to set
the proper indexes for the menu items of the container, using the GroupIndex prop-
erty. Any menu item with an odd index number is replaced by the corresponding
element of the active OLE object. More specifically, the File (0) and Window (4)
pull-down menus belong to the container application. The Edit (1), View (3), and
Help (5) pull-down menus (or the groups of pull-down menus with those indexes)
are taken by the OLE server. A sixth group, named Object and indicated with the
index 2, can be used by the container to display another pull-down menu between
the Edit and View groups, even when the OLE object is active. The OleCont demo
program I’ve written to demonstrate these features allows a user to create a new
object by calling the InsertObjectDialog method of the TOleContainer class.

The InsertObjectDialog method shows a system dialog box, but it doesn’t auto-
matically activate the OLE object:

procedure TForm1.New1Click(Sender: TObject);
begin
 if OleContainer1.InsertObjectDialog then
 OleContainer1.DoVerb (OleContainer1.PrimaryVerb);
end;

Once a new object has been created, you can execute its primary verb using the
DoVerb method. The program also displays a small toolbar with some bitmap but-
tons. I placed some TWinControl components in the form to let the user select them
and thus disable the OleContainer. To keep this toolbar/panel visible while in-place
editing is occurring, you should set its Locked property to True. This forces the panel
to remain present in the application and not be replaced by a toolbar of the server.

To show what happens when you don’t use this approach, I’ve added to the program
a second panel, with some more buttons. Because I haven’t set its Locked property,
this new toolbar will be replaced with that of the active OLE server. When in-place
editing launches a server application that displays a toolbar, that server’s toolbar
replaces the container’s toolbar, as you can see in the lower part of Figure 16.11.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 777

Figure 16.11: The
second toolbar of the
OleCont example (top)
is replaced by the
toolbar of the server
(bottom). Image from
the original book.

note To make all the automatic resizing operations work smoothly, you should place the OLE container
component in a panel component and align both of them to the client area of the form.

Another way to create an OLE objects is to use the PasteSpecialDialog method,
called in the PasteSpecial1Click event handler of the example. Another standard
OLE dialog box, wrapped in a Delphi function, is the one showing the properties of
the object, which is activated with the Object Properties item in the Edit pull-down
menu:

procedure TForm1.Object1Click(Sender: TObject);
begin
 OleContainer1.ObjectPropertiesDialog;
end;

You can see an example of the resulting standard OLE dialog box in Figure 16.12.
Obviously, this dialog box changes depending on the nature of the active OLE object
in the container.

The last feature of the OleCont program is the support for files. This is actually one
of the simplest additions we can make, because the OLE container component
already provides file support.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

778 - Chapter 16: Automation and ActiveX

Figure 16.12: The
standard OLE Object
Properties dialog box,
available in the
OleCont example.
Image from the
original book.

Using the Internal Object

In the last program the user determined the type of the internal object created by
the program. In this case there is little you can do to interact with the internal
objects. Suppose, instead, that you want to embed a Word document in a Delphi
application and then modify it by code. You can do this by using OLE Automation
with the embedded object, as demonstrated by the WordCont example (the name
stands for Word Container).

note Since the WordCont example includes an object of a specific type, a Microsoft Word document, it
won’t run if you don’t have that server application installed. Having a different version of the
server might also create problems if the Automation methods used by the client program are not
available in that version of the server.

In the form of this example, I’ve added an OleContainer component, set its
AutoActivate property to aaManual (so that the only possible interaction is with our
code), and added a toolbar with a couple of buttons. The code for the two buttons is
quite straightforward, once you know that the embedded object corresponds to a
Word document:

procedure TForm1.Button1Click(Sender: TObject);

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 779

var
 Document: Variant;
begin
 // activates if not running
 if not (OleContainer1.State = osRunning) then
 OleContainer1.Run;

 // get the document
 Document := OleContainer1.OleObject;
 // first paragraph to bold
 Document.Paragraphs.Item(1).Range.Bold := 1;
end;

procedure TForm1.Button3Click(Sender: TObject);
var
 Document, Paragraph: Variant;
begin
 // activate if not running
 if not (OleContainer1.State = osRunning) then
 OleContainer1.Run;

 // get the document
 Document := OleContainer1.OleObject;
 // add paragraphs, getting the last one
 Document.Paragraphs.Add;
 Paragraph := Document.Paragraphs.Add;
 // add text to the paragraph, using random font size
 Paragraph.Range.Font.Size := 10 + Random (20);
 Paragraph.Range.Text := ‘New text (‘ +
 IntToStr (Paragraph.Range.Font.Size) + ‘)’#13;
end;

You can see the effect of this code in Figure 16.13. The code is not terribly powerful,
but it does show how you can merge the usage of OLE Containers and OLE Automa-
tion techniques.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

780 - Chapter 16: Automation and ActiveX

Figure 16.13: The
WordCont example
shows how to use OLE
Automation with an
embedded object.
Image from the
original book.

Introducing ActiveX Controls

Microsoft’s Visual Basic was the first program development environment to intro-
duce the idea of supplying software components to the mass market. Actually, the
concept of reusable software components is older than Visual Basic—it’s well rooted
in the theories of object-oriented programming (OOP). But OOP languages never
delivered the reusability they promised, probably more because of marketing and
standardization problems than for any other reason. Although Visual Basic does not
fully exploit object-oriented programming, it applies the component concept
through its standard way of building and distributing new controls that developers
can integrate into the environment.

The first technical standard promoted by Visual Basic was VBX, a 16-bit specifica-
tion that was fully available in the 16-bit version of Delphi. In moving to the 32-bit
platforms, Microsoft replaced the VBX standard with the more powerful and more
open ActiveX controls.

note ActiveX controls used to be called OLE Controls (or OCX). The name change reflects a new mar-
keting strategy from Microsoft rather than a technical innovation. Technically, ActiveX can be
considered a minor extension to the OCX technology. Not surprisingly, then, ActiveX controls are
usually saved in files with the .ocx extension.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 781

From a general perspective, an ActiveX control is not very different from a Win-
dows, Delphi, or Visual Basic control. A control in any of these languages is always a
window, with its associated code defining its behavior. The key difference between
various families of controls is in the interface of the control, the interaction between
the control and the rest of the application. Typical Windows controls use a message-
based interface, VBX controls use properties and events, OLE Automation objects
use properties and methods, and ActiveX controls use properties, methods, and
events. These three elements of properties, methods, and events are also found in
Delphi’s own components.

Using OLE jargon, an ActiveX control is a “compound document object which is
implemented as an in-process server DLL and supports OLE Automation, visual
editing, and inside-out activation.” Perfectly clear, right? Let’s see what this defini-
tion actually means.

An ActiveX control uses the same approach as OLE server objects, which are the
objects you can insert into an OLE Document, as we saw in the last chapter. The dif-
ference between a generic OLE server and an ActiveX control is that, whereas
ActiveX controls can only be implemented in one way, OLE servers can be imple-
mented in three different ways:

· As stand-alone applications (for example, Microsoft Excel)

· As out-of-process servers—that is, executable files that cannot be run by them-
selves and can only be invoked by a server (for example, Microsoft Graph and
similar applications)

· As in-process servers, such as DLLs loaded into the same memory space as the
program using them

ActiveX controls can only be implemented using the last technique, which is also the
fastest: as in-process servers. Furthermore, ActiveX controls are OLE Automation
servers (also discussed in the last chapter). This means you can access properties of
these objects and call their methods.

You can see an ActiveX control in the application that is using it and interact with it
directly in the container application window. This is the meaning of the term visual
editing, or in-place activation. A single click activates the control rather than the
double-click used by OLE Documents, and the control is active whenever it is visible
(which is what the term inside-out activation means), without having to double-
click on it.

As I’ve mentioned before, an ActiveX control has properties, methods, and events.
Properties can identify states, but they can also activate methods. (This is particu-
larly true for ActiveX controls that are updated VBX controls, because in a VBX

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

782 - Chapter 16: Automation and ActiveX

there was no other way to activate a method than by setting a property.) Properties
can refer to aggregate values, arrays, subobjects, and so on. Properties can also be
dynamic (or read-only, to use the Delphi term).

In an ActiveX control, properties are divided into different groups: stock properties
that most controls need to implement; ambient properties that offer information
about the container (similar to the ParentColor or ParentFont properties in Del-
phi); extended properties managed by the container, such as the position of the
object; and custom properties, which can be anything.

Events and methods are well, events and methods. Events relate to a mouse click, a
key press, the activation of a component, and other specific user actions. Methods
are functions and procedures related to the control. There is no major difference
between the ActiveX and Delphi concepts of events and methods.

ActiveX Controls versus Delphi Components

Before I show you how to use and write ActiveX controls in Delphi, let’s go over
some of the technical differences between the two kinds of controls. ActiveX con-
trols are DLL-based. This means that when you use them, you need to distribute
their code (the OCX file) along with the application using them. In Delphi, the code
of the components can be statically linked to the executable file or dynamically
linked to it using a run-time package, so you can always choose.

Having a separate file allows you to share code among different applications, as
DLLs usually do. If two applications use the same control (or run-time package),
you need only one copy of it on the hard disk and a single copy in memory. The
drawback, however, is that if the two programs have to use two different versions
(or builds) of the ActiveX control, some compatibility problems might arise. An
advantage of having a self-contained executable file is that you will also have fewer
installation problems.

Now, what is the drawback of using Delphi components? The real problem is not
that there are fewer Delphi components than ActiveX controls, but that if you buy a
Delphi component, you’ll only be able to use it in Delphi and Borland C++Builder. If
you buy an ActiveX control, on the other hand, you’ll be able to use it in multiple
development environments from multiple vendors. Even so, if you develop mainly
in Delphi and find two similar components based on the two technologies, I suggest
you buy the Delphi one—it will be more integrated with your environment, and
therefore easier for you to use. Also, the native Delphi component will probably be
better documented (from the Pascal perspective), and it will take advantage of Del-

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 783

phi and Object Pascal features not available in the general ActiveX interface, which
is traditionally based on C and C++.

Using ActiveX Controls in Delphi

Delphi comes with some preinstalled ActiveX controls, and you can buy and install
more third-party ActiveX controls easily. After this description of how ActiveX con-
trols work in general, I’ll demonstrate one in a simple example.

The Delphi installation process is very simple. Select Component Import ActiveX
Control in the Delphi menu. This opens the Import ActiveX dialog box, where you
can see the list of ActiveX control libraries registered in Windows. If you choose
one, Delphi will read its Type Library, list its controls, and suggest a filename for its
unit. If the information is correct, simply click on the Create Unit button to view the
Pascal source code file created by Delphi as a wrapper for the ActiveX control. Click
on the Install button to add this new unit to a Delphi package and to the Component
Palette.

Using the WebBrowser Control

To build my example, I’ve used a preinstalled ActiveX control available in Delphi.
Unlike the third-party controls, this is not available in the ActiveX page of the pal-
ette, but in the Internet page. The control, called WebBrowser, is simply a wrapper
around Microsoft’s Internet Explorer engine. The example is a very simple Web
browser361.

The WebBrows program has a TWebBrowser ActiveX control covering its client area
and a control bar at the top and a status bar at the bottom. To move to a given Web
page, a user can simply type in the combo box of the toolbar, select one of the visited
URLs (saved in the combo box), or click on the Open File button to select a local file.

361 For many years Delphi VCL library made this WebBrowser component available, wrapping the
Internet Explorer ActiveX. For some time this was also used in the Delphi IDE for the Wel-
come page. While the WebBrowser component is still there, it now offers a dual interface to
the Internet Explorer ActiveX or to the Chromium-based Edge browsers, surfaced via the Win-
dows platform WebView 2 control. The Welcome Page has been rewritten as a native VCL-
based surface.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

784 - Chapter 16: Automation and ActiveX

The actual implementation of the code used to select a Web or local HTML file is in
the GotoPage method:

procedure TForm1.GotoPage(ReqUrl: string);
begin
 WebBrowser1.Navigate (ReqUrl, EmptyParam, EmptyParam,
 EmptyParam, EmptyParam);
end;

EmptyParam is a predefined OleVariant you can use whenever you want to pass a
default value as a reference parameter. This is a handy shortcut you can use to avoid
creating an empty OleVariant each time you need a similar parameter. This method
is called for by a file, when the user clicks on the Enter key in the combo box, or by
selecting the Go button:

procedure TForm1.BtnOpenClick(Sender: TObject);
begin
 if OpenDialog1.Execute then
 GotoPage (OpenDialog1.FileName);
end;

procedure TForm1.ComboURLKeyPress(Sender: TObject; var Key: Char);
begin
 if Key = #13 then
 GotoPage (ComboUrl.Text);
end;

procedure TForm1.BtnGoClick(Sender: TObject);
begin
 GotoPage (ComboUrl.Text);
end;

Actually there is a fourth use of the GotoPage method. When the program starts, it
loads a greeting HTML from the current directory, with the effect you can see in
Figure 16.14:

procedure TForm1.FormShow(Sender: TObject);
begin
 GotoPage (ExtractFilePath (Application.ExeName) +
 ‘greeting.htm’);
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 785

Figure 16.14: The
WebDemo program at
start-up. As you use it,
you’ll notice that the
program fully supports
graphics and all other
Web extensions, as it is
based on Microsoft
Internet Explorer
engine. Image from the
original book.

The program also handles four events of the WebBrowser control. When the down-
load operations start and end, the program updates the text of the status bar and
also the drop-down list of the combo box:

procedure TForm1.WebBrowser1DownloadBegin(Sender: TObject);
begin
 StatusBar1.Panels[0].Text := ‘Downloading ‘ +
 WebBrowser1.LocationURL + ‘...’;
end;

procedure TForm1.WebBrowser1DownloadComplete(Sender: TObject);
var
 NewUrl: string;
begin
 StatusBar1.Panels[0].Text := ‘Done’;
 // add URL to combobox
 NewUrl := WebBrowser1.LocationURL;
 if (NewUrl <> ‘’) and
 (ComboURL.Items.IndexOf (NewUrl) < 0) then
 ComboURL.Items.Add (NewUrl);
end;

Two other useful events are the OnTitleChange, used to update the caption with the
title of the HTML document, and the OnStatusTextChange event, used to update the
second part of the status bar. This code basically duplicates the information dis-
played in the first part of the status bar by the previous two event handlers:

procedure TForm1.WebBrowser1TitleChange(Sender: TObject;
 const Text: WideString);

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

786 - Chapter 16: Automation and ActiveX

begin
 Caption := Text;
end;

procedure TForm1.WebBrowser1StatusTextChange(Sender: TObject;
 const Text: WideString);
begin
 StatusBar1.Panels[1].Text := Text;
end;

Writing ActiveX Controls

Besides using existing ActiveX controls in Delphi, you can easily develop new ones.
Although you can write the code of a new ActiveX control yourself, implementing all
the required OLE interfaces (and there are many), it’s much easier to use one of the
techniques directly supported by Delphi:

· You can use the ActiveX Control Wizard to turn a VCL control into an ActiveX
control. You start from an existing VCL component, which must be a
TWinControl descendant, and Delphi wraps an ActiveX around it. During this
step Delphi adds a Type Library to the control. (Wrapping an ActiveX control
around a Delphi component is exactly the opposite of what we did to use an
ActiveX inside Delphi.)

· You can create an ActiveForm, place several controls inside it, and ship the entire
form (without borders) as an ActiveX control. This second technique is the same
one used by Visual Basic and is generally aimed at building Internet applications.
However, it is also a very good alternative for the construction of an ActiveX con-
trol based on multiple Delphi controls or on Delphi components that do not
descend from TWinControl.

An optional step you can take in both cases is to prepare a property page for the con-
trol, to use as a sort of property editor for setting the initial value of the properties of
the control in any development environment. It is a sort of alternative to the Object
Inspector in Delphi. Because most development environments allow only limited
editing, it is more important to write a property page than it is to write a component
or a property editor for a Delphi control.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 787

Building an ActiveX Arrow

As an example of the development of an ActiveX control, I’ve decided to take the
Arrow component we developed in Chapter 13 and turn it into an ActiveX. Actually,
we cannot use that component directly, because it was a graphical control, a sub-
class of TGraphicControl. However, turning a graphical control into a window-
based control is usually a straightforward operation.

In this case, I’ve just changed the base class name to TCustomControl (and changed
the name of the class of the control, as well, to avoid a name clash):

type
 TMdWArrow = class(TCustomControl)
 ...

The TWinControl class has very minimal support for graphical output. Its
TCustomControl subclass, however, has basically the same capabilities as the
TGraphicControl class. The key difference is that a TCustomControl object has a
window handle.

After installing this new component in Delphi, we are ready to start developing the
new example. To create a new ActiveX library, simply select File New, move to the
ActiveX page, and choose ActiveX library. Delphi creates the bare skeleton of a DLL,
as we saw at the beginning of this chapter. I’ve saved this library as XArrow, in a
directory with the same name, as usual.

Now it is time to use the ActiveX Control Wizard, available in the ActiveX page of
the Object Repository—Delphi’s New dialog box. In this wizard (shown in Figure
16.15), you simply select the VCL class you are interested in, customize the names
shown in the edit boxes, and click OK; Delphi then builds the complete source code
of an ActiveX control for you.

The use of the three check boxes at the bottom of the ActiveX Control Wizard win-
dow may not be obvious. If you include design-time license support, the user of the
control won’t be able to use it in a design environment without the proper license
key for the control. The second check box allows you to include version information
for the ActiveX, in the OCX file. (Version information is discussed in Chapter 19.) If
the third check box is selected, the ActiveX Control Wizard automatically adds an
About box to the control.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

788 - Chapter 16: Automation and ActiveX

Figure 16.15:
Delphi’s ActiveX
Control Wizard. Image
from the original book.

Take a look at the code the ActiveX Control Wizard generates. The key element of
this wizard is the generation of a Type Library. You can see the library generated for
our arrow control in Delphi’s Type Library editor in Figure 16.16. From the Type
Library information, the Wizard also generates an import file with the definition of
an interface, the dispinterface, and other types and constants.

Figure 16.16: The
Type Library editor
with the Type Library
of the demo ActiveX
control I’ve created.
Image from the
original book.

In this example, the import file is named XArrow_TLB.PAS. The first part of this file
includes a couple of GUIDs, one for the library as a whole and one for the control

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 789

and other constants for the definition of values corresponding to the OLE enumer-
ated types used by properties of the Delphi control, for example:

type
 TxMdWArrowDir = TOleEnum;

const
 adUp = $00000000;
 adLeft = $00000001;
 adDown = $00000002;
 adRight = $00000003;

The real meat is the declaration of the IMdWArrowX interface, which I suggest you
look at in the source code. Notice that the final part of the import unit includes the
declaration of the TMdWArrowX class. This is a TOleControl-derived class you can use
to install the control in Delphi, as we’ve seen in the first part of this chapter. You
don’t need this class to build the ActiveX control. You need it to install the ActiveX
control in Delphi. The class used by the ActiveX server has the same class name but
a different implementation.

The rest of the code, and the code you’ll customize, is in the main unit, which in my
example is called MdWArrowImpl1. This unit has the declaration of the ActiveX
server object, TMdWArrowX, which inherits from TActiveXControl and implements
the specific IMdWArrowX interface:

type
 TMdWArrowX = class(TActiveXControl, IMdWArrowX)
 ...

note The TActiveXControl class does most of the work for providing ActiveX support in Delphi.
This class implements a number of interfaces required by every ActiveX control:
IConnectionPointContainer, IDataObject, IObjectSafety, IOleControl,
IOleInPlaceActiveObject, IOleInPlaceObject, IOleObject,
IPerPropertyBrowsing, IPersistPropertyBag, IPersistStorage,
IPersistStreamInit, IQuickActivate, ISimpleFrameSite,
ISpecifyPropertyPages, IViewObject, and IViewObject2. Just the declaration of the
TActiveXControl class takes more than 250 lines of code, and its implementation code is
responsible for a good part of the 4,000 lines of code of the AxCtrls unit.

Before we customize this control in any way, let’s see how it works. You should first
compile the ActiveX library and then register it using Delphi’s Run Register
ActiveX Server menu command. Now you can install the ActiveX control as we’ve
done in the past, except you have to specify a different name for the new class to
avoid a name clash. If you use this control, it doesn’t look much different from the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

790 - Chapter 16: Automation and ActiveX

original VCL control, but the advantage is that the same component can now be
installed also in other development environments.

Adding New Properties

Once you’ve created an ActiveX control, adding new properties, events, or methods
to it is—surprisingly—simpler than doing the same operation for a VCL component.
Delphi, in fact, provides specific visual support for the former, not for the latter.

You can simply open the Pascal unit with the implementation of the ActiveX con-
trol, and choose Edit Add To Interface. As an alternative you can use the same
command from the local menu of the editor. Delphi opens the Add to Interface dia-
log box (see Figure 16.17). In the combo box of this dialog box, you can choose
between a new property, method, or event. In this example, the first selection will
affect the IMdWArrowX interface and the second the IMdWArrowXEvents interface.

Figure 16.17: The
Add to Interface dialog
box, with the syntax
helper in action. Image
from the original book.

In the edit box you can then type the declaration of this new interface element. If
the Syntax Helper check box is activated, you’ll get hints describing what you should
type next and highlighting any errors. You can see the syntax helper in action in Fig-
ure 16.17. When you define a new ActiveX interface element, keep in mind that you
are restricted to OLE data types. In the XArrow example, I’ve added two properties
to the ActiveX control. Because the Pen and the Brush properties of the original Del-
phi components are not accessible, I’ve made available their color. These are
examples of what you can write in the edit box of the Add to Interface dialog (exe-
cuting it twice):

property FillColor: Integer;
property PenColor: Integer;

note Since a TColor is a specific Delphi definition, it is not legal to use it. TColor is an Integer sub-
range that defaults to Integer size, so I’ve used the standard Integer type directly.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 791

The declarations you enter in the Add to Interface dialog box are automatically
added to the control’s Type Library (TLB) file, to its import library unit, and to its
implementation unit:

type
 IMdWArrowX = interface(IDispatch)
 function Get_FillColor: Integer; safecall;
 procedure Set_FillColor(Value: Integer); safecall;
 function Get_PenColor: Integer; safecall;
 procedure Set_PenColor(Value: Integer); safecall;
 ...
 property FillColor: Integer
 read Get_FillColor write Set_FillColor;
 property PenColor: Integer
 read Get_PenColor write Set_PenColor;

All you have to do to finish the ActiveX control is to fill in the Get and Set methods
of the implementation. Here is the code of the first property:

function TMdWArrowX.Get_FillColor: Integer;
begin
 Result := ColorToRGB (FDelphiControl.Brush.Color);
end;

procedure TMdWArrowX.Set_FillColor(Value: Integer);
begin
 FDelphiControl.Brush.Color := Value;
end;

If you now install this ActiveX control in Delphi once more, the two new properties
will appear. The only problem with this property is that Delphi uses a plain integer
editor, making it quite difficult to enter the value of a new color by hand. A pro-
gram, by contrast, can easily use the RGB function to create the proper color value.

Adding a Property Page

As it stands, other development environments can do very little with our compo-
nent, because we’ve prepared no property page—no property editor. A property
page is fundamental so that programmers using the control can edit its attributes.
However, adding a property page is not as simple as adding a form with a few con-
trols. The property page, in fact, will integrate with the host development
environment. The property page for our control will show up inside a property page
dialog of the host environment, which will provide the OK, Cancel, and Apply but-
tons, and the tabs for showing multiple property pages (some of which might be
provided by the host development environment).

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

792 - Chapter 16: Automation and ActiveX

The nice thing is that support for property pages is built into Delphi, so adding one
is quite simple. You simply open an ActiveX project, then open the usual New Items
dialog box, move to the ActiveX page, and choose Property Page. What you get is
not very different from a form. In fact, the TPropertyPage1 class (created by
default) inherits from the TPropertyPage class of the VCL, which in turn inherits
from TCustomForm.

note Delphi provides four built-in property pages for colors, fonts, pictures, and strings. The GUIDs of
these classes are indicated by the constants Class_DColorPropPage,
Class_DFontPropPage, Class_DPicturePropPage, and Class_DStringPropPage in the
AxCtrls unit.

In the property page, you can add controls as in a normal Delphi form and you can
write code to let the controls interact. I’ve added to the property page a combo box
with the possible values of the Direction property, a check box for the Filled prop-
erty, an edit box with an UpDown control to set the ArrowHeight property, and two
shapes with corresponding buttons for the colors. The only code added to the form
relates to the two buttons used to change the color of the two shape components,
which offer a preview of the colors of the actual ActiveX control. The OnClick event
of the button uses a ColorDialog component, as usual:

procedure TPropertyPage1.ButtonPenClick(Sender: TObject);
begin
 with ColorDialog1 do
 begin
 Color := ShapePen.Brush.Color;
 if Execute then
 begin
 ShapePen.Brush.Color := Color;
 Modified; // enable Apply button!
 end;
 end;
end;

What is important to notice in this code is the call to the Modified method of the
TPropertyPage class. This call is required to let the property page dialog box know
we’ve modified one of the values and to enable the Apply button. When a user inter-
acts with one of the other controls of this form, this call is made automatically. For
the two buttons, however, we need to add this line ourselves.

note Another tip relates to the Caption of the property page form. This will be used in the property
dialog box of the host environment as the caption of the tab corresponding to the property page.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 793

The next step is to associate the controls of the property page with the actual prop-
erties of the ActiveX control. The property page class automatically has two methods
for this: UpdateOleObject and UpdatePropertyPage. As their names suggest, these
two methods copy data from the property page to the ActiveX control and vice
versa. Here is the code for my example:

procedure TPropertyPage1.UpdatePropertyPage;
begin
 { Update your controls from the OleObject }
 ComboDir.ItemIndex := OleObject.Direction;
 CheckFilled.Checked := OleObject.Filled;
 EditHeight.Text := IntToStr (OleObject.ArrowHeight);
 ShapePen.Brush.Color := OleObject.PenColor;
 ShapePoint.Brush.Color := OleObject.FillColor;
end;

procedure TPropertyPage1.UpdateObject;
begin
 { Update the OleObject from your controls }
 OleObject.Direction := ComboDir.ItemIndex;
 OleObject.Filled := CheckFilled.Checked;
 OleObject.ArrowHeight := UpDownHeight.Position;
 OleObject.PenColor := ColorToRGB (ShapePen.Brush.Color);
 OleObject.FillColor := ColorToRGB (ShapePoint.Brush.Color);
end;

The final step is to connect the property page itself to the ActiveX control. When the
control was created, the Delphi ActiveX Control Wizard automatically added a dec-
laration for the DefinePropertyPages method to the implementation unit. In this
method, we simply call the DefinePropertyPage method (this time the method
name is singular) for each property page we want to add to the ActiveX. This
method has as its parameter the GUID of the property page, something you can find
in the corresponding unit. (Of course, you’ll need to add a uses statement referring
to that unit.) Here is the code of my example:

procedure TMdWArrowX.DefinePropertyPages(
 DefinePropertyPage: TDefinePropertyPage);
begin
 DefinePropertyPage(Class_PropertyPage1);
end;

note The connection between the ActiveX control and its property page takes place using a GUID. This
is possible because the property page object can be created through a class factory, and its GUID
is stored in the Windows Registry when you register the ActiveX control library. To see what’s
going on, look at the initialization section of the property page unit, which calls
TActiveXPropertyPageFactory.Create.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

794 - Chapter 16: Automation and ActiveX

Now that we’ve finished developing the property page, and after recompiling and
reregistering the ActiveX library, we can install the ActiveX control inside a host
development environment (including Delphi itself) and see how it looks. Figure
16.18 shows an example. (If you’ve already installed the ActiveX control in Delphi,
you should uninstall it prior to rebuilding it. This process might also require closing
and reopening Delphi itself.)

Figure 16.18: The
XArrow ActiveX
control and its
property page, hosted
by the Delphi
environment. Image
from the original book.

ActiveForms

As I’ve mentioned before, Delphi provides an alternative to the use of the ActiveX
Control Wizard to generate an ActiveX control. You can use an ActiveForm, which is
an ActiveX control that is based on a form and can host one or more Delphi compo-
nents. This is exactly the technique used in Visual Basic to build new controls, and it
makes sense when you want to create a compound component.

For example, to create an ActiveX clock we can simply place on an ActiveForm a
label (which is a graphic control that cannot be used as a starting point for an
ActiveX control) and a timer, and connect the two with a little code. The form/con-

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 795

trol becomes basically a container of other controls, which makes it very easy to
build compound components (easier than for a VCL compound component).

To build such a control, simply close the current project, and select the ActiveForm
icon in the ActiveX page of the File New dialog box. Delphi asks you some infor-
mation in the following ActiveForm Wizard dialog box, similar to the ActiveX
Control Wizard dialog box.

ActiveForm Internals

Before we continue with the example, let’s look at the code generated by the Active-
Form Wizard. The key difference from a plain Delphi form is in the declaration of
the new form class, which inherits from the TActiveForm class and implements a
specific ActiveForm interface:

type
 TAXForm1 = class(TActiveForm, IAXForm1)

As usual, the IAXForm interface is declared in the Type Library and in a correspond-
ing Pascal file generated by Delphi. Here is a small excerpt of the IAXForm1 interface
from the XF1Lib.pas file, with some comments I’ve added:

type
 IAXForm1 = interface(IDispatch)
 [‘{51661AA1-9468-11D0-98D0-444553540000}’]
 // Get and Set methods for TForm properties
 function Get_Caption: WideString; safecall;
 procedure Set_Caption(const Value: WideString); safecall;
 ...
 // TForm methods redeclared
 procedure Close; safecall;
 ...
 // TForm properties
 property Caption: WideString
 read Get_Caption write Set_Caption;

The code generated for the TAXForm1 class implements all the Set and Get methods,
which simply change or return the corresponding properties of the form, and it
implements the events, which again are the events of the form. Here is a small
excerpt:

 private
 procedure ActivateEvent(Sender: TObject);
 protected
 procedure Initialize; override;
 function Get_Caption: WideString; safecall;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

796 - Chapter 16: Automation and ActiveX

 procedure Close; safecall;
 procedure Set_Caption(const Value: WideString); safecall;

Let’s look at the implementation of properties first:

function TAXForm1.Get_Caption: WideString;
begin
 Result := WideString(Caption);
end;

procedure TAXForm1.Set_Caption(const Value: WideString);
begin
 Caption := TCaption(Value);
end;

The TForm events are set to the internal methods when the form is created:

procedure TAXForm1.Initialize;
begin
 OnActivate := ActivateEvent;
 ...
end;

Each event then maps itself to the external ActiveX event, as in the following two
methods:

procedure TAXForm1.ActivateEvent(Sender: TObject);
begin
 if FEvents <> nil then FEvents.OnActivate;
end;

Because of this mapping you should not handle the events of the form directly.
Instead, you can either add some code to these default handlers or simply override
the TForm methods that end up calling the events. (This is exactly the approach you
use when building a Delphi component.) Keep in mind that the interface properties
of an ActiveForm are meant for developers using it as a control, not for final users of
the ActiveForm on the Web. This mapping problem refers only to the events of the
form itself, not to the events of the components of the form. You can continue to
handle the events of the components as usual.

The XClock ActiveX Control

Now that we’ve looked at the code generated by Delphi, we can return to the devel-
opment of the XClock example. Simply place the components on the form, and set
their properties as described below:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 16: Automation and ActiveX - 797

object XClock: TXClock
 AxBorderStyle = afbSunken
 Caption = ‘XClock’
 Color = clBtnFace
 object Label1: TLabel
 Align = alClient
 Alignment = taCenter
 Font.Height = -27
 Font.Name = ‘Arial’
 Font.Style = [fsBold]
 Layout = tlCenter
 end
 object Timer1: TTimer
 OnTimer = Timer1Timer
 end
end

The last step is to write an event handler for the OnTimer event of the timer itself, so
that the control updates the output of the label with the current time every second:

procedure TXClock.Timer1Timer(Sender: TObject);
begin
 Label1.Caption := TimeToStr (Time);
end;

Now simply compile this library, register it, and install it in a package to test it in
the Delphi environment. You can see an example of its use in Figure 16.19. Notice in
this figure the effect of the sunken border. This is controlled by the AxBorderStyle
property of the active form, one of the few properties of active forms that is not
available for a plain form.

ActiveForms are usually considered as a technique to deploy a Delphi application
via the Internet. However, the ActiveX and ActiveForm support provided by Delphi
simply represent to different ways to build ActiveX controls, which can be used both
on a Web page and in another development environment.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

798 - Chapter 16: Automation and ActiveX

Figure 16.19: The
ActiveX timer installed
in a Delphi package.
Image from the
original book.

What’s Next?

In this chapter, I have discussed applications of the Microsoft’s COM technology,
covering automation, documents, and controls. We’ve seen how Delphi makes the
development of Automation servers and clients, and ActiveX controls very simple.
Delphi 5 has improved this support by enabling us to wrap simple components
around Automation server, such as Word and Excel.

We’ll get back to other elements related to COM when discussing Internet and dis-
tributed applications, in Chapters 20 and 21. For the moment, however, most of
Part V of the book will focus on other interesting programming tasks, such as multi-
threading, debugging, and printing. The following chapters offer you some building
blocks for the development of real-world applications. In other words, these chap-
ters try to offer answers for common everyday programming problems.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 17: Multitasking, Multithreading, and Synchronization - 799

Chapter 17:

Multitasking,

Multithreading,

And

Synchronization

The Windows 32 platform allows the execution of many simultaneous programs and
the activation of multiple concurrent threads of execution for a single program.
Although there are differences between Windows NT (now Windows 2000) and the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

800 - Chapter 17: Multitasking, Multithreading, and Synchronization

Windows 95/98 operating systems, most of the key elements are common to the
entire Win32 platform362.

In this chapter we’ll discuss threads, mutexes, and synchronization objects. We’ll
also take a second look at messages and some Application events, which in some
cases offer a simpler solution to the background computing needs of a program.

Events, Messages, and Multitasking
in Windows

To understand how Windows applications work internally, we need to spend a
minute discussing how multitasking is supported in this environment. We also need
to understand the role of timers (and the Timer component) and of background (or
idle) computing.

In short, we need to delve deeper into the event-driven structure of Windows and
its multitasking support. Because this is a book about Delphi programming, I won’t
discuss this topic in detail, but I will provide an overview for readers who have lim-
ited experience with Windows API programming.

Event-Driven Programming

The basic idea behind event-driven programming is that specific events determine
the control flow of the application. A program spends most of its time waiting for
these events and provides code to respond to them. For example, when a user clicks
one of the mouse buttons, an event occurs. A message describing this event is sent
to the window currently under the mouse cursor. The program code that responds
to events for that window will receive the event, process it, and respond accordingly.
When the program has finished responding to the event, it returns to a waiting or
“idle” state.

As this explanation shows, events are serialized; each event is handled only after the
previous one is completed. When an application is executing event-handling code
(that is, when it is not waiting for an event), other events for that application have to

362 More recent versions of Windows, starting from Windows 7 up to Windows 11, used the Win-
dows NT core architecture, offering a much more powerful threading model.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 17: Multitasking, Multithreading, and Synchronization - 801

wait in a message queue reserved for that application (unless the application uses
multiple threads, each with its own message queue). When an application had
responded to a message and returned to a waiting state, it became the last in the list
of programs waiting to handle additional messages. In 16-bit Windows, there was
no way to stop an application from executing a complex event handler, and other
applications simply had to wait.

Event handling and the message queues are still the core of Win32, but in Windows
9x and NT, after a fixed amount of time has elapsed, the system interrupts the cur-
rent application and immediately gives control to the next one in the list. The first
program is resumed only after each application has had a turn. This is called pre-
emptive multitasking.

Because of the limited nonpreemptive multitasking, Win16 applications used many
different techniques to try to divide an algorithm into smaller chunks and execute
them one at a time. These techniques included using timers and performing idle
computing, and they are still useful to obtain the execution of a background task
without the extra effort required by the use of threads. Therefore I’ll describe them
in the following sections.

In Win32, if an application has responded to its events and is waiting for its turn to
process messages, it has no chance to regain control until it receives another mes-
sage (unless it uses multithreading). This is one reason timers continue to be used.
One final note—when you think about events, remember that input events (using
the mouse or the keyboard) account for only a small percentage of the total message
flow in a Windows application. Most of the messages are the system’s internal mes-
sages or messages exchanged between different controls and windows. Even a
familiar input operation such as clicking a mouse button can result in a huge num-
ber of messages, most of which are internal Windows messages.

You can test this yourself by using the WinSight utility included in Delphi363. In
WinSight, choose to view the Message Trace, and select the messages for all of the
windows. Select Start, and then perform some normal operations with the mouse.
You’ll see hundreds of messages in a few seconds (as in Figure 17.1). Of course, Win-
Sight causes Windows to run much slower than usual because of its monitoring. At
normal speed, the flow of messages is much faster than the already high rate you’ll
see when you run WinSight.

363 As mentioned earlier in the book, this utility is no longer available.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

802 - Chapter 17: Multitasking, Multithreading, and Synchronization

Figure 17.1:
The Windows
message tracing
performed by
the WinSight
tool included in
Delphi. Image
based on a
picture of the
original printed
book.

Windows Message Delivery

Before looking at some real examples, we need to consider another key element of
message handling. Windows has two different ways to send a message to a window:

· The PostMessage API function is used to place a message in the application’s
message queue. The message will be handled only when the application has a
chance to access its message queue (that is, when it receives control from the sys-
tem), and only after earlier messages have been processed. This is an
asynchronous call, since you do not know when the message will actually be
received.

· The SendMessage API function is used to execute message-handler code immedi-
ately. SendMessage bypasses the application’s message queue and sends the
message directly to a target window or control. This is a synchronous call. This
function even has a return value, which is passed back by the message-handling
code. Calling SendMessage is no different than directly calling another method or
function of the program.

The difference between these two ways of sending messages is similar to that
between mailing a letter, which will reach its destination sooner or later, and send-
ing a fax, which goes immediately to the recipient. Although you will rarely need to
use these low-level functions in Delphi, this description should help you determine
which one to use if you do need to write this type of code.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 17: Multitasking, Multithreading, and Synchronization - 803

Background Processing and Multitasking

Suppose that you need to implement a time-consuming algorithm. If you write the
algorithm as a response to an event, your application will be stopped completely
during all the time it takes to process that algorithm. To let the user know that
something is being processed, you can display the hourglass cursor, but this is not a
user-friendly solution. Win32 allows other programs to continue their execution,
but the program in question will freeze; it won’t even update its own user interface
if a repaint is requested. In fact, while the algorithm is executing, the application
won’t be able to receive and process any other messages, including the paint mes-
sages.

The simplest solution to this problem is to call the ProcessMessages method of the
Application object many times within the algorithm, usually inside an internal
loop. This call stops the execution, allows the program to receive and handle a mes-
sage, and then resumes execution. This technique has been used in earlier chapters
(such as the Credits example in Chapter 10 and the Callback example in Chapter
10), so I won’t demonstrate it here. The problem with this approach, however, is
that while the program is paused to accept messages, the user is free to do any oper-
ation and might again click the button or press the keystrokes that started the
algorithm. To fix this, you can disable the buttons and commands you don’t want
the user to select, and you can display the hourglass cursor (which technically
doesn’t prevent a mouse click event, but it does suggest that the user should wait
before doing any other operation). An alternative solution is to split the algorithm
into smaller pieces and execute each of them in turn, letting the application respond
to pending messages in between processing the pieces. We have seen in many
examples in past chapters (including the MdEdit5 example in Chapter 7, the Lock-
Test example in Chapter 10, and the MdClock component in Chapter 13) that we can
use a timer to let the system notify us once a time interval has elapsed. Although you
can use timers to implement some form of background computing, this is far from a
good solution. A slightly better technique would be to execute each step of the pro-
gram when the Application object receives the OnIdle event.

The difference between calling ProcessMessages and using the OnIdle events is that
by calling ProcessMessages, you will give your code more processing time than with
the OnIdle approach. Calling ProcessMessages is a way to let the system perform
other operations while your program is computing; using the OnIdle event is a way
to let your application perform background tasks when it doesn’t have pending
requests from the user.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

804 - Chapter 17: Multitasking, Multithreading, and Synchronization

A third way to implement background processing—less common and more complex
—is to have the application post a user-defined message to itself at the end of each
step in the background process:

PostMessage (Handle, wm_User, 0, 0);

The application will get this message after a while, so it can execute the next step
and then post another message to itself, continuing until the background processing
is done.

note All these techniques for background computing were necessary in 16-bit Windows days. In
Win32, multitasking between applications works better and the system provides threads exactly
to let you implement background processing. However, techniques such as using timers, process-
ing the OnIdle event, and posting custom message are still very common364.

Checking for a Previous Instance of
an Application

One form of multitasking is the execution of two or more instances of the same
application. Any application can generally be executed by a user in more than one
instance, and it needs to be able to check for a previous instance already running, in
order to disable this default behavior and allow for one instance at most. This sec-
tion demonstrates several ways of implementing such a check, allowing me to
discuss a number of interesting Windows programming techniques.

note In 16-bit Windows applications, you could test the value of the HPrevInstance system parame-
ter to see if a previous instance of the application was running. Unfortunately, in 32-bit Windows,
this parameter is always 0.

364 They were very common by the time the book was written, not today. With the advent of
multi-core CPUs, the issue has shifted from keeping the UI responsive to take more advantage
of the computing power by letting multiple operations happen in parallel. The use of threads
has become more common because it lets you address both use cases.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 17: Multitasking, Multithreading, and Synchronization - 805

Looking for a Copy of the Main Window

To find a copy of the main window of a previous instance, use the FindWindow API
function and pass it the name of the window class (the name used to register the
form’s window type, or WNDCLASS, in the system) and the caption of the window for
which you are looking. In a Delphi application, the name of the WNDCLASS window
class is the same as the Object Pascal name for the form’s class (for example,
TForm1). The result of the FindWindow function is either a handle to the window or
zero (if no matching window was found).

The main code of your Delphi application should be written so that it will execute
only if the FindWindow result is zero:

var
 Hwnd: THandle;
begin
 Hwnd := FindWindow (‘TForm1’, nil);
 if Hwnd = 0 then
 begin
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 Application.Run;
 end
 else
 SetForegroundWindow (Hwnd)
end.

To activate the window of the previous instance of the application, you can use the
SetForegroundWindow function, which works for windows owned by other pro-
cesses. This call produces its effect only if the window passed as parameter hasn’t
been minimized. When the main form of a Delphi application is minimized, in fact,
it is hidden and for this reason the activation code has no effect.

Unfortunately, if you run a program that uses the FindWindow call just shown from
within the Delphi IDE, a window with that caption and class may already exist: the
design-time form. Thus, the program won’t start even once. However, it will run if
you close the form and its corresponding source code file (closing only the form, in
fact, simply hides the window), or if you close the project and run the program from
the Windows Explorer.

Using a Mutex

A completely different approach is to use a mutex, or mutual exclusion object. This
is a typical Win32 approach, commonly used for synchronizing threads, as we’ll see

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

806 - Chapter 17: Multitasking, Multithreading, and Synchronization

later in this chapter. Here we are going to use a mutex for synchronizing two differ-
ent applications, or (to be more precise) two instances of the same application.

Once an application has created a mutex with a given name, it can test whether this
object is already owned by another application, calling the WaitForSingleObject
Windows API function. If the mutex has no owner, the application calling this func-
tion becomes the owner. If the mutex is already owned, the application waits until
the time-out (the second parameter of the function) elapses. It then returns an error
code.

To implement this technique, you can use the following project source code, which
you’ll find in the OneCopy example:

var
 hMutex: THandle;
begin
 HMutex := CreateMutex (nil, False, ‘OneCopyMutex’);
 if WaitForSingleObject (hMutex, 0) <> wait_TimeOut then
 begin
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 Application.Run;
 end;
end.

If you run this example twice, you’ll see that it creates a new, temporary copy of the
application (the icon appears in the Taskbar) and then destroys it when the time-out
elapses. This approach is certainly more robust than the previous one, but it lacks a
feature: how do we enable the existing instance of the application? We still need to
find its form, but we can use a better approach.

Searching the Window List

When you want to search for a specific main window in the system, you can use the
EnumWindows API functions. Enumeration functions are quite peculiar in Windows,
because they usually require another function as a parameter. These enumeration
functions require a pointer to a function (often described as a callback function) as
parameter. The idea is that this function is applied to each element of the list (in this
case, the list of main windows), until the list ends or the function returns False.
Here is the enumeration function from the OneCopy example:

function EnumWndProc (hwnd: THandle;
 Param: Cardinal): Bool; stdcall;
var
 ClassName, WinModuleName: string;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 17: Multitasking, Multithreading, and Synchronization - 807

 WinInstance: THandle;
begin
 Result := True;
 SetLength (ClassName, 100);
 GetClassName (hwnd, PChar (ClassName), Length (ClassName));
 ClassName := PChar (ClassName);
 if ClassName = TForm1.ClassName then
 begin
 // get the module name of the target window
 SetLength (WinModuleName, 200);
 WinInstance := GetWindowLong (hwnd, GWL_HINSTANCE);
 GetModuleFileName (WinInstance,
 PChar (WinModuleName), Length (WinModuleName));
 WinModuleName := PChar(WinModuleName); // adjust length

 // compare module names
 if WinModuleName = ModuleName then
 begin
 FoundWnd := Hwnd;
 Result := False; // stop enumeration
 end;
 end;
end;

This function, called for each nonchild window of the system, checks the name of
each window’s class, looking for the name of the TForm1 class. When it finds a win-
dow with this string in its class name, it uses GetModuleFilename to extract the
name of the executable file of the application that owns the matching form. If the
module name matches that of the current program (which was extracted previously
with similar code), you can be quite sure that you have found a previous instance of
the same program. Here is how you can call the enumerated function:

var
 FoundWnd: THandle;
 ModuleName: string;

begin
 if WaitForSingleObject (hMutex, 0) <> wait_TimeOut then
 ...
 else
 begin
 // get the current module name
 SetLength (ModuleName, 200);
 GetModuleFileName (HInstance,
 PChar (ModuleName), Length (ModuleName));
 ModuleName := PChar (ModuleName); // adjust length

 // find window of previous instance
 EnumWindows (@EnumWndProc, 0);

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

808 - Chapter 17: Multitasking, Multithreading, and Synchronization

Handling User-Defined Window Messages

I’ve mentioned earlier that the SetForegroundWindow call doesn’t work if the main
form of the program has been minimized. Now we can solve this problem. You can
ask the form of another application, the previous instance of the same program in
this case, to restore its main form by sending it a user-defined window message.
You can then test whether the form is minimized and post a new user-defined mes-
sage to the old window. Here is the code; in the OneCopy program, it follows the last
fragment shown in the previous section:

 if FoundWnd <> 0 then
 begin
 // show the window, eventually
 if not IsWindowVisible (FoundWnd) then
 PostMessage (FoundWnd, wm_User, 0, 0);
 SetForegroundWindow (FoundWnd);
 end;

Again, the PostMessage API function sends a message to the message queue of the
application that owns the destination window. In the code of the form, you can add
a special function to handle this message:

public
 procedure WMUser (var msg: TMessage);
 message wm_User;

Now you can write the code of this method, which is simple:

procedure TForm1.WMUser (var msg: TMessage);
begin
 Application.Restore;
end;

Multithreading in Delphi

Win32 allows us to let two procedures or methods execute at the same time and let
our program control them. Before we look at the implementation of multithreading,
we should ask ourselves why we might want to have several threads of execution
inside a given program. First, consider some of the disadvantages of multithread-
ing:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 17: Multitasking, Multithreading, and Synchronization - 809

· Multithreading makes a program run slower, unless you have multiple CPUs and
the operating system can split the threads among processors365.

· A poorly written multithreaded application can run slower on a multiprocessor
system than on a single processor system. Synchronization between threads is
much more expensive on multiprocessor systems than on single.

· Multithreading programs must synchronize access to shared resources and
memory, which makes them much more complex to write, as we’ll see in many
cases.

Fortunately, multithreading also has some advantages. For example, you can run a
thread in the background, letting the user continue to operate the program. You can
make one thread run faster than others by adjusting its priority, regulate the
resource access of different threads, assign local storage to each thread, and spawn
multiple threads of the same type. But the key advantage is that you can simply
write your algorithm inside a thread, without having to worry about splitting it, let-
ting the system refresh the user interface, or anything else.

The best operation to consider putting in a background thread is something that
takes considerable CPU time to complete (threads are expensive to create for the
operating system, so you must make sure it’s worth the trouble) and is fairly isolated
in terms of data access (no synchronization to access shared resources). If an opera-
tion is quick to finish, or heavily dependent on external shared data, threads aren’t
worth the trouble. Similarly, using threads to split up a multistep process that is
inherently sequential in nature is a waste of time. (My own example programs don’t
always stick to these rules; but they are, after all, only examples designed to demon-
strate specific techniques.)

The TThread Class

Windows provides a series of API calls to control threads (the key one is
CreateThread), but I won’t discuss them here because Delphi provides a TThread
class that will let us control threads well enough366.

365 While multi core CPUs where uncommon for PCs at the time this book was written, now they
are everywhere, including in your phone. Therefore, as already mentioned, the relevance of
multi-threading has grown significantly.

366 While additional features have been added to the TThread class, the core concepts remain the
same today. Delphi introduced also newer concepts, like parallel for loops, tasks and futures,
but those fall way beyond the scope of the notes to this book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

810 - Chapter 17: Multitasking, Multithreading, and Synchronization

The first thing to know about the TThread class is that you never use it directly,
because it is an abstract class—a class with a virtual abstract method. To use
threads, you always subclass TThread and use the features of this base class. The
TThread class has a constructor with a single parameter that lets you choose whether
to start the thread immediately or suspend it until later:

constructor Create(CreateSuspended: Boolean);

There are also some public synchronization methods:

procedure Resume;
procedure Suspend;
function Terminate: Integer;
function WaitFor: Integer;

The published properties include Priority, Suspended, and two read-only, low-level
values: Handle and ThreadID. The class also provides a protected interface, which
includes two key methods for your thread subclasses:

procedure Execute; virtual; abstract;
procedure Synchronize(Method: TThreadMethod);

The Execute method, declared as a virtual abstract procedure, must be redefined by
each thread class. It contains the main code of the thread, the code you would typi-
cally place in a thread function when using the Windows API. The Synchronize
method is used to avoid concurrent access to VCL components. The VCL code runs
inside the main thread of the program, and you need to synchronize access to the
VCL to avoid reentrancy problems (errors from reentering a function before a previ-
ous call is completed). The only parameter of Synchronize is a method that accepts
no parameters, typically a method of the same thread class367.

General VCL controls, by contrast, are not thread-safe. For example, you should not
create VCL controls in the context of a background thread: window handles only
receive messages on the message queue of the thread in which the handle was cre-
ated. If you create a control in a background thread, the Application object in the
main thread will not dispatch messages to that control’s window handle. Microsoft
strongly advises against using multiple threads for user interface creation.

What VCL does support, to a limited degree, is manipulation of main-thread VCL
controls from background threads. The most common case is a background thread
wanting to draw on the form. For example, the TCanvas class has two locking meth-
ods, Lock and UnLock, that allow a background thread to paint directly on the Canvas

367 There is now an overloaded version of the Synchronize method, which takes an anonymous
method as parameter.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 17: Multitasking, Multithreading, and Synchronization - 811

of the main form. TBitmap and TJPEGImage classes can be use for image processing
in background threads. Another helpful class is TThreadList, which allow different
threads to access the same TList safely and concurrently.

note Delphi 5 has improved the thread safety of parts of the run-time library (RTL). String reference
counting now works across threads, and the reference counting of COM objects has also been
improved, to better support the COM apartment-threading model.

A First Example

As a first simple example, I’ve built a program that uses the Synchronize method.
The program, called ThOld, uses a thread to paint on the surface of a form. The
thread class, TPainterThread, overrides the Execute method and defines a custom
Paint method. The Paint method is used to access VCL objects, so it is called only
from within the Synchronize method. Since the Paint method cannot accept
parameters directly and still be a compatible argument for the Synchronize method,
the class requires some private data. Here is the thread class declaration:

type
 TPainterThread = class(TThread)
 private
 X, Y: Integer;
 protected
 procedure Execute; override;
 procedure Paint;
end;

The Paint method marks pixels of the form in red:

procedure TPainterThread.Paint;
begin
 Form1.Canvas.Pixels [X, Y] := clRed;
end;

The main function of the thread, Execute, randomly updates a pixel by passing the
Paint method as the parameter of the Synchronize method:

procedure TPainterThread.Execute;
begin
 Randomize;
 repeat
 X := Random (300);
 Y := Random (Form1.ClientHeight);
 Synchronize (Paint);
 until Terminated;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

812 - Chapter 17: Multitasking, Multithreading, and Synchronization

end;

Figure 17.2 shows the result of this code. As you can see in the listing above, the
thread runs until it is terminated. On the main form, there is a button used to start
the thread. Because we pass False to the Create constructor (in the Button1Click
method), the thread starts immediately:

PT := TPainterThread.Create (False); // start immediately

PT is a private TPainterThread field of the form class. A second button frees the
thread object.

Figure 17.2: The
output of the ThOld
example. The colored
pixels are painted by a
background thread.
Picture captured after
rebuilding the program
in Delphi 12.

The main form also handles mouse clicks; when a mouse button is pressed on the
form, the red pixels within a circular portion of the form around the click position
are wiped out, repainting the form with its background color (as you can guess by
looking at Figure 17.2):

procedure TForm1.FormMouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 Canvas.Pen.Color := Color; // of the form
 Canvas.Brush.Color := Color;
 Canvas.Ellipse (x - 30, y - 30, x + 30, y + 30);
end;

A Locking Example

We can now rewrite the previous example using the native support for thread syn-
chronization provided by the TCanvas class. In this case, to access the form’s canvas

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 17: Multitasking, Multithreading, and Synchronization - 813

we can simply lock it and avoid the call to Synchronize, simplifying the code and
making its execution much faster. The thread class in the ThLock example has just
one method:

type
 TPainterThread = class(TThread)
 protected
 procedure Execute; override;
 end;

The code of Execute now does everything, including displaying the output, after
locking the canvas of the form:

procedure TPainterThread.Execute;
var
 X, Y: Integer;
begin
 Randomize;
 repeat
 X := Random (300);
 Y := Random (Form1.ClientHeight);
 with Form1.Canvas do
 begin
 Lock;
 try
 Pixels [X, Y] := clRed;
 finally
 Unlock;
 end;
 end;
 until Terminated;
end;

If you then want to access the Canvas in an event handler other than OnPaint (which
handles locking automatically) you should call the Lock method again:

procedure TForm1.FormMouseDown (Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 Canvas.Lock;
 try
 Canvas.Pen.Color := clYellow;
 Canvas.Brush.Color := clYellow;
 Canvas.Ellipse (x - 30, y - 30, x + 30, y + 30);
 finally
 Canvas.Unlock;
 end;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

814 - Chapter 17: Multitasking, Multithreading, and Synchronization

Synchronization Alternatives

The use of the Lock method is limited to the few Delphi objects that have this capa-
bility. The alternative is to continue using the Synchronize protected method of the
TThread class when you expect several threads to need access to a component’s
properties at the same time. Generally you will use secondary threads for back-
ground operations, such as file transfer or number crunching, with little or no need
to update the user interface. If you need limited updates of the user interface, there
are alternative approaches to the two techniques just mentioned.

First, a thread can update some data structure (such as a queue or a circular buffer),
which the main thread scans from time to time. You have to take care to avoid
read/write collisions between different threads. As a second alternative, you can use
traditional Windows-based multitasking; the thread can post a message to the main
window, asking for an update. Keep in mind that you cannot always use
SendMessage (which is synchronous, similar to a direct function call) to do this;
instead, you should use only PostMessage (which is asynchronous and uses the mes-
sage queue). These alternative techniques are not used frequently anyway,
compared to the first two I’ve shown you, so there is no example in the book imple-
menting them.

Thread Priorities

Our third example of threads is an extension of the previous one. This time we use
several threads at the same time, and the program allows users to change their pri-
orities with some track bars. Here is the new version of the TPainterThread class:

type
 TPainterThread = class(TThread)
 private
 Color: Integer;
 protected
 procedure Execute; override;
 public
 constructor Create (Col: TColor);
 end;

I’ve added a constructor to the class to pass an initial color value to the thread. As an
alternative, I could have made the Color a public field of the thread class to allow
the program to manipulate them directly. Here is the code of the constructor:

constructor TPainterThread.Create(Col: TColor);
begin

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 17: Multitasking, Multithreading, and Synchronization - 815

 Color:= Col;
 inherited Create (True);
end;

The constructor initializes the private data and then calls the constructor of the base
class, creating the thread in a suspended state. The Execute method of the thread
simply scans each screen line, setting each pixel to the given color:

procedure TPainterThread.Execute;
var
 X, Y, X1: Integer;
begin
 X := 0;
 Y := 0;
 repeat
 // scan the lines...
 X1 := X + 1;
 X := X1 mod 250;
 Y := Y + X1 div 250;
 Y := Y mod Form1.ClientHeight;
 Form1.Canvas.Lock;
 try
 Form1.Canvas.Pixels [X, Y] := Color;
 finally
 Form1.Canvas.UnLock;
 end;
 until Terminated;
end;

The main form has four check boxes and four track bars (as you can see in Fig-ure
17.3). The form has some local data, too, an array to hold the four thread objects:

private
 PT: array [1..4] of TPainterThread;

This array is initialized when the form is created:

procedure TForm1.FormCreate(Sender: TObject);
begin
 PT [1] := TPainterThread.Create (clRed);
 PT [2] := TPainterThread.Create (clBlue);
 PT [3] := TPainterThread.Create (clGreen);
 PT [4] := TPainterThread.Create (ClBlack);
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

816 - Chapter 17: Multitasking, Multithreading, and Synchronization

Figure 17.3: The
output of the ThPrior
example, with four
threads updating the
user interface
concurrently. Image
recaptured by
rebuilding the app in
Delphi 12.

Notice that the program creates the four threads as suspended. They are started
when the corresponding check box is checked and suspended again when the check
box is cleared:

procedure TForm1.CheckBox1Click(Sender: TObject);
begin
 if (Sender as TCheckbox).Checked then
 PT [(Sender as TCheckbox).Tag].Resume
 else
 PT [(Sender as TCheckbox).Tag].Suspend;
end;

To use the same event handler for all check boxes, I’ve set the value of the Tag prop-
erty of each one to the number of the corresponding thread. Sometimes when you
disable one of the threads by selecting the corresponding check box, all the threads
stop at once. If you happen to stop a thread while it has locked the canvas, all the
other threads will have to wait for the canvas to be unlocked, but this cannot happen
until you resume the threads. This problem can be solved in various ways, using the
TryLock and LockCount methods of the Canvas. In the final version of the ThPrior
example I’ve replaced the call to Suspend shown above with a call to another func-
tion I’ve added to the thread:

procedure TForm1.CheckBox1Click(Sender: TObject);
begin
 if (Sender as TCheckbox).Checked then
 PT [(Sender as TCheckbox).Tag].Resume
 else
 PT [(Sender as TCheckbox).Tag].DelayedSuspend;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 17: Multitasking, Multithreading, and Synchronization - 817

The DelayedSuspend method of the thread simply sets the SuspendRequest Boolean
field of the thread. This Boolean value is checked at the end of the cycle inside the
thread execution code, which eventually calls Suspend on itself. This is the code
added to TPainterThread.Execute (added to the listing shown earlier, just before
the end of the repeat-until statement):

 if SuspendRequest then
 begin
 Suspend;
 SuspendRequest := False;
 end;

With this technique we know for sure that Suspend is called only when the thread is
not locking the canvas.

The Tag property is also used with the track bars, which set the current priority of
the thread:

procedure TForm1.TrackBar1Change(Sender: TObject);
begin
 PT [(Sender as TTrackBar).Tag].Priority :=
 TThreadPriority ((Sender as TTrackBar).Position);
end;

To set the priority, I simply cast the current Position of the track bar to the corre-
sponding TThreadPriority enumeration value. Then I use the resulting value to set
the priority of the corresponding thread, as determined by the Tag property. This
program is quite instructive, because you can alter thread priorities and see the
effect on the screen.

Running it, you’ll notice that a nonblocking thread running at a higher priority
(even just one notch above normal) will consume almost all the CPU time and
starve all lower-priority threads in the process. This means you should only raise the
priority of a thread that spends most of its time blocked, waiting for an event to sig-
nal; and even then, you should question the need to tinker with priority. What’s
more common in Windows applications is to lower the priority of a thread to below
normal, so that it executes only when everything else is quiet and the application
remains responsive to user input.

Synchronizing Threads

We have seen that there are two common approaches for synchronizing a thread
with the rest of the application: using the Synchronize method of a thread object

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

818 - Chapter 17: Multitasking, Multithreading, and Synchronization

and using the Lock method of a VCL class that provides it, such as TCanvas. In an
earlier example we also used the Lock method of the Canvas of the main form to
synchronize four threads that were painting on the screen. But that was an atypical
case. Generally you’ll need to use other techniques to synchronize two threads,
including low-level techniques available in the Windows API.

In the next section I’ll discuss a simple case, waiting for a thread to terminate. Then,
in following sections, we will see more complex examples.

Waiting for a Thread

When a thread should wait until another thread is done, it can simply call the
WaitFor method of the object corresponding to the thread that should terminate.
Here is a portion of an example, in which a program starts a thread and then waits
for its result:

Comp := TMyThread.Create (True);
// initialize the thread...
Comp.Resume;
Comp.WaitFor;
// look for final values...
Comp.Free;

note If you create a thread in the suspended state and then destroy it before resuming it, you will leak
memory. This is not a specific Delphi problem; Microsoft’s tools warn against this as well. The
technical reason is that the creation of the thread handle involves some temporary memory allo-
cation to pass context information into the procedure associated with the thread. As soon as the
thread begins execution, the temporary memory is freed; but if the thread is destroyed without
ever executing, the temporary memory is lost. The amount of memory lost is quite small (only 12
bytes), but even this can turn into a fatal situation in a server application intended to run continu-
ously for months or years.

This code is quite simple to write, but remember that you cannot write this code as
part of the main thread (for example, in a normal message-response function) if the
secondary thread has to synchronize with it. If the thread connected to the main
form is waiting for another thread to finish, and the secondary thread is waiting to
access the user interface (hence waiting for the main thread to finish its current
job), the program will enter a deadlock!

To avoid this problem, you can use WaitFor to synchronize two threads. A first
thread creates a secondary thread, and waits for it to end, without interfering with
the main form’s thread.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 17: Multitasking, Multithreading, and Synchronization - 819

To show you an example of synchronization with multiple threads, I’ve built a char-
acter-counting program, called ThWait. The program computes how many copies of
the four characters specified in an edit box are present in the text of a Memo compo-
nent (as an alternative, you can load the text from any file, as long as you do so
before starting the computation). The program looks for each of the four characters
at the same time, using multiple threads spawned by the main thread. To improve
the output, each thread shows its status—that is, how far through the text it has
searched—in a progress bar, as you can see in Figure 17.4.

Because memo lines are fetched using a SendMessage to the control’s window han-
dle, and a window’s messages are processed in the context of the main thread, in
practice there is no advantage to using four threads to scan through the text of the
same memo control. Still, the example demonstrates some useful techniques.

Figure 17.4: In the
ThWait example, each
thread outputs its
status in a progress
bar. Image based on a
picture of the original
printed book.

The actual engine of the program is the TFindThread class, which contains the
LookFor field to hold the character we are searching for and a Progress field to store
the value of the progress bar and update its status. The result of the computation is
placed in the public Found field:

type
 TFindThread = class(TThread)
 protected
 Progr: Integer;
 procedure UpdateProgress;
 procedure Execute; override;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

820 - Chapter 17: Multitasking, Multithreading, and Synchronization

 public
 Found: Integer;
 LookFor: Char;
 Progress: TProgressBar;
 end;

As usual, the core of the thread is in its Execute method, which scans the lines of the
memo, looking for the given character. Notice that we can freely access the proper-
ties of the memo without synchronization, since this operation is a nondestructive
read—it doesn’t affect the status of the Memo component:

procedure TFindThread.Execute;
var
 I, J: Integer;
 Line: string;
begin
 Found := 0;
 with Form1.Memo1 do
 for I := 0 to Lines.Count - 1 do
 begin
 Line := Lines [I];
 for J := 1 to Length (Line) do
 if Line [J] = LookFor then
 Inc (Found);
 Progr := I + 1;
 Synchronize (UpdateProgress);
 end;
end;

The UpdateProgress method simply updates the status of the progress bar using the
value of the field Progr:

procedure TFindThread.UpdateProgress;
begin
 Progress.Position := Progr;
end;

Four copies of this thread are activated by the primary thread, an object of the
TMultiFind class. Here is the declaration of this class:

type
 TMultiFind = class(TThread)
 protected
 Progr: Integer;
 procedure UpdateProgress;
 procedure Execute; override;
 procedure Show;
 public
 LookFor, Output: String;
 Progresses: array [1..5] of TProgressBar;
 end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 17: Multitasking, Multithreading, and Synchronization - 821

This thread class looks for the characters of the LookFor string (there must be four
characters for the program to work correctly), using four TFindThread objects:

procedure TMultiFind.Execute;
var
 Finders: array [1..4] of TFindThread;
 I: Integer;
begin
 // set up the four threads
 for I := 1 to 4 do
 begin
 Finders[I] := TFindThread.Create (True);
 Finders[I].LookFor := LookFor[I];
 Finders[I].Progress := Progresses [I+1];
 Finders[I].Resume;
 end;

 // wait for the threads to end...
 for I := 1 to 4 do
 begin
 Finders[I].WaitFor;
 Progr := I;
 Synchronize (UpdateProgress);
 end;

 // show the result
 Output := ‘Found: ‘;
 for I := 1 to 4 do
 Output := Output + Format (‘%d %s, ‘,
 [Finders[I].Found, LookFor[I]]);
 Synchronize (Show);

 // delete threads
 for I := 1 to 4 do
 Finders[I].Free;
end;

Notice in particular the for loop with the WaitFor call. At the end, the Execute
method shows the result in a synchronized method, Show. The program I’ve written
to test these threads is quite simple. As you saw in Figure 17.4, it has a memo where
you can load a file and an edit box containing four characters. The number of char-
acters is checked when the user exits the edit box:

procedure TForm1.Edit1Exit(Sender: TObject);
begin
 if Length (Edit1.Text) <> 4 then
 begin
 Edit1.SetFocus;
 ShowMessage (‘The edit box requires four characters’);
 end;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

822 - Chapter 17: Multitasking, Multithreading, and Synchronization

The Start button starts the thread, which in turn immediately spawns the secondary
threads:

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 if Assigned (MainThread) then
 MainThread.Free;
 MainThread := TMultiFind.Create (True);
 MainThread.Progresses [1] := ProgressBar1;
 MainThread.Progresses [2] := ProgressBar2;
 ...
 MainThread.Progresses [1].Max := 4;
 for I := 2 to 5 do
 MainThread.Progresses[I].Max := Memo1.Lines.Count;
 for I := 1 to 5 do
 MainThread.Progresses[I].Position := 0;
 MainThread.LookFor := Edit1.Text;
 MainThread.Resume;
end;

Notice that we cannot delete the thread at the end of the method, because we cannot
call WaitFor on it without creating a deadlock. Take care when writing multi-
threaded applications, because such a deadlock can freeze the whole system, leaving
you with no option but to press Ctrl+Alt+Del on Windows 95/98.

At the same time, to keep the operating system stable, we must remember to delete
the thread, either before creating a second one (as at the beginning of the code
above) or when the program terminates. This is also the reason we need to declare
the thread object as a private field of the form and not as a local variable of the
method starting it.

Windows Synchronization Techniques

The Win32 API functions offer many further synchronization techniques368:

· Critical sections are portions of source code that cannot be executed by two
threads at the same time. By using a critical section, you can serialize the execu-
tion of specific portions of the source code. Critical sections can be used only
within a single process, a single application.

368 Most of the core platform synchronization objects are now available as part of the Delphi RTL,
along with a few additional one, like a Multi-Read-Single-Write-Syncronizer, and many other
related features. Threading is an area that saw many changes since Delphi 5.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 17: Multitasking, Multithreading, and Synchronization - 823

· Mutexes are global objects you can use to serialize access to a resource. You first
set a mutex, then access the resource, and finally release the mutex, as we saw in
the OneCopy example. While the mutex is set, if another thread (or process) tries
to set the same mutex, it is stopped until the mutex is released by the previous
thread (or process). A mutex can be shared by different applications.

· Semaphores are similar to mutexes but they are counted: you could allow, for
example, three and no more than three accesses to a given resource at the same
time. A mutex is equivalent to a semaphore with a maximum count of 1. We’ll see
an example of the use of the semaphore in the section “Threaded Database
Access,” later in this chapter.

· Events can be used as a mean of synchronizing a thread with system events, such
as user file operations. The WaitFor method of the Delphi TThread class uses an
event. Events can also be used to awaken several threads at the same time.

Building an Example

To demonstrate all of these different techniques I’ve built the ThSynch example.
Suppose we have two threads operating on a string, both of them using its value in
some way and then updating the string as a result of the operation. Suppose also
that the current value of the string is shared by the two threads. In the example the
string initially contains 20 A characters, then is updated to contain 20 B characters,
and so on. Each thread simply computes the next value of the string and then sends
it to its own list box.

note In real applications, of course, threads should generally avoid using global variables. Delphi helps
in this direction by wrapping threads in classes and by allowing you to define thread variables,
with the threadvar keyword. The ThSynch program was built specifically to demonstrate syn-
chronization problems; it should not be considered a good example for sharing data among
threads!

The ThSynch example presents a main form with four buttons, each of which dis-
plays a secondary form demonstrating one of the synchronization techniques. Each
secondary form consists of two list boxes, where the text is displayed in a nonpro-
portional Courier font, and a button to start the related thread. So we end up with
four different versions of basically the same form and the same thread class. In each
of these forms the Start button simply creates two instances of a thread, associating
a list box with the LBox public field of each:

procedure TForm2.BtnStartClick(Sender: TObject);
begin

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

824 - Chapter 17: Multitasking, Multithreading, and Synchronization

 ListBox1.Clear;
 ListBox2.Clear;
 Th1 := TListThread.Create (True);
 Th2 := TListThread.Create (True);
 Th1.FreeOnTerminate := True;
 Th2.FreeOnTerminate := True;
 Th1.LBox := Listbox1;
 Th2.LBox := Listbox2;
 Th1.Resume;
 Th2.Resume;
end;

Notice that the FreeOnTerminate property is set to True, so that the thread object
will automatically free itself when its execution is completed. The thread classes are
declared in each of the units defining the form, to avoid having too many files. This
same unit contains the string variable used by the two thread objects:

var
 Letters: string = ‘AAAAAAAAAAAAAAAAAAAA’;

This is far from elegant, but in this program we are looking for trouble on purpose,
so forget the coding style.

The Plain Thread

Here is the thread class and its Execute method in a first simple version:

type
 TListThread = class (TThread)
 private
 Str: String;
 protected
 procedure AddToList;
 procedure Execute; override;
 public
 LBox: TListBox;
 end;

procedure TListThread.Execute;
var
 I, J, K: Integer;
begin
 for I := 0 to 50 do
 begin
 for J := 1 to 20 do
 for K := 1 to 2601 do // useless repetition...
 if Letters [J] <> ‘Z’ then
 Letters [J] := Succ (Letters [J])
 else
 Letters [J] := ‘A’;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 17: Multitasking, Multithreading, and Synchronization - 825

 Str := Letters;
 Synchronize (AddToList);
 end;
end;

The AddToList method simply adds the Str string to the list box connected with the
thread. I’ve made each computation artificially long, by increasing each letter 2601
times instead of once: The effect is the same, but there are more chances of having a
conflict between the two threads. You can see this effect in Figure 25.5. Even better,
you can press the Start button two or three times in a row, starting several threads
at once, and increasing the chance of errors.

Figure 17.5: The first
secondary form of the
ThSynch example
shows some errors in
the values of two list
boxes. Image based on
a picture of the original
printed book.

Using Critical Sections

If you want to serialize the operations of the two threads, and have more control
over what the threads do, you can use one of the Windows synchronization tech-
niques I’ve discussed before. In this second version I’ll use critical sections. To do
this you should add the declaration of another global variable (or a form class field)
for the critical section:

var

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

826 - Chapter 17: Multitasking, Multithreading, and Synchronization

 Critical1: TRTLCriticalSection;

This variable is initialized when the form is created, and it is destroyed at the end,
with two API calls:

procedure TForm3.FormCreate(Sender: TObject);
begin
 InitializeCriticalSection (Critical1);
end;

procedure TForm3.FormDestroy(Sender: TObject);
begin
 DeleteCriticalSection (Critical1);
end;

note When using critical sections, always make sure the threads that depend on a critical section are
terminated before you delete that synchronization object.

You can use critical sections to serialize specific portions of the code, such as the
code that updates each letter of the string. Here is how I’ve updated the code of the
Execute method of the thread object:

procedure TListThread.Execute;
var
 I, J, K: Integer;
begin
 for I := 0 to 50 do
 begin
 EnterCriticalSection (Critical1);
 try
 for J := 1 to 20 do
 ... // same code as above
 Str := Letters;
 finally
 LeaveCriticalSection (Critical1);
 end;
 Synchronize (AddToList);
 end;
end;

The effect of this code is that while one thread is computing a new string the other
thread will wait before doing the same, so all the output strings will always contain
20 copies of the same character.

Using a Mutex

Now we can write the same code, but using a mutex instead of a critical section. The
effect will be the same, but I’d like to show you this technique as well. We simply

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 17: Multitasking, Multithreading, and Synchronization - 827

need to declare the hMutex variable of type THandle and then replace the four API
calls of the previous example with the following four:

// in FormCreate
hMutex := CreateMutex (nil, false, nil);
// in FormDestroy
CloseHandle (hMutex);
// in the for loop
WaitForSingleObject (hMutex, INFINITE);
...
ReleaseMutex (hMutex);

Using a TCriticalSection VCL Object

TheEnterprise Edition of Delphi offers one further alternative. The SyncObjs unit
defines VCL classes for some synchronization objects: events and critical sections.
So we can build a fourth version of the example, very similar to the second one
based on a critical section and Windows API calls. The difference is that now we
declare the object as:

var
 Critical1: TCriticalSection;

and use it as follows:

// in FormCreate
Critical1 := TCriticalSection.Create;
// in FormDestroy
Critical1.Free;
// in the for loop
Critical1.Enter;
...
Critical1.Leave;

There is very little difference, but the code is a little easier to write. The SyncObjs
unit declares the TCriticalSection class along with the THandleObject class, the
TEvent class and the TSingleEvent class.

To summarize the ideas described with this long example, a mutex, a critical sec-
tion, or a semaphore is required whenever two threads access a shared resource or
data. Otherwise, the system may move control from thread to thread before any of
them has completed an intermediate operation. In this intermediate state, the data
might be invalid, but the other threads will use it anyway. You can access these syn-
chronization objects using simple Windows API calls, or even simpler VCL objects.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

828 - Chapter 17: Multitasking, Multithreading, and Synchronization

Threaded Database Access

At times it is handy to perform two different operations on a database at once, start-
ing a separate request (with a table or query component) before the first one is
completed. In order to do that, you need to use threads. If you have two queries, for
example, you might want to execute the second before the first has returned its
result, to speed up operations on your (possibly) fast server. In other cases, you
might want to execute a complex query or scan a large table within a thread to avoid
interrupting user input. In fact, when an event starts a query in the main thread or
operates on a dataset, the user cannot operate on the program until the operation is
completed. Using a secondary thread for computing anything that’s not immedi-
ately necessary will make the application more responsive.

The BDE supports multiple simultaneous requests from a single application connec-
tion, through the use of multiple sessions. In other words we need to use a TSession
object to make multiple connections with the BDE from the same program (actually
one connection from the main program and one from each secondary thread)369.
The ThreadDB example demonstrates how you can use a thread and a separate
Session object to perform background processing on a database table you’re cur-
rently viewing. The program uses a data module (visible in Figure 17.6), which hosts
three database-access components: a database, a session, and a query. Here is the
relevant code:

object Session1: TSession
 Active = True
 AutoSessionName = True
end
object Database1: TDatabase
 AliasName = ‘DBDEMOS’
 Connected = True
 DatabaseName = ‘mydb’
 SessionName = ‘Session1_1’
end
object Query1: TQuery
 DatabaseName = ‘mydb’
 SessionName = ‘Session1_2’
 SQL.Strings = (
 ‘select count (*) ‘
 ‘from orders’
 ‘where CustNo = :Cust;’)
 ParamData = <
 item

369 By contrast, FireDAC requires one connection for each thread, but it includes a powerful con-
nection pooling architecture to avoid creating a new connection for each thread.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 17: Multitasking, Multithreading, and Synchronization - 829

 DataType = ftInteger
 Name = ‘Cust’
 ParamType = ptUnknown
 end>
 object Query1COUNT: TIntegerField
 FieldName = ‘COUNT(*)’
 end
end

Figure 17.6: The tree
and data diagram
views of the data
module of the
ThreadDB example.
Image based on a
picture of the original
printed book.

What is the aim of the ThreadDB application? The main form of this example shows
a list of customers, and the query in the data module can be used to compute the
number of orders made by the current customer. Whenever the current record in
the customer table changes, you might want to recalculate its number of orders. But
if you simply execute this query every time the record within the main table
changes, the program will slow down. A user pressing the down-arrow key to move
quickly through the records will have to wait until the query is computed and its
result is displayed before reaching the next record.

As an alternative, the ThreadDB program executes the query in a background
thread, letting the user scroll down to a new record before the query has returned its
value. By rapidly scrolling the current record, you’ll be able to start multiple queries
at the same time, using multiple instances of the data module. The main program,

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

830 - Chapter 17: Multitasking, Multithreading, and Synchronization

in fact, creates a thread every time the current record of the Customers table
changes:

procedure TForm1.Table1AfterScroll(DataSet: TDataSet);
var
 Th1: TDatabaseThread;
begin
 // create and start a new thread
 Th1 := TDatabaseThread.Create (True);
 Th1.Priority := tpLower;
 Th1.FreeOnTerminate := True;
 Th1.CustNo := Table1CustNo.AsInteger;
 Th1.Resume;
end;

Notice that the thread has low priority (to maximize the responsiveness of the pro-
gram to user input) and receives the ID of the customer for the current record. As
soon as the thread starts, it creates a new data module, sets the customer-number
parameter of the query, and opens it:

procedure TDatabaseThread.Execute;
begin
 with TDataModule2.Create (nil) do
 begin
 try
 Query1.ParamByName(‘Cust’).AsInteger := CustNo;
 Query1.Open;
 NewCaption := ‘Number of Orders ‘ +
 Query1Count.AsString;
 finally
 Synchronize (UpdateCaption);
 Query1.Close;
 Free; // the data module
 end;
 end;
end;

This program works acceptably; it allows the user to change the current record
before the background thread has completed executing the query. However, if you
simply keep the down arrow key pressed for a while, it will start more simultaneous
threads than Windows and the BDE can handle. Of course, it is unreasonable to
start an unlimited number of queries, an operation that might adversely affect the
performance of any database server. It is equally unreasonable to start an unlimited
number of threads, as the Win32 kernel starts to bog down with as few as 15 or 16
threads in a process.

For this reason we can let a few threads start and let the query simply fail to execute
the others (or keep them in a pending state) We can easily implement this idea by
using a semaphore.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 17: Multitasking, Multithreading, and Synchronization - 831

To do that, I’ve declared an hSemaphore variable of type THandle in the unit of the
thread class, and added this code in the initialization section of the unit to create a
semaphore with a limit of 10:

initialization
 hSemaphore := CreateSemaphore (
 nil, 10, 10, ‘ThDB_MD_Semaphore’);

The main program uses this semaphore before starting the thread, with a call to the
WaitForSingleObject API. In this case the function decreases the semaphore
counter if it is more than zero. If the semaphore counter is zero, it waits for another
thread to release the semaphore before acquiring it. Waiting in the main program
can lead to a deadlock since the threads will need to synchronize with it (as dis-
cussed in the FindTh example). For this reason, if a thread is not available the
program simply skips the user request:

 // procedure TForm1.Table1AfterScroll
 if WaitForSingleobject (hSemaphore, 0) = Wait_Object_0 then
 begin
 // create and start a new thread
 Th1 := TDatabaseThread.Create (True);
 // continue as before

Of course, the thread must call ReleaseSemaphore before terminating. Here is the
complete code, which also logs the current status of the threads in a list box of the
main form:

procedure TDatabaseThread.Execute;
begin
 // log
 Inc (thcount);
 LogText := Format (‘Thread %d started (%d active)’,
 [CustNo, thcount]);
 Synchronize (AddToLog);

 with TDataModule2.Create (nil) do
 begin
 try
 Query1.ParamByName(‘Cust’).AsInteger := CustNo;
 Query1.Open;
 NewCaption := ‘Number of Orders ‘ +
 Query1Count.AsString;
 finally
 Synchronize (UpdateCaption);
 Query1.Close;
 Free; // the data module
 // log
 Dec (thcount);
 LogText := Format (‘Thread %d completed (%d active)’,
 [CustNo, thcount]);

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

832 - Chapter 17: Multitasking, Multithreading, and Synchronization

 Synchronize (AddToLog);
 end;
 end;

 // thread is done, release semaphore
 ReleaseSemaphore (hSemaphore, 1, nil);
end;

You can now start only 10 threads at a time, while the other user requests will be
dismissed. The program doesn’t keep these requests in a list, but simply forgets
them. In any case the user has probably already moved to another record. You can
see an example of the output of this program in Figure 17.7.

Figure 17.7: In the
ThDB example,
multiple background
threads update the
form’s caption (see the
log on the side). Image
based on a picture of
the original printed
book.

What’s Next?

In this chapter, we’ve discussed multitasking, multithreading, and synchronization
issues between threads and separate processes. These examples have demonstrated
that you can use Delphi to delve into the intricacies of Windows programming,
while using very low-level features of the system. To learn more, you can refer to
Windows API programming books and then apply the information to Delphi pro-
gramming.

The next chapter moves into another technique you need to master to become an
expert Delphi programmer: the use of the debugger and debugging techniques in
general. The chapter will give you more insight into the inner workings of a Delphi
application, and also into the Windows message flow.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 18: Debugging Delphi Programs - 833

Chapter 18:

Debugging Delphi

Programs

Once you compile a program in Delphi and run it, you may think you’re finished,
but not all of your problems may be solved. Programs can have run-time errors, or
they may not work as you planned. When this happens, you will need to discover
what has gone wrong and how to correct it. Fortunately, many options and tools are
available for exploring the behavior of a Windows application.

Delphi includes an integrated debugger and several other tools to let you monitor
the result of a compilation process in different ways. This chapter provides an over-
view of all these topics, demonstrating the key ideas with simple examples. The first
part of the chapter covers Delphi’s integrated debugger and various features Delphi
provides for run-time debugging. Then, I’ll describe some other debugging tech-
niques and discuss how you can monitor the flow of messages in your application.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

834 - Chapter 18: Debugging Delphi Programs

The final section describes how you can examine the status of the memory used by a
program.

Using the Integrated Debugger

As I’ve mentioned before, when you run a program from within the Delphi environ-
ment, the internal debugger actually executes the program. (You can change this
behavior by disabling the Integrated Debugger option in the Debugger Options dia-
log box.) Most of the Run commands relate to the debugger. Some of these
commands are available also in the Debug submenu of the Editor’s shortcut menu.

When a program is running in the debugger, clicking on the Pause button on the
SpeedBar suspends execution. Once a program is suspended, clicking on the Step
Over button executes the program step by step. You can also run a program step by
step from the beginning, by pressing the Step Over button while in design mode.
Consider, however, that Windows applications are message-driven, so there is really
no way to execute an application step by step all the way, as you can do with a DOS
application. For this reason, the most common way to debug a Delphi application
(or any other Windows application) is to set some breakpoints in the portions of the
code you want to debug.

When a program has been stopped in the debugger, you can continue executing it by
using the Run command. This will stop the program on the next breakpoint. As an
alternative, you can monitor the execution more closely by tracing the program. You
can use the Step Over command (the F8 key) to execute the next line of code, or the
Trace Into command (F7) to delve into the source code of a function or method (that
is, to execute the code of the subroutines step by step and to execute the code of the
subroutines called by the subroutines, and so on). Delphi highlights the line that is
about to be executed with a different color and a small arrow-shaped icon, so that
you can see what your program is doing.

A third option, Trace to Next Source Line (Shift + F7), will move control to the next
line of the source code of your program being executed, regardless of the control
flow. This source code line might be the following line of the source code (as in a
Step Over command), a line inside a function called by your code (as in a Trace Into
command), or a line of code inside an event handler or a callback function of the
program activated by the system. If you want to monitor the effect of the execution
of a given line of code, you can also move to that position and call Run to Cursor
(F4). The program will run until it reaches that line, so this is similar to setting a

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 18: Debugging Delphi Programs - 835

temporary breakpoint. Finally, the new Delphi 5 command Run until Return (Shift
+ F8) executes the method or function until it terminates. This is handy to use when
you accidentally trace into a function you are not interested in debugging.

Debugging Libraries (and ActiveX Controls)

You can also use the integrated debugger to debug a DLL or any other kind of
library (such as an ActiveX control). Simply open the library’s Delphi project,
choose the Run Parameters menu command, and enter the name of the Host
Application. (This option is available only if the current project’s target is a library.)
Now when you press the Run button (or the F9 key), Delphi will start the main exe-
cutable file, which will then load the library. If you set a breakpoint within the
library source code, execution will stop in the library code, as expected.

Similarly, you can use this capability to debug an ActiveForm. Simply enter the full
path name of the Web browser as the Host application, for example C:\Program
Files\Microsoft Internet\Iexplore.exe; then enter the full path name of the test
HTML file as the Run parameter. To make this work, you should also use the Run
Register ActiveX Server menu command. Once the ActiveX is registered, the Web
browser will use that version and not another version available in its OCX cache.

Debug Information

To debug a Delphi program, you must add debug information to your compiled
code. Delphi does this by default, but if it has been turned off, you can turn it back
on through the Project Options dialog box. As shown in Figure 18.1, the Compiler
page includes a Debugging section with four check boxes:

· Debug Information adds to each unit a map of executable addresses and cor-
responding source code line numbers. This increases the size of the DCU file but
does not affect the size or speed of the executable program. (The linker doesn’t
include this information when it builds the EXE file, unless you explicitly request
TD32 debug information, which is technically in a different format.)

· Local Symbols adds debug information about all the local identifiers, the
names and types of symbols in the implementation portion of the unit.

· Reference Info adds reference information about the symbols defined in a
module to allow the Project Inspector (or Object Browser) to display them. If the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

836 - Chapter 18: Debugging Delphi Programs

sub-option Definitions Only is not checked, the reference information tracks
where each symbol is used, enabling the cross-references in the Project Explorer.

· Assertions allows you to add assertions, code that will stop your program if a
specific test condition fails. Unlike exceptions or other error-detecting code,
assertions can be removed from your program automatically; just deselect this
option. I’ll discuss assertions later in this chapter. After changing this setting,
you have to rebuild your project to add or remove the assertion code from your
application.

· Use Debug DCUs to link the debug version of the DCU files of the VCL in your
program. In practice, this option adds the Debug DCU path (specified in General
page of the Debugger Options) to the Search path (specified in Directories/Con-
ditionals page of the Project Options dialog box).

The integrated debugger uses this information while debugging a program. Debug
information is not attached to the executable file unless you set the Include TD32
Debug Info option in the Linker page of the Project Options dialog box. You should
add debug information to your executable file only if you plan to use an external
debugger, such as Borland’s Turbo Debugger for Windows (TD32). Do not include it
if you plan to use only the integrated debugger, and remember to remove it from the
executable file that you ship.

Remote Debugging

A feature first introduced in Delphi 4 is remote debugging370. This technique allows
you to debug a program that is running on a different computer, typically a server.
To activate remote debugging, you must first install the remote debugger client on
the target machine. Then you should start the remote debugging client, with the
command borrdg.exe –listen, eventually starting it as a service on Windows NT.

370 The idea of Remote Debugging has been largely expanded in recent versions of Delphi as it’s
the foundation for debugging on non-Windows platforms, using the “Platform Assistant
Server” (or PAServer) for the target platform. You run this engine on the target computer and
the Delphi IDE connects to it to debug an app running on the device.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 18: Debugging Delphi Programs - 837

Figure 18.1: Use the
Compiler page of the
Project Options dialog
box to include debug
information in a
compiled unit. Image
from the original
edition of the book and
Delphi 12.

Now you should compile your program including remote debug symbols in the
Linker page of the Project Options dialog box. You can also set the Output directory
to the remote machine in the Directories Conditional page of the same dialog, so
that you don’t have to manually copy the program and the companion RMS file on
the remote computer each time you recompile the program. Finally, set the remote

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

838 - Chapter 18: Debugging Delphi Programs

path and project in Run Parameters, filling the Remote box with the machine
name or its IP address.

When everything is properly set up, you’ll be able to use the Delphi integrated
debugger to debug the program running on the remote computer. You’ll be able to
set breakpoints and perform all of the standard debugging operations as usual.

Attach to Process

New in Delphi 5 is the Attach to Process feature, available via the Run command.
This feature allows you to start debugging a program that is already running in the
system. For example, you might want to attach the debugger to a process that has
just displayed an exception to understand what has gone wrong.

When you select the Attach to Process command, you’ll see a list of running pro-
cesses. If you choose a Delphi program for which you have the source code, you’ll be
back to the traditional debugging situation. If you choose another program for
which you don’t have the source code, you’ll only be able to trace its execution at the
assembly level, using the CPU window but not the source code editor.

Using Breakpoints

There are several breakpoint types in Delphi:

· Source breakpoints and address breakpoints are similar, as they halt exe-
cution when the processor is about to execute the instructions at a specific
address.

· Data breakpoints halt execution when the value at a given location changes.

· Module load breakpoints halt execution when a specific code module loads.

As the name implies, a breakpoint, when reached, is supposed to stop the program
execution. In Delphi 5, breakpoints can do more than just stop—each breakpoint
can have any of several actions associated with it. These actions can be the tradi-
tional break action, the display of a fixed string or a calculated expression in the
message log, or the activation or deactivation of other groups of breakpoints. The
Breakpoint List window (see Figure 18.2) shows this extra information, along with
the description of the breakpoints of the entire program. The figure is taken from a

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 18: Debugging Delphi Programs - 839

simple example, BreakP, I’m using to illustrate some of the features of breakpoints
in Delphi.

Figure 18.2: The
Breakpoint List
window, with a
conditional breakpoint,
docked on the bottom
of the editor. Image
from the original
edition of the book.

Another new feature is that you can assign breakpoints to groups. You can then
enable or disable all the breakpoints of a group at once, either using a direct com-
mand (in the shortcut menu of the Breakpoint List window) or as the automatic
effect of a breakpoint action.

Source Breakpoints

If you want to break upon execution of statements in your source code, you’ll use a
source breakpoint, which is the most common type of breakpoint. You can create a
source breakpoint by clicking in the gutter region of the code editor window, by
right-clicking on a specific line in a source file and choosing the Toggle Breakpoint
command from the shortcut menu, or by using the Add Source Breakpoint dialog
box. (You can display this dialog box by choosing the Run Add Breakpoint
Source Breakpoint menu command, by choosing Add Source Breakpoint from the
Breakpoint List window’s local menu, or by pressing F5.)

When you create a new source breakpoint (using any of these techniques), an icon
will appear in the margin to the left of the code, and the source line will display in a
different color. However, you can’t set a valid breakpoint on just any line of the
source code. A source breakpoint is valid only if Delphi generated executable code
for that source line. This means you can’t specify a breakpoint for a comment, decla-

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

840 - Chapter 18: Debugging Delphi Programs

ration, compiler directive line, or any other statement that’s not executable. If
you’ve compiled a program at least once (with debugging information enabled),
small dots in the frame to the left of the gutter area indicate source lines where you
can place a valid breakpoint. Although you can set a breakpoint at an invalid loca-
tion, Delphi will alert you when you run the program, and it will mark the invalid
breakpoint with a different icon and color.

Also note that because Delphi uses an optimizing compiler, it will not generate any
executable code for unreachable lines of source code in your program nor for any
other lines that have no effect on the program logic. If you create an invalid source
breakpoint and then execute the program step by step, the debugger will skip the
line, because that code doesn’t exist in the optimized version of the compiled pro-
gram. There is an example of an invalid breakpoint in the BreakpF unit of the
BreakP program.

Once you’ve set a valid source code breakpoint, you can change some of its proper-
ties. The Source Breakpoint Properties dialog box is available from the Breakpoint
list window by right-clicking on the icon in the editor gutter. In this window (see
Figure 18.3), you can set a condition for the breakpoint, indicate its pass count, and
assign it to a group. You can also click the Advanced button to display an extended
version of the window, offering the breakpoint action features introduced in Delphi
5, which I’ll discuss in the next section.

Figure 18.3: The
standard portion of the
Source Breakpoint
Properties dialog box.
Image from the
original edition of the
book.

In Figure 18.3, you can see the definition of a conditional breakpoint, used to stop
the program only when a given expression is true. For example, we might want to
stop the Button1Click method’s execution of the BreakP example only when the
lines (indicated by the Y1 variable) have moved near the button, using this condi-
tion:

Button1.Top - Y1 < 10

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 18: Debugging Delphi Programs - 841

The condition is also added to the Breakpoint List window, as you can see in Figure
8.2. Now you can run the program and click the button a number of times. The
breakpoint is ignored until the condition is met (when Button1.Top - Y1 is less
than 10). Only after you click several times will the program actually stop in the
debugger.

If you know how many times a line of code should be allowed to execute before the
debugger should stop, you can set a value for the Pass Count. As soon as the debug-
ger reaches the breakpoint, it will increase the count until the specified number of
passes has been reached. The Breakpoint List window will indicate the status (see
the first line of Figure 18.2), displaying “2 of 5” if the program has executed the line
only twice after you’ve set a pass count of 5.

The Keep Existing Breakpoint check box of the Breakpoint Properties window is
used when you want to duplicate an existing point by moving the source code line it
refers to. If the check box is not selected, the existing breakpoint is moved; if it is
selected, a new breakpoint is created. This provides a sort of cloning mechanism if
you want to create a new breakpoint based on an existing one.

Finally, notice that in Delphi 5 all of the information displayed by the Breakpoint
List window is available also in a fly-by hint displayed as you move the mouse over
the breakpoint icon in the editor gutter, as shown in Figure 18.4.

Figure 18.4: The new
fly-by hint for
breakpoints. Image
from the original
edition of the book.

note The breakpoints you add to a program are saved in the project desktop file (*.dsk) if Desktop
Saving is enabled. By saving this information, you’ll be able to reopen the project and restart your
debugging session. You can also keep your existing breakpoints, at least the complex ones, for
future use: simply disable them, and save the project desktop settings instead of removing the
breakpoints.

Breakpoint Actions

As I’ve already mentioned, Delphi 5 makes breakpoints a little more flexible.
Besides simply breaking the program execution, they can perform other actions, as

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

842 - Chapter 18: Debugging Delphi Programs

shown in the extended version of the Breakpoint Properties window (accessible by
pressing the Advanced button), illustrated in Figure 18.5.

Figure 18.5: The
advanced version of the
Breakpoint Properties
window. Image from
the original edition of
the book.

If you disable the Break check box, the program won’t stop when the debugger
reaches that line of code. You can ask for an interruption the following time the
breakpoint is reached or simply send a message or the result of an expression to the
Event log windows (described later), as shown in the illustration. You can also
enable or disable a group of breakpoints only when a conditional breakpoint is met.

You might wonder when logging a message is better than effectively breaking the
program. There are some interesting cases, as the BreakP program demonstrates.
One of these message log options is used in the handler of the OnResize event of the
form. If you drag the form border, in fact, this event will fire multiple times in a
row, stopping the debugger each time.

This problem is even more obvious with the OnPaint event handler. If the editor
window and the form overlap, you’ll enter an endless series of breakpoints. Each
time the form is repainted, the breakpoint stops the program, moving the editor
window in front of the form and causing the form to be repainted again, which stops
the program on the same breakpoint—over and over again. You could try to position
the editor window and the form of your program so that they do not overlap. A more
comprehensive solution is to use a conditional breakpoint, set a pass count, or log a

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 18: Debugging Delphi Programs - 843

message with the value you are interested in, such as the Y1 variable in the case
depicted in Figure 18.5.

Also Windows focus change messages are very difficult to debug with a breakpoint,
because switching to the debugger for the breakpoint will force the debugged pro-
gram to lose focus. You can’t work around this by repositioning windows to not
overlap, as for an OnPaint event; your choices are to use message logging or remote
debugging. Remote debugging is an excellent tool for “nonintrusive” debugging of
tricky state problems like painting or focus change messages.

Address Breakpoints

If you don’t have the source code for a given function or procedure, you’ll want to
create an address breakpoint to halt execution at that point. However, without the
source code for Delphi to use in calculating the address where you wish to pause,
you’ll need to use some technique to determine the address of the code in question.
You can create an address breakpoint either directly in the CPU view (which we’ll
discuss later in this chapter) or indirectly (once you have the address) using the Add
Address Breakpoint dialog box.

To create an address breakpoint from the CPU view, you’ll simply click in the gutter
region of the Disassembly Pane, next to the instruction where you want to pause, or
right-click on an instruction and select Toggle Breakpoint from the local menu.
Once you’ve created an address breakpoint in the source code editor, you can mod-
ify its properties by right-clicking on the breakpoint icon (not on the instruction)
and choosing Breakpoint Properties from the local menu.

To create an address breakpoint indirectly, you’ll need to determine the address of
the instruction where you want to pause execution. If you’re going to pause execu-
tion of the program, but the source code isn’t part of your project (as with standard
VCL methods), you need to capture the address of a function or procedure that’s
already been compiled.

One way to determine the addresses of an object’s methods is to use the Debug
Inspector for that object at run time. We’ll examine the Debug Inspector in more
detail later in this chapter. For now, we’ll just consider how you can obtain the
address of a method for which you don’t have the source code. For example, if you
want to break when the user clicks on a button, but before entering the button’s
event handler code, you can locate the TButton.Click method. To do this, right-
click on the button’s declaration in the form’s class declaration, and choose Debug
Inspect. In the Debug Inspector window for the button, click on the Methods tab,
scroll to the very end of the method list, and locate the StdCtrls.TButton.Click
method.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

844 - Chapter 18: Debugging Delphi Programs

Next to the name of the method, you’ll see a hexadecimal address in parentheses.
Copy this address (including the “$” prefix) and then create a new address break-
point using that value. When you resume running the program and click the button,
the CPU View window will appear, displaying the disassembled instructions for the
TButton.Click method.

note Unless you have the Standard edition of Delphi, you have VCL source code. You should know that
one of its key uses is in debugging your applications. You can include the library source code in
your program and use the debugger to trace its execution. Of course, you need to be bold enough
and have enough free time to delve into the intricacies of the VCL source code. But when nothing
else seems to work, this might be the only solution. To include the library source code, simply add
the name of the directory with the VCL source code (by default, Source\VCL under your Delphi
directory) to the Search Path combo box of the Directories/Conditional page of the Project
Options dialog box. An alternative is to link the Debug DCUs, as described earlier in this chapter.
Then rebuild the whole program and start debugging. When you reach statements containing
method or property calls, you can trace the program and see the VCL code executed line after line.
Naturally, you can do any common debugging operation with the VCL code that you can do with
your own code.

Data Breakpoints

Data breakpoints are dramatically different from source and address breakpoints in
that they monitor a memory address for changes in value. It doesn’t matter where
the code resides that changes the data at that memory location; the debugger will
pause immediately and display the execution point. The display will be either in the
source code editor window, if the source for that code is part of the project, or the
CPU View window if the source isn’t available.

You can set data breakpoints two ways. The first technique involves pausing execu-
tion using a source breakpoint at a point in the source code where the identifier you
want to monitor is in scope. With the program paused, you can enter the name of
the identifier directly into the Address field of the Add Data Breakpoint dialog box,
and Delphi will calculate the variable’s address for you.

The second way to set a data breakpoint is to first create a watch for the variable, as
discussed later in this chapter. Then, you’ll pause execution by creating a source
breakpoint at a location where the identifier is in scope. When you display the
Watch List window, right-click on the watch for this identifier, and choose Break
when Changed from the local menu. With either of these methods, any change in
the variable’s value will pause the program and display the current execution point.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 18: Debugging Delphi Programs - 845

Module Load Breakpoints

If you want to break when a specific code module loads, you’ll create a module load
breakpoint. You can create a module load breakpoint by choosing Run Add
Breakpoint Module Load Breakpoint and then selecting the EXE or DLL you wish
to monitor. When that module loads, Delphi will suspend the program’s execution
and highlight the execution point, either in the source editor window or in the CPU
View window.

An easier way to achieve the same effect is to open the Modules window, run the
program to a source breakpoint that occurs after the loading of all the modules, and
then select the modules whose loading you wish break on. You can set a module
load breakpoint for a given module by either right-clicking on the module and
selecting Break on Load from the local menu or clicking in the gutter region of the
module list in the Modules window.

Debugger Views

While you are debugging a program, there are many windows (or views) you can
open to monitor the program execution and its status. Most of these windows are
quite intuitive, so I’ll just introduce them briefly, suggesting a few hints and tips. To
activate them, use the Debug submenu of the View menu of the Delphi IDE.

The Call Stack

While you’re tracing a program, you can see the sequence of subroutine calls cur-
rently on the stack. Call stack information is particularly useful when you have
many nested calls or when you use the Debug DCUs of the VCL. This second exam-
ple is shown in Figure 18.6 for a simple OnClick event handler, which is called after
many internal VCL calls.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

846 - Chapter 18: Debugging Delphi Programs

Figure 18.6: The Call
stack window when a
button is clicked (with
Debug DCUs enabled).
Image from the
original edition of the
book.

The Call Stack window shows the names of the methods on the stack and the param-
eters passed to each function call. The top of the window lists the last function called
by your program, followed by the function that called it, and so on. In the figure, you
can see that the Button1Click event handler of TForm1 is called by the Click
method of the TControl class, which is called by the same method of the derived
class TButton, which in turn is activated by the WndProc message handling method.
There are multiple calls to this WndProc method because it is redefined in many VCL
classes.

note If you are interested, you can find a complete technical description of the steps from a Windows
message to a Delphi event handler in the Delphi Developer’s Handbook (Sybex, 1998).

Inspecting Values

When a program is stopped in the debugger, you can inspect the value of any identi-
fier (variables, objects, components, properties, and so on) that’s accessible from
the current execution point (that is, only the identifiers visible in the current scope).
There are many ways to accomplish this: using the fly-by debugger hints, using the
Evaluate/Modify dialog box, adding a watch to the Watch List, or using the Local
Variables window or the Debug Inspector.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 18: Debugging Delphi Programs - 847

The Fly-By Debugger Hints

When Delphi 3 introduced fly-by evaluation hints, this feature immediately became
one of the most common ways to inspect values at run time. While a program is
stopped in the debugger, you can simply move the mouse over a variable, object,
property, field, or any other identifier indicating a value, and you’ll immediately get
a hint window showing the current value of the identifier, as you can see in Figure
18.7.

Figure 18.7: One of
the more useful
debugging features: fly-
by evaluation hints.
Image from the
original edition of the
book.

For simple variables, such as X1 or Y1 in the BreakP example, and for object proper-
ties (as in the figure), fly-by hints simply show the corresponding value, which is
easy to understand. But what is the value of an object, such as Form1 or Button1?
Past versions of Delphi used a minimalist approach, displaying only the list of its
private fields. Delphi 5 shows the entire set of properties of the object, as you can
see in Figure 18.8. This is an improvement, but I think that using a Debug Inspector
(see following sections) makes the status of the object more readable371.

Figure 18.8: The fly-
by evaluation hint for
an object in Delphi 5.
Image from the
original edition of the
book.

Remember that you can see the value of a variable when the program is stopped in
the debugger but not when it is running. Additionally, you can inspect only the vari-

371 Debugger hints offer now way more structure and make it easier to locate the specific informa-
tion. This technology improved a bit over the years.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

848 - Chapter 18: Debugging Delphi Programs

ables that are visible in the current scope, because they must exist in order for you
to see them!

The Evaluate/Modify Window

The Evaluate/Modify dialog box can still be used to see the value of a complex
expression and to modify the value of a variable or property. The easiest way to
open this dialog box is to select the variable in the code editor and then choose Eval-
uate/Modify from the editor’s shortcut menu (or press Ctrl+F7). Long selections are
not automatically used, so to select a long expression, it’s best to copy it from the
editor and paste it into the dialog box. In Delphi 5, you can now also drag a variable
or an entire expression from the source code editor to the Evaluate/Modify dialog
box (see Figure 18.9).

Figure 18.9: The
Evaluate/Modify dialog
box can be used to
inspect—and change—
the value of a variable.
You can now also drag
an expression from the
editor into this
window. Image from
the original edition of
the book.

The Watch List Window

When you want to test the value of a group of variables over and over, using the fly-
by hints can become a little tedious. As an alternative, you can set some watches

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 18: Debugging Delphi Programs - 849

(entries in a list of variables you’re interested in monitoring) for variables, proper-
ties, or components. For example, you might set a watch for each of the values used
in the BreakP example’s Button1Click method, which is called each time the user
clicks on the button. I’ve added a number of watches to see the values of the most
relevant variables and properties involved in this method, as you can see in Figure
18.10. As mentioned earlier, you can also use this window as a starting point to set
data breakpoints.

Figure 18.10: Using
the Watch List window.
Image from the
original edition of the
book.

You can set watches by using the Add Watch at Cursor command on the editor’s
local menu (or just press Ctrl+F5), but the faster technique in Delphi 5 is to drag a
variable or expression from the source code editor to the Watch List window. When
you add a watch, you’ll need to choose the proper output format, and you may need
to enter some text for more complex expressions. This is accomplished by double-
clicking on the watch in the list, which opens the Watch Properties dialog box, or
with the equivalent Edit Watch command of the shortcut menu.

note Keep in mind that this window, like many other debugging windows, can be kept in view by dock-
ing it to the editor or by toggling its Stay on Top option.

The Local Variables Window

Another useful feature of Delphi is the Local Variables window. This window auto-
matically displays the name and value of any local variables in the current
procedure or function when you’re paused at a breakpoint. For methods, you’ll also
see the implicit Self variable’s private data. The Local Variables window is very
similar to the Watch List window, but you don’t have to set up its content, because it
is automatically updated as you trace into a new function or method or stop on a
breakpoint in a different one.

For any object references that appear in the Local Variables window (or the Watch
List window) as well as displaying its detailed value on a single line, you can also

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

850 - Chapter 18: Debugging Delphi Programs

open Debug Inspector windows. To do so, either double-click on the variable in the
Local Variables window or use the Inspect command of the shortcut menu in the
Watch List window.

The Debug Inspector

Debug Inspector windows allow you to view data, methods, and properties of an
object or component at run time, with a user interface similar to the design-time
Object Inspector (as you can see in Figure 18.11). The main difference is that a
Debug Inspector doesn’t show just the published properties but the entire list of
properties, methods, and local data fields of the object, including private ones. As
already described, to activate a similar Inspector at debug time, you can select a vis-
ible identifier in the editor, activate the local menu, and select Debug Inspect.

Figure 18.11: A
Debug Inspector
window showing the
properties of a button.
Image from the
original edition of the
book.

note The Debug Inspector is similar to the Object Debugger component I’ve written for the Delphi
Developer’s Handbook and available on my Web site (www.marcocantu.com). This component
allows you to get a full list of the values of the published properties of a component at run time.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 18: Debugging Delphi Programs - 851

You’ll see that the Debug Inspector shows the definition of the properties and not
their values. To activate this, you have to select the property and click the small
question mark button on the right. This computes the value, if available. You can
also modify the object’s data or property value.

If you are inspecting a Sender parameter, you can also cast the entire object to a dif-
ferent type, so that you’ll be able to see its specific properties (without a cast you get
information only about the generic TObject structure). When you are working on a
component, you can drill down and inspect a sub-object, such as a font. You can use
multiple Debug Inspector windows or use a single one and move back to the items
you’ve inspected in the past. A drop-down list box at the top of the inspector main-
tains a history list of expressions for the current Debug Inspector.

Exploring Modules and Threads

Another important area of the debugger is related to exploring the overall structure
of an application. The Modules window (see Figure 18.12) displays all the executable
modules for the current application (usually the main executable file as well as the
DLLs it uses). The right pane shows a list of the different procedure or function
entry points of each module. The bottom pane displays a list of Pascal units that the
module contains, if that information is known.

Figure 18.12: The
Modules window.
Image from the
original edition of the
book.

The Module window can be used to check the system DLLs and Delphi run-time
packages required by a program, and it lets you explore how they relate in terms of

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

852 - Chapter 18: Debugging Delphi Programs

exported and imported functions. While tools as TDump.exe or the Executable
QuickView included in Windows can perform a static analysis of the EXE file to
determine the DLLs it requires to run, the Modules window shows the current
libraries in use, even if it’s one you’ve dynamically loaded (see Chapter 14 for exam-
ples of dynamically loaded libraries). Remember that you can use the Module
window to set a module breakpoint, one that will fire when the module is loaded by
the system.

Another related window is the Thread Status window, which shows details about
each thread of a multithreaded program. Figure 18.13 shows an example of this win-
dow. In this window, you can change the active thread as well as operate on the
main process. Notice that this ability is particularly interesting when you are debug-
ging two processes at the same time, a feature available only on the Windows NT
platform.

Figure 18.13: The
Thread Status window.
Image from the
original edition of the
book.

The Event Log

Another handy debugger window, first introduced in Delphi 4, is the Event Log,
which lets you monitor a number of system events: modules loading, breakpoints
and their log messages, Windows messages, and custom messages sent by the appli-
cation. Tracking program flow with a log can be invaluable. As an example, consider
debugging an application where timing is important, so that it would be affected by
stopping the program in a debugger. To avoid stopping the program, you can log
debug information for later review.

To generate a direct log, you can embed calls to the OutputDebugString Windows
API procedure in your program. This procedure accepts a string pointer and sends
that string to a valid debug logging device. The Event Log window will capture and
display the text you pass to the OutputDebugString procedure. Figure 18.14 shows
an example of a debugging session made with the Event Log window. (By the way,
calls to the OutputDebugString procedure appear in the log as text with the ODS

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 18: Debugging Delphi Programs - 853

prefix.) In the same figure you can also see the effect of some breakpoints logging
the value of a variable, J. This output is taken from the OdsDemo example and was
generated by the following code:

OutputDebugString (
 PChar (‘Button2Click - I=’ + IntToStr (I)));

note Although the effects of calling OutputDebugString and logging a message as a result of a
breakpoint might seem similar, there is a big difference. The breakpoints are external to the pro-
gram (they’re part of the debugger support); while the direct strings must be added to the source
code of the program, potentially changing it and introducing bugs. You might also want to remove
this code for the final build, although you can use conditional compilation for this, as described
later in the section “Using Conditional Compilation for Debug and Release Versions.”

Figure 18.14: The
output of calls to the
OutputDebugString
debugging procedure
and the information
logged by a breakpoint
in the Event Log
window. Image from
the original edition of
the book.

To capture the image in Figure 18.14, I’ve disabled the default breakpoint logging,
which indicates when the program has stopped or restarted for a breakpoint. (As
noted earlier, you can also specify logging as one of the breakpoint actions; dis-
abling default breakpoint logging does not affect this type of logging. I’ve also
disabled the process information (a new Delphi 5 option “Display Process Info with
Event”), which is not particularly useful when debugging a single process.

You can configure the Event Log with this and other options in the Debugger Event
Log Properties dialog box, shown in Figure 18.15. In addition to logging the text
from calls to the OutputDebugString procedure, the breakpoint data, and the
process information, the Event Log window can also capture all the Windows mes-

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

854 - Chapter 18: Debugging Delphi Programs

sages reaching the application. This provides an alternative to the WinSight pro-
gram described later in this chapter.

Figure 18.15: You
determine which
events you wish to
track using the
Debugger Event Log
Properties dialog box.
Image from the
original edition of the
book.

Down to the Metal: CPU and FPU views

There are two more debugger windows that are not for the faint-hearted. The CPU
view and the new Delphi 5 FPU view show you what’s going on inside the Central
Processing Unit and the Floating Point Unit of the computer.

Using the CPU view during debugging lets you see a lot of system information: the
values of the CPU registers, including special flags and a disassembly of the pro-
gram (eventually with the Pascal source code included in comments). Similarly, the
FPU view opens up more registers and status information regarding the floating
point and MMX support of the newer Pentium class chips.

If you have a basic knowledge of assembly language, you can use this information to
understand in detail how the Delphi compiler has translated your source code into
the executable and see the effect of the Delphi optimizing compiler on the final
code. Although it seems bare at first, the CPU window provides programmers with a
lot of power. By right-clicking and using the shortcut menus, you can even change
the value of CPU registers directly!

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 18: Debugging Delphi Programs - 855

Figure 18.16: An
example of the CPU
and FPU views. Image
from the original
edition of the book.

Other Debugging Techniques

One common use of breakpoints is to find out when a program has reached a certain
stage, but there are other ways to get this information. A common technique is to
show simple messages (using the ShowMessage procedure) on specific lines, just for
debugging purposes. There are many other manual techniques, such as changing
the text of a label in a special form, writing to a log file, or adding a line in a list box
or a memo field.

All of these alternatives serve one of two basic purposes: either they let you know
that a certain statement of the code has been executed or they let you watch some

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

856 - Chapter 18: Debugging Delphi Programs

values, in both cases without actually stopping the program. Conditional compila-
tion, assertions, and message-flow spying are some of the techniques you can use to
complement the features offered by the debugger.

Using Conditional Compilation for Debug and
Release Versions

Adding debugging code to an application is certainly interesting, as the OdsDemo
example demonstrates, but this approach has a serious flaw. In the final version of
the program, the one you give to your customers, you need to disable the debugging
output, and you may need to remove all of the debugging code to reduce the size of
the program and improve its speed. If you are a C/C++ programmer, however, you
may have some ideas on how to remove program code automatically. The solution
to this problem lies in a typical C technique known as conditional compilation. The
idea is simple: you write some lines of code that you want to compile only in certain
circumstances and skip on other occasions.

In Delphi, you can use some conditional compiler directives: $IFDEF, $IFNDEF,
$IFOPT, $ELSE, and $ENDIF. For example, in the Button2Click event handler of the
OdsDemo example, you’ll find the following code:

{$IFDEF DEBUG}
 OutputDebugString (
 PChar (‘Button2Click - I=’ + IntToStr (I)));
{$ENDIF}

This code is included in the compilation only if there is a DEBUG symbol defined
before the line or if the DEBUG symbol has been defined in the Project Options dialog
box. Later on, you can remove the symbol definition, choose the Build All command
from Delphi’s Compile menu, and run it again. The size of the executable file will
probably change slightly between the two versions because some source code is
removed. Note that each time you change the symbol definitions in the Project
Options dialog box, you need to rebuild the whole program. If you simply run it, the
older version will be executed because the executable file seems up-to-date com-
pared with the source files.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 18: Debugging Delphi Programs - 857

note You should use conditional compilation for debugging purposes with extreme care. In fact, if you
debug a program with this technique and later change its code (when removing the DEBUG defini-
tion), you might introduce new bugs or expose bugs that were hidden by the debug process. For
this reason, it is generally better to debug the final version of your application carefully, without
making any more changes to the source code. A widespread use of IFDEF also destroys long-term
code maintainability and readability.

Using Assertions

Assertions are a technique you can use in Delphi for custom debugging. An asser-
tion is basically an expression that should invariably be true, because it is part of the
logic of the program. For example, I might assert that the number of users of my
program should always be at least one because my program cannot run without any
user. When an assertion is false, that means there is a flaw in the program code (in
the code, not in the execution).

The only parameter of the Assert procedure is the Boolean condition you want to
test (or assert). If the condition is met, the program can continue as usual; if the
condition is not met (the assertion fails), the program raises an EAssertionFailed
exception. Here is an example, from the Assert program:

procedure TForm1.BtnIncClick(Sender: TObject);
begin
 if Number < 100 then
 Inc (Number);
 ProgressBar1.Position := Number;
 // test the condition
 Assert ((Number > 0) and (Number <= 100));
end;

Another button on the Assert example’s form generates code that is partially wrong,
so that the assertion might actually fail, with the effect shown in Figure 18.17. Keep
in mind that assertions are a debugging tool. They should be used to verify that the
code of the program is correct. Users should never see assertions failing, no matter
what happens in the program and which data they input, because if an assertion
fails, there is probably an error in your code. To test for special error conditions, you
should use exceptions, not assertions.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

858 - Chapter 18: Debugging Delphi Programs

Figure 18.17: The
error message of an
assertion (from the
Assert example).
Image from the
original edition of the
book.

Assertions are so closely linked to debugging and testing that you’ll generally want
to remove them using the $ASSERTIONS or $C compiler directive. Simply add the line
{$C-} somewhere in a source code file, and that unit will be compiled without asser-
tions. This doesn’t just disable assertions, it actually removes the corresponding
code from the program. You can also disable assertions from the Compiler page of
the Project Options dialog box.

note Don’t forget to rebuild your project after changing the assertions compiler settings, or the setting
won’t have effect.

Exploring the Message Flow

The integrated debugger provides common ways to explore the source code of a pro-
gram. In Windows, however, this is often not enough. When you want to
understand the details of the interaction between your program and the environ-
ment, you’ll often need a tool to track the messages the system sends to your
application. You can do this in the integrated debugger by using the Event Log and
enabling Windows messages in the Event Log Properties dialog box. Note that this
type of logging is not enabled by default.

The Event Log, however, is not very flexible, as you cannot choose the message cate-
gories or the destination windows: you get a full log of all of the messages for
windows of your program, which is often a huge list. An alternative tool for tracing
Windows messages is WinSight, a multipurpose tool included in Delphi. Other simi-
lar tools are available from many sources, including shareware, books, and
magazine articles. I’ve built my own version, which you’ll see shortly.

To become an expert Delphi programmer, you must learn to study the message flow
following an input action by a user. As you know, Delphi programs (like Windows
applications in general) are event-driven. Code is executed in response to an event.
Windows messages are the key element behind Delphi events, although there isn’t a
one-to-one correspondence between the two. In Windows, there are many more
messages than there are events in Delphi, but some Delphi events occur at a higher

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 18: Debugging Delphi Programs - 859

level than Windows messages. For example, Windows provides only a limited
amount of support for mouse dragging, while Delphi components offer a full set of
mouse-dragging events.

Using WinSight

WinSight is a Borland tool available in the Delphi/Bin directory372. It can be used to
build a hierarchical graph of existing windows and to display detailed information
about the message flow. Of course, WinSight knows nothing about Delphi events, so
you’ll have to figure out the correspondence between many events and messages by
yourself (or study the VCL source code, if you have it). WinSight can show you, in a
readable format, all of the Windows messages that reach a window, indicating the
destination window, its title or class, and its parameters. You can use the Options
command from WinSight’s Messages menu to filter out some of the messages and
see only the groups you are interested in.

Usually, for Delphi programmers, spying the message flow can be useful when you
are faced with some bugs related to the order of window activation and deactivation
or to receiving and losing the input focus (OnEnter and OnExit events), particularly
when message boxes or other modal windows are involved. This is quite a common
problem area, and you can often see why things went wrong by looking at the mes-
sage flow. You might also want to see the message flow when you are handling a
Windows message directly (instead of using event handlers). Using WinSight, you
can get more information about when that message arrives and the parameters it
carries.

A Look at Posted Messages

Another way to see the message flow is to trap some Windows messages directly in a
Delphi application. If you limit this analysis to posted messages (delivered with
PostMessage) and exclude sent messages (delivered with SendMessage), it becomes
almost trivial, since we can use the OnMessage event of the TApplication class and
the TApplicationEvents component. This event is intended to give the application a
chance to filter the messages it receives and to handle certain messages in special
ways. For example, you can use it to handle the messages for the window connected
with the Application object itself, which has no specific event handlers, as we’ve
done in the SysMenu2 example of Chapter 6.

In the MsgFlow example, however, we’ll take a look at all of the messages extracted
from the message queue of the application (that is, the posted messages). A descrip-

372 As already mentioned, this tool is no longer available with Delphi.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

860 - Chapter 18: Debugging Delphi Programs

tion of each message is added to a list box covering the form of the example. For this
list box, I’ve chosen Courier font because it is a nonproportional, or monospaced,
font so that the output will be formatted with the fields aligned correctly in the list
box. The speed buttons in the toolbar can be used to turn message viewing on and
off, empty the list box, and skip consecutive, repeated messages. For example, if you
move the mouse you get many consecutive wm_MouseMove messages, which can be
skipped without losing much information.

To let you make some real tests, the program has a second form (launched by the
fourth speed button), filled with various kinds of components (chosen at random).
You can use this form to see the message flow of a standard Delphi window. Figure
18.18 shows an example of the output of the MsgFlow program when the second
form is visible. The (lengthy) source code of the program is not described in the text,
but it is fully available along with the examples of the book.

Figure 18.18: The
MsgFlow program at
run time, with a copy
of the second form.
Image from the
original edition of the
book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 18: Debugging Delphi Programs - 861

Memory Problems

One of the biggest problems when debugging a Delphi program is to check what
happens with the memory of the application and of the system. Two of the most
common memory problems are leaks (not releasing unused memory, so that the
program will use much more memory than it actually needs) and memory overruns
(using memory already in use or referencing an object that has already been
deleted).

There are multiple approaches you can use to detect and solve these memory prob-
lems in Delphi, but there isn’t much help you can receive from the integrated
debugger. To detect these problems you can use the techniques described later in
this section or the some of the third-party tools discussed at the end of this chapter.
What I want to focus on is an overview of the different memory areas, so that you
can better understand when these memory problems will surface and use a preven-
tive approach to avoid them altogether.

Processes and Memory

It’s not easy to review memory management for Delphi applications exhaustively,
because there’s so much information to consider. First, there’s Windows memory
management, which on Win32 platforms is fairly simple and robust for applications
but a bit more complex for DLLs. On the application level, there’s Delphi’s own
internal memory management373.

In Win32 every application sees its local memory as a single large segment of 4GB,
regardless of the amount of physical memory available. This is possible because the
operating system maps the virtual memory addresses of each application into physi-
cal RAM addresses and swaps these blocks of memory to disk as necessary
(automatically loading the proper page of the swap file in memory). This single,
huge memory segment is managed by the operating system in chunks of 4KB each,
called pages.

373 Years ago, the Delphi’s RTL adopted FastMM4, an efficient external memory manager now
part of the core RTL. It offers, among other features, memory leaks tracking. It’s also possible
to install the official version to instrument an application with additional memory safeguards
for tracking overruns and other complex scenarios. See https://github.com/pleriche/
FastMM4 for more information.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://github.com/pleriche/FastMM4
https://github.com/pleriche/FastMM4

862 - Chapter 18: Debugging Delphi Programs

note Every process has its own private address space, totally separate from the others. This makes the
operating system more robust than in the days of 16-bit Windows, when all applications shared a
single address space. The drawback is that it is more difficult to pass data between applications.

In fact, in both 95/98 and NT, an application can directly manage only about half of
its address space (2GB), while the other half is reserved for the operating system.
Fortunately, 2GB is usually more than enough.

Another important element of Win32 memory management is virtual memory allo-
cation. Besides allocating memory, a process can simply reserve memory for future
use (using a low-level operation called virtual allocation). For example, in a Delphi
application, you can use the SetLength procedure to reserve space for a string. Del-
phi does the same thing transparently when you create a huge array. This memory
won’t be allocated—just reserved for future use. In practice, this means that the
memory subsystem won’t use addresses in that range for other memory allocations.

Fortunately, most of the memory management, both at the application level and at
the system level, is completely transparent to programmers. For this reason, you
don’t typically need to know the details of how memory pages work, and we won’t
explore that topic further here. Instead, we’ll explore the status of a region of mem-
ory, something you might find very useful while writing and debugging an
application.

Global Data, Stack, and Heap

The memory used by a specific Delphi application can be divided into two areas:
code and data. Portions of the executable file of a program, of its resources (bitmaps
and DFM files), and of the libraries used by the program are loaded in its memory
space. These memory blocks are read-only, and they can be shared among multiple
processes.

It is more interesting to look at the data portion. The data of a Delphi program is
stored in three clearly distinct areas: the global memory, the stack, and the heap.

Global Memory

When the Delphi compiler generates the executable file, it determines the space
required to store variables that exist for the entire lifetime of the program. Global
variables declared in the interface or in the implementation portions of a unit fall
into this category. Note that if a global variable is of a class type, only a 4-byte object
reference is stored in the global memory.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 18: Debugging Delphi Programs - 863

You can determine the size of the global memory by using the Project Information
menu item after compiling the program and looking at the value for data size. Fig-
ure 18.19, shows a usage of almost 6K of global data, which is not much considering
it includes global data of the VCL and of your program.

Figure 18.19: The
information about a
compiled program
shown by Delphi.
Image from the
original edition of the
book.

Stack

The stack is a dynamic memory area, which is allocated and deallocated following
the LIFO order: Last In, First Out. This means that the last memory object you’ve
allocated will be the first to be deleted.

Stack memory is typically used by routines (procedure, function, and method calls)
for passing parameters and their return values and for the variables you declare
within a routine. Once a routine call is terminated, its memory area on the stack is
released. Remember, anyway, that using Delphi’s default register-calling conven-
tion, the parameters are passed in CPU registers instead of the stack.

Windows application can reserve a large amount of memory for the stack. In Delphi
you set this parameter in the linker page of the Project options. However, the
default is generally OK. If you receive a stack full of error messages, this is probably
because you have a function recursively calling itself forever, not because the stack
space is too limited. The initial stack size is another piece of information provided
by the Project Information menu item.

Heap

The heap is the area in which the allocation and deallocation of memory happens in
random order. This means that if you allocate three blocks of memory in sequence,
they can be destroyed later on in any order. The heap manager takes care of all the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

864 - Chapter 18: Debugging Delphi Programs

details, so you simply ask for new memory with GetMem or by calling a constructor to
create an object, and Delphi will return a new memory block for you (possibly
reusing memory blocks already discarded). Delphi uses the heap for allocating the
memory of each and every object, the text of the strings, for dynamic arrays, and for
other specific requests for dynamic memory.

Because it is dynamic, the heap is the memory area where programs generally have
the most problems. Delphi uses numerous techniques to handle memory, including
reference counting (for strings, dynamic arrays, or interface-type object variables)
and ownership (for VCL components). Understanding these techniques and apply-
ing them properly is the foundation for a correct management of dynamic memory.

To check whether everything is working properly and to understand what is going
wrong, Delphi’s debugger is of little help. Both Windows and Delphi show the status
of the memory (from two different perspectives), which lets you examine the cur-
rent situation. Delphi also exposes its internal memory manager, so that you can
hook into it or even replace it altogether. You can even change the memory handling
for a specific class, by overriding its memory allocation and deallocation methods.

Tracking Memory

The Windows API includes a few functions that let us inspect the status of memory.
The most powerful of these functions are part of the so-called ToolHelp API (noth-
ing to do with Delphi’s own ToolsAPI) and are platform-specific: They are available
either on Windows 98 or on Windows NT—but not both.

If we want to remain on common ground we can use GlobalMemoryStatus, a func-
tion that allows us to inspect the status of the memory in the entire operating
system. This function returns system information on the physical RAM, the page file
(or swap file), and the global address space. To demonstrate the use of this function,
I’ve built the MemIcon program, which is described in Chapter 19 because its key
element is to display the use of tray icons.

Generally, the information related to Windows memory status is of little interest to
Delphi programmers, particularly if you compare it to the detailed information
about Delphi’s own memory manager returned by the GetHeapStatus VCL function.
This function is defined by the System unit (or the ShareMem unit) and returns a
structure with quite a bit of information: the address space that is virtually allo-
cated; the space that’s committed or uncommitted, physically allocated, free
(distinguishing large and small memory blocks), and unused; and the total over-
head of the memory manager.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 18: Debugging Delphi Programs - 865

You can see the data returned by this function in the Memory Status window, which
the VclMem example displays as its About box. This window is visible in Figure
18.20. Its form hosts a string grid component, which is automatically updated when
the program starts and by a timer (so you can keep this window open and see the
information periodically updated). Aside from the memory information displayed,
the program is not particularly interesting; you should add this form to one of your
complex applications, so that you can test its memory status.

Figure 18.20: The
Memory Status
window of the simple
VclMem example. You
should add this
window to your own
programs to check how
much memory they use
over time. Image from
the original edition of
the book.

note This program is a reduced version of a test example from Delphi Developer’s Handbook (Sybex,
1998). That book goes into more depth, discussing not only some cases in which the memory
manager might cause problems but also how you can write a custom memory manager. You might
do that to replace Delphi’s memory management scheme with your own or to hook into the mem-
ory manager; for example, to count the number of memory blocks allocated and deallocated or
checking for memory leaks.

Third-Party Tools

Delphi’s integrated debugger, the stand-alone Turbo Debugger374, and the remote
debugger are great for helping you to trace source-code errors, but they won’t help
you much with memory problems, and they are still quite limited in some areas.
Besides the techniques I’ve just discussed here, there are a few third-party tools that
can be extremely helpful in tracing and solving memory problems and other debug-

374 The Turbo Debugger as a stand-alone product doesn’t exist any more.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

866 - Chapter 18: Debugging Delphi Programs

ging issues. In this section, I’ll just list a few of them and highlight their features in
short, to give you an idea of what’s available.

These notes are not intended as a full review, and I have no interest in endorsing
any of these programs. I have simply noticed that their use can save you a lot of
debugging time, and I would like to share this information375.

Memory Sleuth

Memory Sleuth376 is produced by Turbo Power Software Company, Inc.
(http://www.turbopower.com). It was originally developed for Delphi 1 by Per
Larsen as MemMonD32. After compiling your Delphi program, you simply run it
through Memory Sleuth (loading and running it from this environment instead of
from the Delphi IDE).

The tool detects memory and Windows resource leaks, providing a detailed output
with the source code lines causing problems. This tool hooks into the Delphi mem-
ory manager and monitors the allocation of Delphi objects but also checks the
Windows memory status. Besides giving you a report about the problems, the pro-
gram can also detect peak memory and resource usage, and even draw some nice
graphs. A recent enhanced version adds profiling capabilities to the tool.

CodeSite

CodeSite377 is produced by Raize Software Solutions, Inc. (http://www.raize.com).
The author is Ray Konopka (who also produced the Raize Components). In the
words of its author, “CodeSite is an advanced Delphi debugging tool based on the
time-honored approach of sending messages from an application to a message
viewer. However, unlike all of its predecessors, CodeSite handles much more than
simple strings.”

In fact, you can send properties and entire objects to the debug window, which
makes the entire operation very fast without being intrusive into the program code.
Instead of using a standard debug window, you have to use the one provided by
CodeSite, which stores extended information, and allows you, for example, to com-
pare two snapshots of the same object done at different times.

375 One of the most interesting solutions in this space, these days, is Nexus Quality Suite (see
https://www.nexusdb.com/).

376 While other TurboPower tools were transitioned to open source (see http://turbopack.net/),
Memory Sleuth was abandoned when TurboPower closed.

377 CodeSite is currently bundled with Delphi and it’s available in the GetIt Package Manager.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

http://turbopack.net/
https://www.nexusdb.com/

Chapter 18: Debugging Delphi Programs - 867

BoundsChecker

BoundsChecker378 is a well-known Windows error detection tool from NuMega
Technologies, Inc. (http://www.numega.com). The program has a long tradition with
Microsoft C++ programmers and has been available for Delphi for a long time, as
well. BoundsChecker monitors all Windows API calls made by your program or by
the VCL, tracking wrong parameters, resource leaks, stack and heap memory errors,
and more. The tool validates the latest Windows APIs including Win32, ActiveX,
DirectX, COM, Winsock, and Internet APIs.

You simply run the BoundsChecker program, load your executable file (which must
be compiled with debug information and stack frames), and run it. Every time an
error is detected, all the details are logged, so that you can trace the problems at the
end of the debug session. You can also use BoundsChecker to test for compliance of
your program with the different flavors of the Win32 API, if you think the problem
is likely to have problems under Windows 98 or Windows NT.

What’s Next?

In this chapter, you have seen that there are a number of tools you can use to debug
a Delphi application, both by itself and in relation to the Windows system. Windows
applications do not live in a world by themselves. They have a strong relationship
with the system and, usually less directly, with the other applications that are run-
ning. The presence of other running Windows applications can affect the
performance of your programs as well as their stability.

In the next chapter, I’ll discuss a number of techniques related to printing, using
resources, manipulating files, accessing the Clipboard, using Windows INI files,
using the Registry, creating and linking help files, and creating an installation pro-
gram, as well as new Delphi 5 features as TeamSource and the Integrated
Translation Environment. Each technique represents a useful approach to solving a
specific programming problem.

378 BoundsChecker changed ownership a few times to land under Micro Focus. It looks like it’s de-
velopment stopped years ago.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

868 - Chapter 19:More Delphi Techniques

Chapter 19:More

Delphi Techniques

In previous chapters, we’ve presented discussions about major Delphi features. In
this chapter, we’ll shift the focus slightly to concentrate on a series of real-world
tasks you’ll often have to consider in your work. We will look at the corresponding
Delphi techniques to implement each of those tasks, and we’ll demonstrate them
with examples.

Because there are many topics to explore in this area, this chapter will move quickly
and present examples with a minimum of elaboration. As usual, you can examine
the downloaded source code of the example files in more detail.

Managing Windows Resources

Windows resources play an important role from the perspective of memory use.
Resources are stored in separate blocks in the executable file of an application, so

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 869

that these blocks are loaded in memory on demand, that they can be discarded, and
that resources can be considered read-only data.

Before looking at special uses of resources in Delphi, let’s look at the tools you can
use to prepare resources. Delphi includes an Image Editor for manipulating bit-
maps, icons, and cursors, but in some cases, you might still prefer to use a full
resource editor, such as Borland’s Resource Workshop (which is now included with
Delphi) or one of the shareware resource editors available.

Using Resource Editors

You can activate Delphi’s Image Editor379 by choosing it from the Tools menu. Image
Editor lets you manipulate four kinds of files. Three of them are file types that con-
tain specific resource types (ICO, CUR, and BMP), and the last is a file format for
compiled resource files (RES), which can contain all three kinds of graphical
resources. Individual RES files can contain one or more resources of any type
(including the graphical resource types).

In the Image Editor, you can prepare any kind of icon, cursor, or bitmap. A single
icon resource can contain multiple bitmaps with different sizes and colors. An icon
usually has a standard 32 x 32 image and a 16 x 16 image (the small image). In Fig-
ure 19.1, you can see an example of an icon with multiple images defined (only one
is visible), inside Delphi’s Image Editor. A cursor, instead, has a single image but
you must set its hot-spot position, to designate which point in the image is the
active one.

379 As already mentioned, this tool is no longer available with Delphi. There are many graphic de-
sign tools offering a much better and complete experience. This makes significant portions of
this section no longer applicable.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

870 - Chapter 19:More Delphi Techniques

Figure 19.1: Delphi’s
Image Editor, with the
different kinds of
images you can define
for an icon resource.
Image from the
original book.

There are basically two ways to use Image Editor:

· Prepare specific files (particularly bitmaps and icons) to be loaded in the Delphi
environment at design time (using properties) or at run time (using some of the
LoadFromFile methods in your code).

· Prepare a resource file with multiple resources and load the resources at run
time using Windows API calls, as described in the next section. When you work
with resource files in Image Editor, a Tree view lets you see a list of elements of
each group.

The Image Editor is a useful tool, but its capabilities are somewhat limited. When
you need a full-fledged resource editor, you can use Borland’s Resource Work-
shop380 (available on the Delphi 5 installation CD). The Resource Workshop lets you
open and edit any resource file. You can also use this tool to extract the resources
from a compiled program, a DLL, or any other executable file (which doesn’t mean
that it is always legal to do so; be sure to determine the copyright status of any
image you plan to use).

If you open a Delphi application with the Resource Workshop, you will discover that
it actually contains a series of resources, in addition to the icon present in its main
RES file. By default, a Delphi application’s executable file contains a string table
with system messages, captions, and other generic strings (such as the names of the

380 Also this tool is no longer available.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 871

months), binary data in custom resources (describing forms in the custom RCDATA
format), some cursors, and one icon. Figure 19.2 shows the list of resources for the
VclMem example from the last chapter, which is a relatively simple program. You
can see the complete list, with an active cursor, a portion of the string table, and the
binary data of a form. More complex programs may have many more resources,
depending on the number of forms, the VCL units you include, the icons and bit-
maps you add to the project, and so on.

Figure 19.2: The list
of resources of a
compiled Delphi
application in the
Resource Workshop.
Image from the
original book.

note Delphi includes an interesting sample program, named Resource Explorer, that lets you open an
executable file (EXE or DLL) and see most of its resources, just as Resource Workshop does.
Resource Explorer has no integrated resource editors, but with it you can easily copy a resource,
which you can then paste into a resource file for your Delphi application using another resource
editor.

Loading Resources

The simplest way to access a graphical file is to load it in a property. Currently, how-
ever, the only resources that you can load using properties are icons and bitmaps
and sometimes metafiles. For example, you can place an Image component as the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

872 - Chapter 19:More Delphi Techniques

background of a dialog box and load a bitmap into it. In this case, the bitmap is an
embedded resource of the application, which means that you do not need to ship the
original BMP file (something you have to do if the bitmap is loaded into the image
at run time, by calling the LoadFromFile method of the image). However, the image
is not added to the executable file as a stand-alone bitmap resource. It is included in
the binary resource representing the form.

This approach makes it difficult for the unscrupulous to use a resource editor to
steal your bitmap. However, keep in mind that it is possible to extract a custom Del-
phi form resource using a tool such as Resource Workshop, save that resource to a
RES-format file (but with a DFM extension), and load it back as a DFM file in the
Delphi editor. To do this, someone simply needs to know that your application was
created using Delphi. By contrast, form and application icons are placed in the com-
piled file in a standard resource format, to let applications such as the Explorer or
the Windows 95 shell extract them and use them as a hint for the user.

The second technique you can use to access resources in Delphi is the manual
approach. For this method, you must first define a separate resource file with the
resources you need. The second step is to include the resource file in the project,
using the $R compiler directive. In fact, contrary to the typical C/C++ approach,
Delphi projects can have a number of resource files.

note Don’t customize the default resource file—the one that has the same name as the project—because
sometimes Delphi changes that file, and you might lose your customizations. Simply add other
RES files to the current directory, and add a $R compiler directive anywhere in the source code to
load them. In Delphi 5, you can now also add an RC file to a project, using the Project Manager.
This file will be automatically compiled to a RES file and linked into the program executable, even
if it not referenced in a $R directive.

Once you have defined some resources and included them in your application, you
can use the following Windows API functions to load resources: LoadAccelerators,
LoadBitmap, LoadCursor, LoadIcon, LoadMenu, LoadResource, and LoadString. Each
of these functions loads a specific resource type, except for the LoadResource func-
tion, which is used for custom resources. The first parameter of these functions is
the handle of the application instance, which in Delphi is stored in the HInstance
global variable. The second parameter is the name of the resource you want to load.
Of course, each application can have a number of icons, bitmaps, and other
resources, which you can access by name.

The LoadString function has some other parameters to specify the buffer in which
to copy the string and the size of this buffer. The other loading functions simply
return a handle to the loaded resource. You can assign this handle directly to the

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 873

Handle property of the corresponding VCL object property, or (even better) use the
specific methods of the VCL objects as in the following code:

var
 Bmp: TBitmap;
begin
 Bmp := TBitmap.Create;
 Bmp.LoadFromResourceName(HInstance, ‘MyBitmap’);

Check out the Mines example in the Chapter 22, which shows the complete use of
bitmaps in resource files.

The Icons for Applications and Forms

In Delphi, each application and each form has its own Icon property. When you
don’t set this property for a form, the program simply uses the value of the
Application object’s Icon property. You can see and change this default application
icon via the Application page of the Project Options dialog box. This icon is also
used by the Windows Taskbar, because the window that appears in the Taskbar for a
Delphi application is the hidden window of the global Application object.

All these scenarios are demonstrated by a sample program I’ve written called Icons.
The form of this example is divided into two parts: on the left are a label, an image
component, and two buttons referring to the icon of the form; on the right there are
similar components referring to the icon of the application. There’s also an OpenDi-
alog component that we’ll use to browse for icon resource files. Notice that I’ve
defined the Icon property of the form (using the bb.ico file) as well as that of the
application (using the aa.ico file). Each time you click one of the Change buttons, a
new icon is loaded from an external file:

procedure TForm1.Button1Click(Sender: TObject);
begin
 with OpenDialog1 do
 if Execute then
 begin
 Application.Icon.LoadFromFile (Filename);
 Image1.Picture.LoadFromFile (Filename);
 end;
end;

When you click one of the two Remove buttons, the corresponding icon is simply
removed:

procedure TForm1.Button3Click(Sender: TObject);
begin

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

874 - Chapter 19:More Delphi Techniques

 Application.Icon := nil;
 Image1.Picture := nil;
end;

You can use this program to see how the two icon properties affect the icon of the
minimized application. Some examples are shown in Figure 19.3. When you launch
the Icons application in the Explorer, Explorer will automatically use the application
icon when you minimize the form and not the icon of the main form. This is because
the icon of the form is hidden inside the custom resources describing the form (the
DFM file), while the icon of the application is stored in an icon resource that’s
bound to the executable file in the traditional manner.

Figure 19.3: Some of
the effects of the Icons
application. Image
from the original book.

Using the Icon Tray of the Taskbar

Windows 95 introduced a new way to display system information: the use of the
tray area of the Taskbar. In fact, Windows allows for programs that run only as tray
icons. In the lower-right corner of the screen, close to the clock, there is some space
(the Taskbar tray) you can use to show your programs or utilities.

There is just one API function involved, Shell_NotifyIcon. This function is very
simple. It has two parameters: a pointer to a TNotifyIconData structure and a flag
indicating whether you want to add, remove, or modify the icon. The fields of the
data structure include its size (cbSize, actually used to determine the version of the
structure), the handle of the window to which the tray icon should send notifica-
tions (hWnd), the number of the notification message (uCallbackMessage), an

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 875

identifier of the icon (uID), some flags indicating which fields are provided, the icon
to display (hIcon), and its Tooltip message (szTip).

When the user interacts with the tray icon, Windows sends back to the given win-
dow a message defined by the program, passing as parameters the action performed
by the user on the icon (typically a mouse message) and the ID given to the icon. I’ve
used this information about tray icons in the Mem3 example, visible in action in
Figure 19.4. This example program is actually useful for displaying the memory sta-
tus; it is based on the GlobalMemoryStatus API function described in Chapter 18.
The program uses three icons to highlight the current memory status: green when
you still have some free RAM, yellow when the RAM is full but there is plenty of
space in the swap file, and red when even the swap file is full.

Besides looking at the icon color, you can move the mouse over it to see a hint with
some details; you can also click the tray icon to open a detail window with a lot of
extra information, as shown in Figure 19.4. The program uses some advanced tech-
niques to avoid displaying the main window at start-up and to regularly update the
icon. If you are interested in this type of program, you should study the source code
with care.

Figure 19.4: The
Mem3 example uses
two labels to display
details about the
memory status and
adds an icon to the
tray. Image from the
original book.

Using the Cursor in Delphi

Delphi’s support for cursors is extensive, so it takes much less work to customize
cursors than it does to customize icons. For example, Delphi includes a number of
predefined cursors. Some of these are Windows default cursors, but others are
added by Delphi. The use of cursors in Delphi is straightforward; you simply use the
Object Inspector to select the corresponding value for the Cursor property or
DragCursor property of a component. In Delphi 5, you can even see the shape of the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

876 - Chapter 19:More Delphi Techniques

cursors in the drop-down list of the Object Inspector, which makes their selection
even more intuitive.

If you need to set a global cursor for the whole application for a certain amount of
time, you can use the Cursor property of the global Screen component. The follow-
ing code fragment demonstrates a common way to display the wait cursor (the
hourglass) for the application while a long task is executing:

Screen.Cursor := crHourglass;
try
 {time-consuming code would appear here}
finally
 Screen.Cursor := crDefault;
end;

This code uses exception handling to ensure that even if something goes wrong in
the execution, the default cursor is restored anyway.

The Cursor property of the form and other components and the Cursor property of
the Screen object are both of type TCursor. If you look up the definition of this data
type in Delphi’s help, you are in for a surprise. TCursor is not a class but rather a
numeric type. Technically, a TCursor is an integer value that references an array of
cursor handles, stored in the Cursors property (notice the final s) of the Screen
object. This array can also be used to load a new cursor from an application’s
resources.

Using String Table Resources

The third kind of resource we will explore in this chapter is the string table. String
tables have an important role in Delphi, and specific support for them is built into
Object Pascal. When you need a string constant in a program, instead of declaring it
in a const section you can simply declare it in a resourcestring section:

resourcestring
 Text1 = ‘This is some text’;

When you write this declaration, Delphi automatically adds a new entry to the string
table of the application, which will be included in the executable file as a resource.
This means that every time you use the Text1 string, Delphi will automatically add
the code to load the string from the string table resource. We’ll see this code in a
while. The effect of this approach is a different memory layout of the code and data
of the program, which is generally beneficial since resources are handled in a very
efficient way by the operating system.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 877

A second reason for using resources in a Windows program is to simplify localiza-
tion, or translation of a program into another language (such as from English to
German). To localize a traditional program, you would have to search through each
source file, locate the embedded text, translate the text, and then recompile the
entire program. In contrast, when you localize a Windows application that uses
string tables, you simply translate the text included in the resources, recompile only
the resources (a very simple process), and then bind the new resources to the previ-
ously compiled EXE code.

note We’ll discuss the localization process in Delphi in a later section of this chapter that is fully
devoted to the new ITE, the Integrated Translation Environment381.

Version Information

The last type of resource I’ll focus on is version information. Simply open the project
options, go into the Version Info page of the dialog box, and enter the proper values
for the version number, product name, copyright, and other information. You can
see an example of this dialog box in Figure 19.5. This version information of a Del-
phi project is added to the standard RES file (the one with the same name as the
project), generally referenced from the project source code and included in the exe-
cutable file. Don’t remove this reference from the source code of a DLL to add
version information to it.

381 The tool is currently an unsupported add-on, but the concepts in terms of how you can use re-
sources for localization still apply and many third-party translation tools rely on the same core
foundation.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

878 - Chapter 19:More Delphi Techniques

Figure 19.5: The
Version Info page of
the Project Options
dialog box. Image from
the original book.

Version information is required by DLLs and OLE servers (including ActiveX con-
trols) so that installation programs can determine whether you already have the
most recent version of a DLL. Without this technique, you risk installing an older
DLL or control over a newer version. Knowing the details of version information for
DLLs is particularly important if you want to make effective use of an installation
program (or write your own, comparing the version information of files already
present on the hard disk with that of the files you are installing).

Because you can find a good description of the role of version information in
Microsoft documentation, I’ll skip repeating that. What I want to do instead is to
show you a simple use of version information inside an executable program. I’ve
just added the version information of Figure 19.5 to the VInfo program and written
some code that extracts some of this information to a memo component when the
user clicks the form’s Read Version Info button. You can see the result in Figure
19.6. The problem, as you’ll see, is that the API for accessing version information is
far from simple.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 879

Figure 19.6: The
version information
extracted by the VInfo
example. Image from
the original book.

The central API call is GetFileVersionInfo. This function requires as parameters
the filename, a pointer to a block of memory to store the data, and the size of this
block of memory. To allocate a memory block of the proper size, a program can call
the GetFileVersionInfoSize API function first. Here is the first part of the button’s
OnClick event handler:

procedure TForm1.Button1Click(Sender: TObject);
var
 VInfoSize, DetSize: DWord;
 pVInfo, pDetail: Pointer;
begin
 Memo1.Lines.Clear;
 VInfoSize := GetFileVersionInfoSize (
 PChar (ParamStr (0)), DetSize);
 if VInfoSize > 0 then
 begin
 GetMem (pVInfo, VInfoSize);
 try
 GetFileVersionInfo (PChar (ParamStr (0)), 0,
 VInfoSize, pVInfo);
 ...
 finally
 FreeMem (pVInfo);
 end;
 end;
end;

The final part of the code, inside the finally block, deletes the memory block. In
between, the program uses the pVInfo pointer to access version information. We
access data by calling the VerQueryValue API function, which requires as parame-
ters the pointer to the data, a string with a path indicating the requested

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

880 - Chapter 19:More Delphi Techniques

information, and a pointer. The function sets this pointer to the requested string or
data structure.

The first part of the actual code accesses the fixed portion of the file information, a
group of flags and numbers defined by the TVSFixedFileInfo structure. Here is the
code to access some of this data (in the downloaded files you’ll find a longer ver-
sion):

// show the fixed information
VerQueryValue (pVInfo, ‘\’, pDetail, DetSize);
with TVSFixedFileInfo (pDetail^) do
begin
 Memo1.Lines.Add (
 ‘Signature (should be invariably 0xFEEFO4BD): ‘
 + IntToHex (dwSignature, 8));
 Memo1.Lines.Add (‘Major version number: ‘ +
 IntToStr (HiWord (dwFileVersionMS)));
 if (dwFileFlagsMask and dwFileFlags
 and VS_FF_DEBUG) <> 0 then
 Memo1.Lines.Add (‘Debug info included’);

The second part of this code reads some of the strings included in the version infor-
mation of the program. Each string should be separately accessed, again using the
VerQueryValue API function. Here is how you can write one of these calls:

VerQueryValue(pVInfo,
 ‘\StringFileInfo\040904E4\FileDescription’, pDetail, DetSize);
Memo1.Lines.Add (‘File Description: ‘ + PChar (pt2));

If you write the code this way, however, you end up embedding the locale and char-
acter set information (040904E4) into the code. Although you can set this language
information in the Project Options page, your code should be able to read the cur-
rent language and not use a hard-coded value. To accomplish this, you should first
read the language from the version information (not a terribly easy pointer opera-
tion) and then use it for further processing, as in the following code (part of the
Button1Click method of the VInfo example):

type
 TLangInfoBuffer = array [1..4] of SmallInt;

var
 pLangInfo: ^TLangInfoBuffer;
 strLangId: string;
begin
 // get the first language
 VerQueryValue(pVInfo,
 ‘\VarFileInfo\Translation’,
 Pointer(pLangInfo), DetSize);
 strLangId := IntToHex (SmallInt (pLangInfo^ [1]), 4) +

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 881

 IntToHex (SmallInt (pLangInfo^ [2]), 4);
 Memo1.Lines.Add (‘Language: ‘ + strLangId);

 // show some of the strings
 strLangId := ‘\StringFileInfo\’ + strLangId;
 VerQueryValue(pVInfo, PChar(strLangId + ‘\FileDescription’),
 pDetail, DetSize);
 Memo1.Lines.Add (‘File Description: ‘ +
 PChar (pDetail));

The Integrated Translation
Environment382

One of the brand-new features of Delphi 5 is the Integrated Translation Environ-
ment, or ITE for short. This book does not have enough space to discuss this
complex tool in detail. As usual, then, I’m simply going to guide you through some
of its features and show you an example.

To start the translation process, you can use the Resource DLL Wizard located in
the File New dialog box or use the Project Language Add menu command.
Both methods open a wizard where you select one of the projects of the active
group, choose the language (in my example, I selected Italian standard; see Figure
19.7), select whether this is a new translation or an update of an existing one, and
click the Finish button. If this is a new project, you’ll obtain a new directory and
some statistics such as those shown in Figure 19.8.

382 This tool is still currently available as a separate download, but it’s no longer officially part of
Delphi and supported. I will not point out to specific difference in this section, as it’s com-
pletely obsolete at this time. I recommend looking for an alternative solution.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

882 - Chapter 19:More Delphi Techniques

Figure 19.7: Selecting
a language in the
Resource DLL Wizard.
Image from the
original book.

Figure 19.8: The final
statistics displayed by
the Resource DLL
Wizard after adding a
new language to a
project. Image from the
original book.

Once everything is properly set up, you can start working with the Translation Man-
ager. This is a dialog box where the ITE shows a list of resources, including forms
and strings, which can be modified for the translation. This window lists the ele-
ments you can modify in the translation, provides the original text as well as the
translated text, and tracks past versions and changes dates. You can filter this table
and choose the columns you want to see, using its shortcut menu. In Figure 19.9,
you can see the Translation Manager with a form selected (taken from my Italian
translation of the Icons example).

The Translation Manager works in conjunction with another tool, the Translation
Repository, where you can store the standard translation of a frequent term. You
can update the repository manually (use the Tools Translation Repository com-
mand to open it) or use the Repository Add strings to Repository command from

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 883

the Translation Manager’s shortcut menu. You can use another command from the
same shortcut submenu (Get Strings from Repository) to automatically translate all
of the terms available in the repository. Notice that the repository can handle multi-
ple translations for the same word and other advanced elements.

Figure 19.9: The new
Delphi 5 Translation
Manager, part of the
ITE. Image from the
original book.

In Figure 19.9, you can see that you can modify the text of the strings, as I’ve done,
but you can also change other parameters, such as positions and fonts. This might
be required when the different length of the translated string affects the user inter-
face. Of course, it is not easy to determine whether the size and position of the
controls is correct by looking at these numbers. What you can do is close the Trans-
lation Manager, select the new project the ITE has added to the current project
group, and move to the form, opening it at design time. This is what I’ve done to
produce Figure 19.10, where you can see that the translation into Italian has created
a problem with the length of the labels. The interesting feature is that you can freely
edit the translated form (provided you don’t add components to it) by moving the
controls, changing their fonts, and so on.

In fact, every time you reopen the Translation Manager (by selecting the main
project and issuing the nonobvious Project Languages Update Resource DLL
command), this will read the current values from the DFM files (the original and the
translated ones) and refresh the Translation Manager’s structure accordingly. This
way, if you update the original form, you don’t have to translate it again, just pro-

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

884 - Chapter 19:More Delphi Techniques

vide the translation for the new elements. At the same time, you can modify the
translated DFM file and see the changes reflected in the translation system. I’ve
done this in my example.

Figure 19.10: When
translating captions,
some might become
larger, leading to
problems with the
program. Image from
the original book.

Once you’ve compiled the translated project, which is technically a DLL, you can use
the Project Languages Set Active command to activate it, so that running the
project in the debugger will load the active language extension. This is only a test;
usually you’ll simply need to run the main executable file, and it will automatically
use the translated DLL corresponding to the current regional locale selected on the
computer (via the Control Panel’s Regional Settings applet).

How does this work and what happens behind the scenes? The Resource DLL Wiz-
ard creates a DLL project that includes the translated DFM and strings. The DLL
includes only the resources, not a copy of the compiled code, and has an extension
that corresponds to the three-letter code identifying the locale, ITA in the example.
This structure is visible in the project source code:

library Icons;
{ITE} {$R ‘IconsF.dfm’ Form1:TForm}
 {DFMFileType} {IconsF.dfm}
{ITE} {$R ‘Icons_DRC.res’ ‘Icons_DRC.rc’}
 {RCFileType} {Icons_DRC.rc}
{$E ita}
begin
end.

The two $R directives determine the resources to include in the project, and they are
followed by comments required by the ITE (you should not modify them). The $E
directive determines the extension of the executable file. The ITE creates a sub-
directory for each locale, so that the filenames won’t conflict.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 885

As you compile the resource DLL, its output is placed in the parent directory, the
same one that hosts the project, so that it will become immediately usable. As you
start this executable file, in fact, the VCL will load the resources either from the
main EXE file or from the DLL matching the current regional settings.

note To activate the translated program, you’ll need to close the current one, change the regional set-
tings, and reexecute it. Technically, it is possible also to change the language on the fly, reloading
the forms without stopping the program. However, the current user input will be lost, as forms
have to be re-created from scratch. If you want to explore this dynamic approach refer to the
RichEdit example included in the Delphi demos, particularly the global functions of the
ReInit.pas unit. By adding this unit to your programs you’ll be able to obtain the dynamic lan-
guage change demonstrated by that program.

Printing

Delphi supports printing in a number of ways. Forms can print their graphical out-
put (see the Print method and the PrintScale property of TForm), and some
components have direct support for printing, such a the RichEdit control. For all
but the simplest operations, you’ll use the global Printer variable to manipulate a
printer from a Delphi program. Actually, Printer is the name of a global function; it
returns an object of class TPrinter, which is defined in the Printers unit.

You can use the object returned by the Printer function to access some global prop-
erties related to the printer, such as a list of installed drivers or printer fonts.
However, its key property is its Canvas. You can use the canvas of a printer the same
way that you use the canvas of a form; that is, you can print text, graphics, and
everything else. To use this canvas, you need to call the printer’s BeginDoc method
to start the printing job, use the canvas methods to produce the output, and then
call the EndDoc method to send the output to the printer. As alternatives, you can
call the Abort method to discard the print job or call the NewPage method to send the
output to the printer and start working on a new page.

A Print Preview of Graphics

Our first example with the global printer object (using the Printer function) is a
simple application you can use to print bitmaps. Basically, this is an extension of the
TabOnly example presented in Chapter 8. That example used a TabControl compo-

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

886 - Chapter 19:More Delphi Techniques

nent to let the user browse through a series of bitmaps. As shown in Fig-ure 19.11,
the PrintBmp example displays a preview form that has a toolbar with four buttons
at the top and a ScrollBox component that contains an Image component. If the
image is bigger than the form, you can use the ScrollBox component to scroll the
image without affecting the toolbar.

Figure 19.11: The
Print preview form of
the PrintBmp example
at design time. Image
from the original book.

This preview dialog box is opened from the application’s File Print command. The
preview form lets you compare the size of the resulting bitmap with the printed
page (indicated by the size of the image component) and scale the bitmap as neces-
sary, to increase its size.

note Changing the image size affects both the screen output in the preview form and the printed out-
put. The reason for scaling a bitmap prior to printing is that bitmaps printed at their standard
pixel-per-inch ratio tend to appear quite small on the printed page.

The code is based on the StretchDraw method of the TCanvas class, which I’ve used
to generate both the preview bitmap and the output bitmap. The StretchDraw
method has two parameters: a rectangle indicating the output region and a graphic
object (the source image). The result is an image stretched to fit the output rectan-
gle. Now let’s review some of the code. The main form responds to the Print
command by initializing and running the Preview form:

procedure TForm1.Print1Click(Sender: TObject);
begin

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 887

 {double-check whether an image is selected}
 if Image1.Picture.Graphic <> nil then
 begin
 {set a default scale, and start the preview}
 PreviewForm.Scale := 2;
 PreviewForm.SetPage;
 PreviewForm.DrawPreview
 PreviewForm.ShowModal;
 end;
end;

The test at the beginning could have been omitted, since the Print menu item is dis-
abled until an image file is selected, but it ensures that a file is selected in any case.
This code sets a public field of the PreviewForm object (Scale), calls two methods of
this form (SetPage and DrawPreview), and finally displays it as a modal form. Figure
19.12 shows an example of the Print Preview form at run time.

The SetPage method sets the size of the Print Preview form’s Image component,
using the size of the printed page:

procedure TPreviewForm.SetPage;
begin
 Image1.Width := Printer.PageWidth div 5;
 Image1.Height := Printer.PageHeight div 5;
 {output the scale to the toolbar}
 Label1.Caption := IntToStr (Scale);
end;

The size of the page is divided by five to make it fit into a reasonable area of the
screen. You might use a parameter instead of this fixed value to add a zooming fea-
ture on the preview page. However, it seemed confusing to have one button to
increase the size of the printed image and another button to increase it only in the
preview, so I decided to skip the zooming capability.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

888 - Chapter 19:More Delphi Techniques

Figure 19.12: The
PrintBmp example’s
Print Preview form,
with the program’s
main form in the
background. Image
from the original book.

The heart of the preview form’s code is in the DrawPreview method, which has three
sections. At the beginning, it computes the destination rectangle, leaving a 10-pixel
margin, scaling the image, and using the fixed zoom factor of 5 (as you can see in
the following listing). The second step erases the old image that is still on the screen
by drawing a white rectangle over it. The third step calls the StretchDraw method of
the canvas, using the rectangle calculated before and the current image from the
image component of the main form (Form1.Image1.Picture.Graphic). To access
this information, we need to add a uses clause in the implementation portion of the
code, referring to the Viewer unit (which declares the TForm1 class). Here is the code
for the DrawPreview method:

procedure TPreviewForm.DrawPreview;
var
 Rect: TRect;
begin
 {compute the rectangle for the bitmap preview}
 Rect.Top := 10;
 Rect.Left := 10;
 Rect.Right := 10 +
 (Form1.Image1.Picture.Graphic.Width * Scale) div 5;
 Rect.Bottom := 10 +
 (Form1.Image1.Picture.Graphic.Height * Scale) div 5;
 {remove the current image}
 Image1.Canvas.Pen.Mode := pmWhite;
 Image1.Canvas.Rectangle (0, 0,
 Image1.Width, Image1.Height);
 {stretch the bitmap into the rectangle}
 Image1.Canvas.StretchDraw (Rect,

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 889

 Form1.Image1.Picture.Graphic);
end;

All of this code is executed just to initialize the form. The start-up code is split into
two methods but only because DrawPreview will be called again later. When initial-
ization is complete and the modal form is visible, the user can click the four toolbar
buttons to resize the image, print it, or skip it.

The two resize methods are simple, because they just set the new scale value and
call the DrawPreview procedure to update the image:

procedure TPreviewForm.ScalePlusButtonClick(
 Sender: TObject);
begin
 Scale := Scale * 2;
 Label1.Caption := IntToStr (Scale);
 DrawPreview;
end;

The PrintButtonClick method of the preview form is almost a clone of
DrawPreview. The only differences are that the destination rectangle is not zoomed,
and the bitmap is sent to the printer in a new document (a new page):

procedure TPreviewForm.PrintButtonClick(Sender: TObject);
var
 Rect: TRect;
begin
 {compute the rectangle for the printer}
 Rect.Top := 10;
 Rect.Left := 10;
 Rect.Right := 10 +
 (Form1.Image1.Picture.Graphic.Width * Scale);
 Rect.Bottom := 10 +
 (Form1.Image1.Picture.Graphic.Height * Scale);
 {print the bitmap}
 Printer.BeginDoc;
 try
 Printer.Canvas.StretchDraw (Rect,
 Form1.Image1.Picture.Graphic);
 Printer.EndDoc;
 except
 Printer.AbortDoc;
 raise;
 end;
end;

note When your program paints on the form canvas, it can be adapted to produce the same output
directly on the printer canvas. The same code can target a generic canvas, possibly after the coor-
dinate system is changed. This is demonstrated by the Shapes example in the Chapter 22.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

890 - Chapter 19:More Delphi Techniques

Printing Text

There are times you need to print some text directly and as fast as possible, without
the need of extra fancy graphics. When this happens, you can rely on the direct
printing support offered by text files. Once you’ve created a file storing text, you can
assign that file to a printer and write the text to it. Take a look at this code, which is
part of the QrNav example:

procedure TNavigator.PrintButtonClick(Sender: TObject);
var
 PrintFile: TextFile;
begin
 {assigning the printer to a file}
 AssignPrn (PrintFile);
 Rewrite (PrintFile);
 try
 {set the font of the form, and output each element}
 Printer.Canvas.Font := Font;
 Writeln (PrintFile, Label1.Caption,
 ‘ ‘, DBEdit1.Text);
 Writeln (PrintFile, Label2.Caption,
 ‘ ‘, DBEdit2.Text);
 Writeln (PrintFile, Label3.Caption,
 ‘ ‘, DBEdit3.Text);
 finally
 {close the printing process}
 System.CloseFile (PrintFile);
 end;
end;

This event handler prints the text of some edit boxes and the related labels. As you
can see in the source code, the program uses the same technique to print the entire
content of the database table.

note This type of printing support still relies on Windows printer drivers, which can generate only
graphical output. If you want to be really fast, you can use the Escape API to drive your printer
directly with Escape commands. Some dot matrix printers can run very fast with continuous
paper, and this can be a handy way to get all of their speed.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 891

The QuickReport Components383

The professional edition of Delphi includes QuickReport, a collection of reporting
components tightly integrated with Delphi and licensed to Borland by QSD AS, Nor-
way. Similar Delphi components are available from other third-party companies,
but I’ll focus on this one simply because it will be readily available to most Delphi
developers.

note Alternatives to the QuickReport reporting component set include ReportPrinter, ReportBuilder
(formerly known as Piparti), ACE Reporter, and many others.

QuickReport uses a form to visually build a report in a way very similar to the way
you build normal forms. However, you’ll use this report form only to develop the
report; it is never actually shown on screen at run time. To print or display the
report, you can call the Print or Preview methods of the QuickReport component,
which you place on each report form (placing a QuickReport component on a form
turns it into a report form).

Using QuickReport, a report is constructed from bands, or horizontal regions of
information. You can use a band to output data, to provide a header and footer in
each printed page, or to include totals and other special information. To build a
report, you simply place the QuickReport component in a secondary form (not the
application’s main form), add one or more bands, and then place on those bands
some of the QuickReport data-aware reporting components, which connect to a Del-
phi data source in the usual way. The data can come from one or more tables or
queries, as in the standard data-access components.

The use of the QuickReport components is demonstrated in the QrNav example
mentioned in the last section. The secondary form of the program, the report form,
has a QuickReport component and three QRBand components, as shown in Figure
19.13.

383 The QuickReport components no longer ship with Delphi. Again, this entire section is now ob-
solete. There is now a light version of FastReport bundled with the product in the GetIt pack-
age manager. Recent news indicate that the work on QuickReport has resumed and moving to
a recent version might offer the best compatibility, if you used it in the past. There are also tool
helping with migration to a different reporting engine.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

892 - Chapter 19:More Delphi Techniques

Figure 19.13: The
form used to build the
report of the QrNav
example at design
time. This form is used
by the report
component it contains,
but it is never
displayed at run time.
Image from the
original book.

One of the key properties of the QRBand component is BandType, used to indicate
the role of the band in the report. In this example, the first band is of type
rbPageHeader, the second of type rbDetail, and the third of type rbPageFooter.
Other types of bands you can use include rbTitle, included before or after the first
page’s header; rbSummary, printed only at the end of the report; rbGroupHeader and
rbGroupFooter for groups defined with the specific QRGroup component;
rbColumnHeader for multicolumn reports; and a few others.

In the example, I’ve placed two QRSysData components in the first band (the page
header). These components display the page number, date, and time, and their Text
property contains a description. You can print many other types of system informa-
tion using this component, as indicated by its Data property. I’ve also set a border
for the enclosing band, using its Frame property.

The second band contains the real data from the database. Detail bands are repli-
cated on the report for each record that appears in the data source, so you have to
specify the dataset for each report component. In this case, I’ve used the Table1
from the program’s main form (after choosing File Use Unit). This same dataset
is also connected to the three QRDBText components placed in the second band.

note In addition to the DataField property they share with the standard Delphi data-aware compo-
nents, the report components also have some formatting capabilities. If you try setting the value
‘###,###,###’ for the Mask property, the numbers will be output with thousands separators.

In the last band, I’ve added a QRExpr component to display the total population of
the countries in the report (actually in all the records up to the current page). This
component can do complex calculations. The simplest approach is to use its
Expression property to indicate the kind of operation (such as sum, min, max, aver-
age, or count) and the related field (such as Population). The Expression property
has a special editor you can use to create the expression, instead of typing it.
Remember, however, to set the Master property to the report component,

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 893

QuickRep1, because this is the only way to connect the calculated value with the
proper dataset.

Having designed the report, you can test it by simply double-clicking the report
component. This displays the print preview form, which you can use directly to
print the report without even compiling the program. You can obtain the same print
preview at run time (see Figure 19.14) by including the following in the main form’s
code:

procedure TNavigator.ReportButtonClick(Sender: TObject);
begin
 ReportForm.QuickReport1.Preview;
end;

Figure 19.14: The
print preview form of
the QrNav example,
which is based on the
QuickReport
component. Image
from the original book.

Manipulating Files

One of the peculiarities of Pascal compared with other programming languages is its
built-in support for files. The language has a file keyword, which is a type specifier,
like array or record. You use file to define a new type, and then you can use the
new data type to declare new variables:

type
 IntFile: file of Integers;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

894 - Chapter 19:More Delphi Techniques

var
 IntFile1: IntFile;

It is also possible to use the file keyword without indicating a data type, to specify
an untyped file. Alternatively, you can use the TextFile type, defined in the System
units, to declare files of ASCII characters. Each kind of file has its own predefined
routines384.

Once you have declared a file variable, you can assign it to a real file in the file sys-
tem using the AssignFile method. The next step is usually to call Reset to open the
file for reading at the beginning, Rewrite to create a new file, or Append (which only
applies to files of type TextFile) to add new items to the end of the file without
removing the older items. Once the input or output operations are done, you should
call CloseFile. This operation should typically be done inside a finally block, to
avoid leaving the file open in case the file-handling code generates an exception.

File Support in Delphi Components

Besides the standard Pascal language file support, Delphi includes a number of
other options for manipulating files. Several components have methods to save or
load their contents from a file (such as a text or a bitmap file), and there are other
specific classes to handle files. Many component classes have SaveToFile and
LoadFromFile methods. In this book, we have used these methods for TBitmap,
TPicture, and TStrings classes (used in TMemo, TListBox, and many other compo-
nent classes). They are also available for some data-aware components (TBlobField,
TMemoField, and TGraphicField), for other graphic formats (TGraphic, TIcon, and
TMetaFile), for OLE (Object Linking and Embedding) containers, and for the Tree-
View and other Windows common controls.

Similar methods are available in the TMediaPlayer class. These methods are named
Open and Save, and they have a slightly different syntax and meaning than their
LoadFromFile and SaveToFile counterparts. Another file-related class we’ll use
later in this chapter is TIniFile. This class implements management of Windows
initialization files or any custom file using the same format. The new topics we will
cover in the following sections are file-system components, streaming components,
and the components that implement object persistency.

384 While still available, using the file keyword is not recommended at all these days. There are
many other Delphi RTL features for file management, including those listed later in this sec-
tion and many other added over time.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 895

File System Components

The Delphi file system components are located in the System page of the Compo-
nents Palette: TDirectoryListBox, TDriveComboBox, TFileListBox, and
TFilterComboBox. These components sport the old-fashioned Windows 3.1 user
interface, and for this reason they are not terribly useful. However, the same FileC-
trl unit that defines these components also contains three interesting routines:

· DirectoryExists, which is used to check whether a directory exists.

· ForceDirectories, which can create several directories at once.

· SelectDirectory, which displays a standard Delphi dialog box for directory
selection.

The Dirs example demonstrates the use of these little-known routines. You can see
the related calls in the source code. Actually, the Windows shell has a number of
similar but more advanced routines, and it offers a number of default dialogs,
including one to select a folder. As a starting point, you might want to check the
Windows API under the group Shell’s Namespace Functions. There are many good-
ies available there and even more undocumented!

In the Dirs example, I’ve done only a simple step in this direction. A button calls the
ShBrowseForFolder API, which displays the system dialog used to find a folder (or a
printer or a computer, depending on the parameters). Here is the code:

uses
 ShlObj;

procedure TForm1.btnBrowseClick(Sender: TObject);
var
 bi: TBrowseInfo;
 pidl: pItemIdList;
 strpath: string;
begin
 bi.hwndOwner := Handle;
 bi.pidlRoot := nil;
 bi.pszDisplayName := ‘’;
 bi.lpszTitle := ‘Select a folder’;
 bi.ulFlags := bif_StatusText;
 bi.lpfn := nil;
 bi.lParam := 0;

 pidl := ShBrowseForFolder (bi);

 SetLength (strPath, 100);
 ShGetPathFromIdList (pidl, PChar(strPath));
 Edit1.Text := strPath;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

896 - Chapter 19:More Delphi Techniques

end;

You can see the effect of this code in Figure 19.15, side by side with Delphi’s own
dialog box generated by the SelectDirectory call.

Figure 19.15:
Windows Browse for
Folder dialog box and
Delphi’s Select
Directory dialog box,
both activated by the
Dirs example. Image
from the original book.

note When you have to work with files and directories, you might want to check the new TMask class
introduced in Delphi 5. This new class is declared in the Masks unit (not to be confused with the
older Mask unit, which defines the edit masks). The TMask class allows you to perform pattern
matching using the wildcards (the standard * and ?), compare values with a set of masks, and
examine the ranges. See Delphi’s help file under TMask.Create for more information.

Streaming Data

Another topic worth exploring is Delphi’s support for file streams. The VCL defines
the abstract TStream class and a number of subclasses385. The parent class, TStream,
has just a few properties, but it also has an interesting list of methods you can use to
save or load data.

Creating a TStream instance makes no sense, because this class is abstract and pro-
vides no direct support for saving data. Instead, you can use one of the derived
classes to load data from or store it to an actual file, a BLOB field, a socket, or a
memory block. Use TFileStream when you want to work with a file, passing the file-
name and some options to the Create method. Use TMemoryStream to manipulate a
stream in memory and not an actual file. However, this class has special methods to

385 Using TStream classes is still fundamental today, although there are many extensions and
new classes like readers and writers that extend the TStream classes.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 897

copy its contents to or from another stream, which can be a file stream. Creating
and using a file stream is as simple as creating a variable of a type that descends
from TStream:

var
 S: TFileStream;
begin
 if OpenDialog1.Execute then
 begin
 S := TFileStream.Create (OpenDialog1.FileName,
 fmOpenRead);
 try
 {use the stream S ...}
 finally
 S.Free;
 end;
 end;
end;

As you can see in this code, the Create method for file streams has two parameters:
the name of the file and a flag indicating the requested access mode. In this case, we
want to read the file, so we used the fmOpenRead flag (other available flags are docu-
mented in the Delphi help). Streams can be used instead of traditional Pascal files,
although they might be less intuitive to use at first. A big advantage of streams is
that they’re very interchangeable, so you can work with memory streams and then
save them to a file, or you can perform the opposite operations. This might be a way
to improve the speed of a file-intensive program. Here is a snippet of code, a file-
copying function, to give you an idea of how you can use streams:

procedure CopyFile (SourceName, TargetName: String);
var
 Stream1, Stream2: TFileStream;
begin
 Stream1 := TFileStream.Create (SourceName, fmOpenRead);
 try
 Stream2 := TFileStream.Create (TargetName,
 fmOpenWrite or fmCreate);
 try
 Stream2.CopyFrom (Stream1, Stream1.Size);
 finally
 Stream2.Free;
 end
 finally
 Stream1.Free;
 end
end;

Another important use of streams (both file streams and memory streams) is to
handle database BLOB fields or other large fields directly. In fact, you can export

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

898 - Chapter 19:More Delphi Techniques

such data to a stream or read it from one by simply calling the SaveToStream and
LoadFromStream methods of the TBlobField class.

The Clipboard

In Delphi, Clipboard support comes in two forms:

· Some components have specific Clipboard-related methods. For example, TMemo,
TEdit, and TDBImage, among other components, have the CopyToClipboard,
CutToClipboard, and PasteFromClipboard methods.

· There is a global Clipboard object of the TClipboard class, which has a number
of specific Clipboard features. For full Clipboard support, the use of the
Clipboard object, defined in the ClipBrd unit, is required.

A program can use the Clipboard object to see if the Clipboard currently holds data
of the requested format, such as text or bitmap, using the HasFormat method. As the
Clipboard can also hold multiple versions of the same data, at times it is useful to
list all the available formats. Finally, you can use the global object to place data in
the Clipboard, when this function isn’t handled directly by other components. The
Clipboard object can also be used to open the Clipboard and copy data in different
formats. This is the only case in which you need to open and close the Clipboard in
Delphi—something that is also required when using the Windows API directly.

Copying and Pasting Text

We’ve already seen an example of the use of the Clipboard in Chapter 7. The Actions
example used an ActionList component to implement the typical Cut, Copy, and
Paste operations on the text of a Memo control. In that case the interaction with the
Clipboard and the user interface updates were handled by predefined actions. In
Chapter 13, the ListText example demonstrated how to write similar actions for list
boxes, using the Clipboard global object.

The Delphi Help file documents five different formats for the HasFormat method:
CF_TEXT, CF_PICTURE, CF_BITMAP, CF_OBJECT, and CF_METAFILE. These are the for-
mats typically used by Delphi and by VCL components. The Windows API, however,
defines many more formats, including the following:

CF_BITMAP CF_DSPMETAFILEPICT

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 899

CF_OWNERDISPLAY CF_SYLK

CF_DIB CF_DSPTEXT

CF_PALETTE CF_TEXT

CF_DIF CF_METAFILEPICT

CF_PENDATA CF_TIFF

CF_DSPBITMAP CF_OEMTEXT

CF_RIFF CF_WAVE

You can use these Windows formats without any particular problems, although
Delphi has no specific support to retrieve these types of data. In this example, we
have used two methods of the TMemo class to perform the Clipboard operations,
but we could have accomplished the same effect with some of the text-related
features of the TClipboard class. For instance, we can use the AsText property (used
to copy or paste strings) and the SetTextBuf and GetTextBuf methods (used to
handle PChar strings). The TClipboard class has specific support only for text. When
you want to work with other elements, you need to use its Assign method or work
with handles.

Copying and Pasting Bitmaps

The most common technique for copying or pasting a bitmap in Delphi is to use the
Assign method of the TClipboard and TBitmap classes. As a slightly more advanced
example of the use of the Clipboard, I’ve made a new version of the PrintBmp exam-
ple shown earlier, called ClipBmp. This program can show bitmaps from a selected
file or from the Clipboard, if the format is available. The structure of the form is
always the same, with a TabControl component covering the whole form and an
Image component inside it. The menu, however, is slightly more complex, because
it now includes the commands from the Edit pull-down menu.

When you select the Edit Paste command of the ClipBmp example, a new tab
named Clipboard is added to the tab set (unless it is already present), as you can see
in Figure 19.16. Then the number of the new tab is used to change the active tab:

procedure TForm1.Paste1Click(Sender: TObject);
var
 TabNum: Integer;
begin
 {try to locate the page}
 TabNum := TabControl1.Tabs.IndexOf (‘Clipboard’);
 if TabNum < 0 then
 {create a new page for the Clipboard}
 TabNum := TabControl1.Tabs.Add (‘Clipboard’);

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

900 - Chapter 19:More Delphi Techniques

 {go to the Clipboard page and force repaint}
 TabControl1.TabIndex := TabNum;
 TabControl1Change (Self);
end;

Figure 19.16: The
Clipboard page of the
ClipBmp example tab
set shows the current
contents of the
Clipboard if it is a
bitmap (in this case a
bitmap of the Delphi
main window). Image
from the original book.

At the end of the Paste1Click method, the program calls TabControl1Change, the
event handler associated with the selection of a new tab, which can load the bitmap
from the current file or paste it from the Clipboard:

procedure TForm1.TabControl1Change(Sender: TObject);
var
 TabText: string;
begin
 Image1.Visible := True;
 TabText := TabControl1.Tabs [TabControl1.TabIndex];
 if TabText <> ‘Clipboard’ then
 {load the file indicated in the tab}
 Image1.Picture.LoadFromFile (TabText)
 else if Clipboard.HasFormat (cf_Bitmap) then
 {if the tab is ‘Clipboard’ and a bitmap
 is available in the Clipboard}
 Image1.Picture.Assign (Clipboard)
 else
 begin
 {else remove the Clipboard tab}
 TabControl1.Tabs.Delete (TabControl1.TabIndex);
 if TabControl1.Tabs.Count = 0 then
 Image1.Visible := False;
 end;
end;

Notice that if the Picture property of the Image component is still not initialized, you
must create the bitmap before calling the Assign method. If you forget to create the

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 901

new bitmap and no graphic is associated with the picture, the Assign operation will
fail (raising an exception). This is because the Assign method isn’t a constructor; it
is a method of an object; and if the object has not been created, you’ll get an access
violation exception when you try to call one of its methods.

note The Assign method doesn’t make a copy of the actual bitmap. Its effect is to let two TBitmap
objects refer to the same bitmap memory image and the same bitmap handle.

This program pastes the bitmap from the Clipboard each time you change the tab.
The program stores only one image at a time, and it has no way to store the Clip-
board bitmap. However, if the Clipboard content changes and the bitmap format is
no longer available, the Clipboard tab is automatically deleted (as you can see in the
listing above). If no more tabs are left, the Image component is hidden.

An image can also be removed using either of two menu commands: Cut or Delete.
Cut removes the tab after making a copy of the bitmap to the Clipboard. In practice,
the Cut1Click method does nothing besides calling the Copy1Click and
Delete1Click methods. The Copy1Click method is responsible for copying the cur-
rent image to the Clipboard, Delete1Click simply removes the current tab. Here is
their code:

procedure TForm1.Copy1Click(Sender: TObject);
begin
 Clipboard.Assign (Image1.Picture.Graphic);
end;

procedure TForm1.Delete1Click(Sender: TObject);
begin
 with TabControl1 do
 begin
 if TabIndex >= 0 then
 Tabs.Delete (TabIndex);
 if Tabs.Count = 0 then
 Image1.Visible := False;
 end;
end;

Saving the Status: INI and Registry

If you want to save information about the status of an application in order to restore
it the next time the program is executed, you can use the explicit support that Win-
dows provides for storing this kind of information. In previous versions of

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

902 - Chapter 19:More Delphi Techniques

Windows, the standard approach was to create an initialization (INI) file. In Win-
dows 95, 98, and NT you can still use INI files, but Microsoft recommends using the
system Registry instead. In this section, we’ll review both methods of storing status
information386.

Using Windows INI Files

Delphi provides a class you can use to manipulate INI files, TIniFile. Once you
have created an object of this class and connected it to a file, you can read and write
information to it. To create the object, you need to call the constructor, passing a
filename to it, as in the following code:

var
 IniFile: TIniFile;
begin
 IniFile := TIniFile.Create (‘inione.ini’);

There are two choices for the location of the INI file. The code just listed will store
the file in the Windows directory (unless an IniOne.ini file already exists in the
application directory). To be on the safe side, it is better to provide a full path to the
TIniFile.Create constructor. We can easily extract the path from the program
name, as I’ll do in the IniOne example.

The format of INI files requires some explanation. These files are divided into sec-
tions, each indicated by a name enclosed in square brackets. Each section can
contain a number of items of three possible kinds: strings, integers, or Booleans. If
you are not familiar with the structure of an INI file, you should look at one, using
any text editor, such as Windows Notepad.

The TIniFile class has three Read methods, one for each kind of data: ReadBool,
ReadInteger, and ReadString. There are also three corresponding methods to write
the data: WriteBool, WriteInteger, and WriteString. Other methods allow you to
read or erase a whole section. In the Read methods, you can also specify a default
value to be used if the corresponding entry doesn’t exist in the INI file.

Our example, called IniOne, uses an INI file to store the location, the size, and the
status (normal, maximized, or minimized) of the main form. The only real problem
in this example is that the value of the state property is not always updated properly
by the VCL, so we need to introduce an additional test to confirm whether the form
has been minimized. The main form of the IniOne example is just a blank form,

386 Both techniques, INI files and the Registry, remain commonly used today on Windows.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 903

without any components. The program handles two events: OnCreate, to create or
open the INI file and read the initial values, and OnClose, to save the status after
confirmation by the user. Here is the code of the first method, FormClose, which
saves the data to be retrieved the next time the program is run:

procedure TForm1.FormClose(Sender: TObject;
 var Action: TCloseAction);
var
 Status: Integer;
begin
 if MessageDlg (‘Save the current status of the form?’,
 mtConfirmation, [mbYes, mbNo], 0) = IdYes then
 begin
 case WindowState of
 wsNormal: begin
 {save position and size, only if the state is normal}
 IniFile.WriteInteger (‘MainForm’, ‘Top’, Top);
 IniFile.WriteInteger (‘MainForm’, ‘Left’, Left);
 IniFile.WriteInteger (‘MainForm’, ‘Width’, Width);
 IniFile.WriteInteger (‘MainForm’, ‘Height’, Height);
 Status := 1;
 end;
 wsMinimized: Status := 2;
 {useless: this value is never set by VCL for the main form!}
 wsMaximized: Status := 3;
 end;
 {check if the window is minimized, that is,
 if the form is hidden and not active}
 if not Active then
 Status := 2;
 {write status information}
 IniFile.WriteInteger (‘MainForm’, ‘Status’, Status);
 end;
 {in any case destroy the IniFile object}
 IniFile.Free;
end;

note The main form of a VCL-based application is never minimized—when the main form receives a
minimize message, it is forwarded to the application window which minimizes the entire applica-
tion. WindowState does return wsMinimize value for secondary forms in the application that
are minimized but not for the main form. To know whether the application is minimized, we can
check if the main form is active, as in the code above.

The other method is FormCreate, which simply reads the saved data and restores
the previous situation. Notice the initialization code, which looks for the INI file in
the directory of the program, taking its name and changing the extension. Here is
the complete code:

procedure TForm1.FormCreate(Sender: TObject);

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

904 - Chapter 19:More Delphi Techniques

var
 Status: Integer;
begin
 IniFile := TIniFile.Create (ChangeFileExt (
 Application.ExeName, ‘.ini’));
 {try to read a value and test if it exists}
 Status := IniFile.ReadInteger (‘MainForm’, ‘Status’, 0);
 if Status <> 0 then
 begin
 {read position and size using current values as default}
 Top := IniFile.ReadInteger (‘MainForm’, ‘Top’, Top);
 Left := IniFile.ReadInteger (‘MainForm’, ‘Left’, Left);
 Width := IniFile.ReadInteger (‘MainForm’, ‘Width’, Width);
 Height := IniFile.ReadInteger (‘MainForm’, ‘Height’, Height);
 {set the minimized or maximized status}
 case Status of
 // 1: WindowState := wsNormal;
 // this is already the default
 2: WindowState := wsMinimized;
 3: WindowState := wsMaximized;
 end;
 end;
end;

This code uses a field named IniFile, of type TIniFile, which I’ve added to the pri-
vate section to the TForm1 class. I didn’t include a figure showing the program’s
output, because showing you an empty form or an icon is not particularly helpful.
Instead, you should simply run the program a number of times to investigate its
behavior, resizing and repositioning its window each time. What I will provide is an
example of an INI file generated by the program:

[MainForm]
Top=359
Left=567
Width=217
Height=201
Status=1

note Delphi uses INI files quite often, but they are disguised with different names. For example, the
desktop (.dsk) and options (.dof) files are structured as INI files387.

387 These files are no longer in use.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 905

Using the Registry

Now we can write a similar program using the system Registry instead of plain INI
files. Before we do so, I want to briefly discuss the role and the structure of the Reg-
istry. Essentially, the Registry is a hierarchical database of information about the
computer, the software configuration, and the user preferences. Windows has a set
of API functions to interact with the Registry; you basically open a key (or folder)
and then work with subkeys (or subfolders) and with values (or items), but you
must be aware of the structure and the details of the Registry. The Windows 95/98
Registry is based on six top-level keys.

Refer to specific Microsoft documentation (such as the Resource Kit) to get the
details of the organization of the Registry and information about where to add your
own keys. The importance of the Registry should not be underestimated. The Reg-
istry holds crucial information about the system hardware configuration, Control
Panel settings, and OLE servers, and it even contains statistics about the machine.
To study the structure of the Registry and examine the current values of the keys,
you can use the RegEdit program.

note You can also use RegEdit to edit the values in the Registry, but you’d do better to avoid changing
anything unless you are sure about what you are doing.

Delphi provides basically two approaches to the use of the Registry and supports
each one with a VCL class: TRegistry and TRegIniFile. The first class provides a
generic encapsulation of the Registry API, while the latter provides the interface
(methods and properties) of the TIniFile class but saves the data in the Registry
instead of using the files. This class is the natural choice for the Registry version of
our last program example; by using it we won’t have to make too many changes in
the source code (a real advantage whenever you have existing code based on INI
files). Here are the three changes you have to make to the IniOne program:

1. Use TRegIniFile instead of TIniFile as the class of the IniFile object.

2. Create a new TRegIniFile object, instead of a TIniFile object in the
FormCreate method:

IniFile := TRegIniFile.Create (‘IniOne.ini’);

3. In the uses statement of the interface portion of the unit, replace the IniFiles
unit with the Registry unit.

Easy, isn’t it? With these simple changes, I’ve built the Registr example, which has
exactly the same capabilities as the previous one but saves its data to the Registry
instead of an INI file. Actually, when using the TRegIniFile class, Delphi adds a

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

906 - Chapter 19:More Delphi Techniques

new subkey with the name of the INI file under the HKEY_CURRENT_USER key. Instead
of adding your entries directly under this root key, you should place them under the
Software subkey and perhaps add one more level for your software company. This
is the actual code of the Registr example:

IniFile := TRegIniFile.Create (
 ‘Software\Mastering Delphi\Registr’);

We can see the effect of this code by exploring the Registry with the RegEdit appli-
cation, as shown in Figure 19.17.

Figure 19.17: Using
the Registr program,
you add new entries to
the registration
database, as you can
see by viewing the
Registry with RegEdit.
Image from the
original book.

The TRegIniFile class is actually a subclass of the more generic TRegistry class,
which has a number of methods very similar to the functions in the Registry API.
These functions are not very simple to use, so I suggest that you stay with the sim-
pler TRegIniFile for most cases. To use the TRegistry class, you need to open a key
first and then access its data, including its values and its subkeys.

To show you the basic capabilities of the TRegistry class, I’ve built a very simple
Registry viewer application. This program can show the structure of the Registry
and list the values of the keys and items, but it doesn’t display the actual data con-
nected with the keys and items. It has only a subset of the capabilities of the RegEdit
application, but I think it is an interesting example anyway.

The RegView program is based on a form with two combo boxes and two list boxes.
When the application starts, a TRegistry object is created:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Reg := TRegistry.Create;
 Reg.OpenKey (‘\’, False);
 UpdateAll;
 // select the current root
 ComboKey.ItemIndex := 1;
 ComboLast.Items.Add (‘\’);
 ComboLast.ItemIndex := 0;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 907

end;

This code opens the default root key (indicated by the backslash character) and then
updates the user interface. At the end, it selects the default root key in the first
combo box (more on this shortly) and adds the current element to the ComboLast
combo box. The UpdateAll method simply copies the current path to the caption of
the form and fills the two list boxes with the subkeys and the values of the current
key (as you can see in Figure 19.18):

procedure TForm1.UpdateAll;
begin
 Caption := Reg.CurrentPath;
 if Reg.HasSubKeys then
 Reg.GetKeyNames(ListSub.Items)
 else
 ListSub.Clear;
 Reg.GetValueNames(ListValues.Items);
end;

When you select an item from the first list box (ListSub), the program jumps to the
selected subkey. To accomplish this, simply write the following code:

procedure TForm1.ListSubClick(Sender: TObject);
var
 NewKey: string;
begin
 NewKey := ListSub.Items [ListSub.ItemIndex];
 Reg.OpenKey (NewKey, False);
 UpdateAll;
end;

This is enough to navigate the full tree. The two combo boxes add some more capa-
bilities to the program. The first lists the possible root keys for Windows 95 and 98.
When the selection changes, the corresponding contents are selected as root key of
the TRegistry object:

procedure TForm1.ComboKeyChange(Sender: TObject);
begin
 case ComboKey.ItemIndex of
 0: Reg.RootKey := HKEY_CLASSES_ROOT;
 1: Reg.RootKey := HKEY_CURRENT_USER;
 2: Reg.RootKey := HKEY_LOCAL_MACHINE;
 3: Reg.RootKey := HKEY_USERS;
 4: Reg.RootKey := HKEY_CURRENT_CONFIG;
 5: Reg.RootKey := HKEY_DYN_DATA;
 end;
 Reg.OpenKey (‘\’, False);
 UpdateAll;
 ComboLast.Items.Clear;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

908 - Chapter 19:More Delphi Techniques

Figure 19.18: The
output of the RegView
example, showing keys
and values of the
Registry (the section
with Delphi’s own
settings). The combo
box displays a list of
recently used Registry
keys. Image from the
original book.

After setting the new root key, the program opens its root item, updates the user
interface, and empties the second combo box, Last Keys. This box stores a log, a his-
tory list of the previous selections, and can be used to navigate the tree without
having to start from the root item each time. This is the code:

procedure TForm1.ComboLastChange(Sender: TObject);
begin
 Reg.OpenKey (ComboLast.Text, False);
 UpdateAll;
end;

This code is simple, but the code needed to update the list of the items of this combo
box is quite complicated. Besides checking whether a path is already present, we
have to add a new backslash in front of any path that doesn’t have it at the begin-
ning. The problem here is that the method just listed doesn’t set the CurrentPath
property of the Reg object properly, even though it produces the correct effect. To
make further selections from that path (once it is added to the list), we need to cor-
rect it first. Considering all these issues, here is the final version of the
ListSubClick method:

procedure TForm1.ListSubClick(Sender: TObject);
var
 NewKey, Path: string;
 nItem: Integer;
begin
 // get the selection
 NewKey := ListSub.Items [ListSub.ItemIndex];
 Reg.OpenKey (NewKey, False);
 // save the current path (eventually adding a \)

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 909

 // only if the it is not already listed
 Path := Reg.CurrentPath;
 if Path < ‘\’ then
 Path := ‘\’ + Path;
 nItem := ComboLast.Items.IndexOf (Path);
 if nItem < 0 then
 begin
 ComboLast.Items.Insert (0, Path);
 ComboLast.ItemIndex := 0;
 end
 else
 ComboLast.ItemIndex := nItem;
 UpdateAll;
end;

Accessing Properties by Name

As you know, the Object Inspector displays a list of an object’s published properties,
even for components you’ve written. To do this, it relies on the RTTI information
generated for published properties. Using some advanced techniques, an applica-
tion can retrieve a list of the published properties of an object and use them.

Although this capability is not very well known, in Delphi it is possible to access
properties by name simply by using the string with the name of the property and
then retrieving its value. Access to the RTTI information of properties is provided
through a group of undocumented subroutines, part of the TypInfo unit388.

note The reason these subroutines are not documented is that Borland wants to be free to change them
in future versions of Delphi. In the past (from Delphi 1 to Delphi 4) they’ve changed just a little.
Delphi 5’s TypInfo unit provides many more goodies, and this can cause a few incompatibilities. If
you use anything from TypInfo, be aware that you might need to update your code for future ver-
sions of Delphi.

Rather than explore the entire TypInfo unit here, we will look at only the minimal
code required to access properties by name. Prior to Delphi 5 it was necessary to use
the GetPropInfo function to retrieve a pointer to some internal property informa-
tion and then apply one of the access functions, such as GetStrProp, to this pointer.
You had also to check for the existence and the type of the property.

388 Later Delphi added a much more sophisticated, comprehensive, and easy to use RTI system.
You can find the classes and interfaces in the System.RTTI unit. The core, traditional RTTI
remains the foundation for properties and streaming and is still applicable, even if less used.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

910 - Chapter 19:More Delphi Techniques

Delphi 5 introduces a new set of TypInfo routines, including the handy
GetPropValue, which returns a variant with the value of the property, or NULL if the
property doesn’t exists. You simply pass to this function the object and a string with
the property name. A further optional parameter allows you to choose the format for
returning values of properties of the set type.

For example, we can call

ShowMessage (GetPropValue (Button1, ’Caption’));

This call has the same effect as calling ShowMessage, passing as parameter
Button1.Caption. The only real difference is that this version of the code is much
slower, since the compiler generally resolves normal access to properties in a more
efficient way. The advantage of the run-time access is that you can make it very flex-
ible, as in the following RunProp example.

This program displays in a list box the value of a property of any type for each com-
ponent of a form. The name of the property we are looking for is provided in an edit
box. This makes the program very flexible. Besides the edit box and the list box, the
form has a button to generate the output and some other components added only to
test their properties. When you press the button the following code is executed:

uses
 TypInfo;

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
 Value: Variant;
begin
 ListBox1.Clear;
 for I := 0 to ComponentCount -1 do
 begin
 Value := GetPropValue (Components[I], Edit1.Text);
 if Value <> NULL then
 ListBox1.Items.Add (Components[I].Name + ‘.’ +
 Edit1.Text + ‘ = ‘ + string (Value))
 else
 ListBox1.Items.Add (‘No ‘ + Components[I].Name + ‘.’ +
 Edit1.Text);
 end;
end;

You can see the effect of pressing the Fill List button while using the default Cap-
tion value in the edit box in Figure 19.19. You can try with any other property name.
Numbers will be converted to strings by the variant conversion. Objects (such as the
value of the Font property) will be displayed as memory addresses.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 911

Figure 19.19: The
output of the RunProp
example, which
accesses properties by
name at run time.
Image from the
original book.

Do not use regularly the TypInfo unit instead of other property-access techniques.
Use base-class property access first, or use the safe as typecast when required, and
reserve RTTI access to properties as a very last resort. Using TypInfo techniques
makes your code slower, more complex, and more error prone; it skips the compile-
time type-checking; and it makes the code less portable to future versions of Delphi.

Building Online Help389

Unless your applications are very simple, you’ll usually want to include some form
of online help to answer questions that arise while users are working with your soft-
ware. Windows provides support for online help at the operating-system level, but
you must still do a fair amount of work to provide help for your applications. To
simplify this task, you can use several third-party products, such as ForeHelp,
RoboHelp, and several others390. However, you can also create online help using the
tools that ship with Delphi, along with a word processor that can generate RTF-for-
mat text files. We’ll review the basic steps required for creating online help this way,
but keep in mind that the third-party tools generate the same files and do the same
things. They also automate many of the repetitive and error-prone elements of the
process.

389 Not much of this section still applies as the help system format Microsoft and Delphi use has
changed, and most of the tools of the old time no longer exist

390 I doubt these tools for building help files still exist today.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

912 - Chapter 19:More Delphi Techniques

There are three main files that you’ll need to generate before you can create an
online help (HLP) file: a project file, a contents file, and the help text file itself. Once
you have these three files, you’ll then use Microsoft’s Help Compiler to bring every-
thing together as an HLP file. The Microsoft Help Workshop391, which ships with
Delphi, can be used to create the project and contents files if you’re not going to use
a third-party tool. Using Help Workshop and MS Word (or another RTF-generating
word processor), you’re ready to create online help files. Let’s consider this process
in four stages: creating the help text file(s), creating the Contents file, creating the
Project file, and mapping/linking the help topics to the elements of your Delphi
application.

As I mentioned above, to create the help text files, you’ll need a word processor that
can generate RTF-format text files, such as WordPerfect or MS Word. When you
begin creating the text, you can put the text in multiple files (menu help in
Menu.rtf, dialog box help in Dialog.rtf, and so on), or you can put it all in a single
file. Below are my suggestions for the steps to follow in creating the help text:

· Create a help page for each form and dialog box. Title each page with the name of
the form or dialog box.

· Create a help page for each menu item that doesn’t display a dialog box. Title
these pages with the name of the menu, followed by the name of the menu item,
separated by the “pipe” character (as in Edit | Copy).

· Create “pop up” help pages for terms that may be unfamiliar to the user. These
pages don’t need a title, because you’ll present the text to the user in a pop-up
window adjacent to the unfamiliar term.

· Create “pop up” help pages that contain links to related topics, such as com-
mand-line options.

· Create help pages for common tasks, and create links to the pages for the menu
items, forms, and dialog boxes those tasks require.

· Create tutorial pages as appropriate.

· Create a help page that summarizes the product’s use and main features.

· If the product is a new release of an existing product, create a help page that
summarizes the new features.

391 This is no longer available, and Delphi moved to a different help file format (still from
Microsoft)

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 913

Now let’s consider how to format a basic help page. Most help pages contain the fol-
lowing elements (consult the HCW.HLP file for more detailed information on
formatting help pages):

· The topic title text, typically boldface, sometimes a different color than the body
text, and usually 14-point type or larger.

· The context string for the page, entered as a # custom footnote to the topic title.
This is the string that the help system uses to uniquely identify this help page. It
must be unique, and it cannot contain spaces or punctuation characters.

· The search text string, entered as a $ custom footnote to the topic title. This is
the string the user will see in the Search dialog, the History list, and the Book-
mark menu. You’ll usually want this text to match the topic title text.

· The keyword strings for this topic, entered as a K custom footnote to the topic
title. These are the strings that will appear in the Index tab. You can enter more
than one keyword string for each topic, but you must separate the strings with a
semicolon. To display various subheadings in the index under a given main
heading, enter the heading as the first word of the string and the subheading as
the second, and separate them with a comma.

· Links to other help pages, entered as text that’s double-underlined and followed
immediately by a context string, formatted as hidden text.

· Links to pop-up help pages, entered as text that’s single-underlined and followed
immediately by a context string, formatted as hidden text.

· A forced page break. All help pages must end this way.

In addition, you may want to be aware of the following as you format your help
pages:

· To create a nonscrolling region at the top of a help page, use the Keep With Next
paragraph style for the title and any links (such as a “Related Topics” pop-up
link) that you want to display in the nonscrolling region.

· You’ll generally want to use Arial for most help text, as it’s easily readable in
most font sizes and is a standard font that will be on every system.

· You can link to topics in other HLP files. If you know the context strings in the
other HLP file, you can link to those topics using a standard link, but you must
format the context string differently. Instead of just entering the context string as
the hidden text, you’ll need to enter the HLP filename, an asterisk, and then the
context string (no spaces in between), all as hidden text. If you don’t have access

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

914 - Chapter 19:More Delphi Techniques

to the context strings, you’ll need to use the JumpKeyword macro, documented
in the Help Workshop’s online help.

At this point, you should have created all your help text, formatted as individual
help pages. Figure 19.20 shows a sample RTF-formatted help text file, with several
brief help pages.

Figure 19.20: A
simple, RTF-formatted
help text file. Image
from the original book.

Now let’s consider how you generate the Help Contents file. The Contents and
Project files aren’t binary files, they’re text files. Even so, it’s much easier to use the
Help Workshop to format and maintain them.

In Help Workshop, you’ll create a new Contents file, which requires that you specify
the HLP filename, the name of the main help window type, and the default title that
you want to appear at the top of the help window. Then, you create the headings and
topics that will appear in the Contents tab of the Contents/Index/Search window.
For each topic entry, you’ll specify first the topic text and then the context string of

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 915

the help page you want to associate with that topic. You can see an example of a
Contents file being edited in Help Workshop in Figure 19.21.

Figure 19.21: A
Contents file, as it
appears in Help
Workshop. Image from
the original book.

When you’re ready to create the Project file, you can create it from within Help
Workshop, as well. In the Project file, you’ll specify the following critical informa-
tion:

· The RTF filenames for the files that contain the help text pages

· The filename of the Contents file

· The name of the resulting HLP file

· Compression techniques to use, if any

· A map of corresponding context strings and context ID

· The size, position, color, and appearance of the help window

Now let’s consider the last two pieces of information in a bit more detail.

A context ID number map is necessary for displaying help information for menu
items, forms, or components. When you create the context string and this number

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

916 - Chapter 19:More Delphi Techniques

map, you’ll want to use a standard technique for assigning these numbers. I suggest
you use the following numbering system:

· Map the context string for the summary or overview help page to both ID 0 and
1.

· Map the context string for the new features help page (if one exists) to ID 2.

· Use numbers from 3–99 as ID numbers for pop-up, related topic, common task,
and tutorial help pages.

· Use 100–199 as ID numbers for the first menu, its menu items, and the resulting
dialog boxes. For example, ID 100 would describe the menu and provide links to
the help for each menu item. ID 101 would describe the first menu item, 102 the
second, and so on. You’d then use 130–199 to describe the dialog boxes that
appear for the first menu’s items.

· Use 200–299 as ID numbers for the second menu, its menu items, and the
resulting dialog boxes. Number the remaining menus, menu items, and dialog
boxes accordingly.

Using this technique, you can quickly assign the ID numbers to the context strings
and keep the help pages organized more easily.

As you may have noticed, different applications display the online help file in differ-
ent initial locations. You may want to do this to make sure that the online help
doesn’t obscure an important form or window, or you may want to make the help
window as large as possible. In addition to specifying the window’s size and position
in the Project file, you can also determine the background color for the text (as well
as for nonscrolling regions, if you create them). To enforce these settings on the
default help window, create a new window style named “Main” and apply the
changes there.

Once you’ve created the Project file and specified the appropriate parameters, you
can compile and test the HLP file. Help Workshop displays error messages and a
detailed report on this process, informing you of the number of topics, links, key-
words, and bitmaps your HLP file contains. You can also run WinHelp directly from
Help Workshop, which allows you to test the HLP file before you proceed to the last
step, linking the help topics to specific elements in your Delphi application.

Linking your Delphi application to the HLP file is actually quite simple; it consists of
just a few steps:

· Specify the HLP filename in the application’s Project Options dialog box.

· Set the HelpContext property of the main form to 1.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 917

· Set the HelpContext property of other components to the appropriate values,
based on the ID mapping assignments you made in the Project file.

· If you haven’t created a help page for a particular component, menu, or menu
item, leave the HelpContext property at 0, because this value is mapped to the
product summary topic.

· Use the standard actions related to the help (THelpContenst, THelpTopicSearch,
and THelpOnHelp) to implement a Help menu in a few seconds. These help
actions are new to Delphi 5.

That’s it! Once you’ve tested the application, written the online help, and tested the
help system (and then retested the application several times), you’re ready to create
an installation program.

InstallShield Express392

Almost every commercial application uses some form of setup program to manage
the installation and configuration of the application before its first use. Among the
many good utilities on the market for creating setup programs, one of the most pop-
ular is InstallShield. Delphi ships with a feature-reduced version of this tool, known
as InstallShield Express. Even though complete treatment of this topic would
require a small book, you can create simple setup programs quite easily using
InstallShield.

There are many advantages to using a third-party tool like InstallShield to create
your setup program, and as the complexity of your application increases, so does the
value of this type of tool. For example, if your application requires the BDE, or any
of the BDE drivers, you simply pick and choose which of these components you
need, and InstallShield handles the messy details. Similarly, if you’re developing a
new version of a complex application that spreads code across several DLLs, Install-
Shield can create a setup program that detects version information in an existing
installation and updates the files only as necessary. Need to install one set of files
for Windows 95 or 98 and another for Windows NT? You can do that, too. Let’s
quickly review how you use InstallShield Express to create a setup program.

392 This tool no longer ships with Delphi, while it still exists. Most of this section is no longer ap-
plicable. I haven’t use the tools since the time, and have no idea if any of the feature described
here are still actual today.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

918 - Chapter 19:More Delphi Techniques

When you use InstallShield Express to create a new setup program, you’ll begin by
specifying three important pieces of information: the project’s name, the sub-direc-
tory where you’ll store the project’s files, and whether or not you want to specify a
custom setup in your installation. You’ll enter this information in the New Project
dialog box. In particular, you should note the Include a Custom Setup Type check
box, as making the correct choice is important. If you don’t select this now, you
won’t be able to add a custom setup later.

Once you create a new InstallShield Express project, you’ll see a Setup Checklist,
visually hosted in a legal notepad, as shown in Figure 19.22.

Figure 19.22: The
user interface of
InstallShield Express is
based on a notepad
metaphor. Image from
the original book.

Although it’s natural to specify these items in the order they appear, you can gener-
ally perform them in any order (except for building, testing, and deploying the setup
application, which you must naturally perform last). Each section contains one or
more checklist items, each of which corresponds to a tab in a dialog box for that sec-
tion. Briefly, let’s examine each of the main sections of the checklist, and review
some of the actions you’ll need to take.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 919

The first section, Visual Design, contains three items, and the Set the Visual Design
dialog box will display three corresponding tabs. In the App Info tab, you’ll specify
the name of your setup application, the executable’s path and filename, the version,
and the name of your company. On the Main Window tab, you’ll specify the title of
the setup program, a bitmap logo, and the background color of the setup program’s
main window. On the Features tab, you’ll specify whether InstallShield Express
should create an uninstall option for you. (I recommend that you use this option,
because there’s almost no penalty for doing so.)

After you’ve entered the appropriate data in this dialog box, click OK to save the
data. When the Setup Checklist window reappears, you’ll notice a check mark beside
each item in the Visual Design section. These check marks simply remind you which
items you’ve entered.

The second section in the Setup Checklist is titled Select InstallShield Objects for
Delphi; it includes sections such as General and Advanced. You’ll use the resulting
dialog box to select which of the optional Delphi components or accessories you’d
like to install. For example, if you’re creating a setup program for a database appli-
cation, you’ll no doubt want to install the Borland Database Engine (BDE), which
can be somewhat complex, even for otherwise simple applications. In this dialog
box, you can not only choose whether or not to install the BDE, you can also pick
and choose which portions of the BDE you’d like to install.

The third section, Specify Components and Files, contains three items, which once
again means three sections in the corresponding dialog box. In this dialog box,
you’ll specify Groups and Files, Components, and Setup Types. Because the differ-
ent meanings of these terms may not be obvious, I’ll explain them briefly:

· A File Group is a logical set of files that the setup program must install into a
specific directory. For instance, you’ll typically want to place all your online help
files in the same directory. While this is generally the same directory as the appli-
cation, it may not be. You’ll separate these files from the others in the Program
Files group, because there may be situations where you don’t want to install
them. When in doubt, create a new file group for one or more files when
installing them is optional.

· A Component is a set of one or more file groups. Where the file groups were dis-
tinguished based on the destination directory, you’ll distinguish components
based on their logical function. For example, if you’re not going to install some
optional online help files, you probably won’t want to install the related tutorial
files that you’ve prepared. By creating a component that contains the supplemen-
tal help file group and a tutorial file group, you can specify that you don’t want to

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

920 - Chapter 19:More Delphi Techniques

install them as a set. However, even though they’re logically grouped as a compo-
nent, if you install them, the setup program will respect the destination
directories you specified for the file groups.

· A Setup Type is a logical group of components. By default, the three standard
setup types will install all components, but you can customize this to eliminate a
component (that is, a set of file groups) from a specific setup type.

The next section in the Setup Checklist window is titled Select User Interface Com-
ponents. By selecting the Dialog Box item, you can specify which of the standard
setup program dialog boxes you’d like to display to the user. Here’s a list of the dia-
log boxes you can choose from:

Welcome Bitmap: Although it’s not used by default, you can display an opening
bitmap image when your setup program starts.

Welcome Message: Choose this to display a standard text greeting.

Software License Agreement: Select this option to display the text from your
own license agreement.

Readme Information: Same as the license agreement, but here you’ll display
“readme” information.

User Information: User enters name, address, and optionally, a product serial
number.

Choose Destination Information: User specifies a target disk drive and/ or
directory.

Setup Type: User selects between Typical, Compact, or Custom (the Custom
option will be available only if you specified for InstallShield to generate a custom
setup).

Custom Setup: If Custom was selected in the Setup Type option, this dialog box
allows the user to pick which components they’d like to install.

Select Program Folder: Determines the default folder name that will contain the
application and its support files.

Start Copying Files: Begins the installation process.

Progress Indicator: Displays a visual image that updates the user on the status of
the setup process.

Billboards: Use this option to display one or more BMP files while the user is run-
ning the setup program.

Setup Complete: Here, you’ll select the nature of the message that appears when
the user has finished setting up the application.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 921

You can choose to display all of these dialog boxes, none of them, or any combina-
tion you like. The setup program will present them to the user in the order that they
appear in the dialog box. Figure 19.23 shows the Select User Interface Components
dialog box.

Figure 19.23: The
Select User Interface
Components dialog
box. Image from the
original book.

The next section in the Setup Checklist is titled Make Registry Changes. This section
can be simple to use, but its effects are far-reaching, because you’re making changes
directly to the System Registry. (The most common reason for adding Registry
entries is to create associations between various file extensions and your applica-
tion.) Therefore, use caution when adding Registry data or values. By default,
InstallShield creates several Registry entries for you, primarily to register the full
application path for correct launching from the Start menu.

The last section of the Setup Checklist before you begin generating the setup pro-
gram is titled Specify Folders and Icons. You’ll use this section to specify the
command-line parameters for the application (either the EXE path and filename, as
well as command-line parameters, or the path and filename of a default document),
its appearance in the Start menu, and the other properties of its Start menu icon
(such as if the application should launch in a minimized, maximized, or normal
window). You can see the Specify Folders and Icons dialog box in Figure 19.24.

Now you’re ready to build your setup program. The next section of the Setup Check-
list, called Run Disk Builder, brings together all the settings and configurations
from the previous checklist items, merges them into compressed data files, and then

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

922 - Chapter 19:More Delphi Techniques

generates one or more disk images (files that represent the actual contents of the
installation disks). This is where you actually begin building your setup program. In
the Disk Builder dialog box, you choose the distribution medium for your setup pro-
gram, and then click the Build button. From that point, you can sit back and
monitor the process, noting any error messages or warnings that InstallShield dis-
plays. If errors occur, you can make changes to the checklist items and then rebuild
the setup program. Figure 19.25 shows the Disk Builder dialog box after building a
setup program that contains several errors.

Figure 19.24: The
Specify Folders and
Icons dialog box.
Image from the
original book.

Once you’ve built your setup program and eliminated any errors that the Disk
Builder dialog box reported, you’re ready to begin testing the setup by actually exe-
cuting the setup program. Fortunately, InstallShield allows you to do this before you
generate the actual disks. When you click the Test Run item in the checklist, Install-
Shield will launch the program, and you can begin testing various options in your
installation. If you wish to test different setup types at this stage (before you’ve actu-
ally created the installation disks), you’ll want to uninstall the software, via the
Add/Remove Programs tool in the Windows Control Panel. Figure 19.26 shows the
new setup program in action.

After you’ve tested your setup program and determined that it’s working correctly,
you’re ready to build the deployment disks. This is the last item on the Setup Check-

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 923

list, and as you’d expect, it’s the last task you’ll perform in preparing the setup pro-
gram prior to final testing and duplication.

Figure 19.25: The
Disk Builder dialog
box. Image from the
original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

924 - Chapter 19:More Delphi Techniques

Figure 19.26: The
setup program for the
Help Project example.
Image from the
original book.

Managing Source Code393

When working on a large project or in a team of developers sharing source code, do
not work on the source code files and simply replace older versions with new ones.
This standard procedure, in fact, can produce problems when you want to revert to
a previous version of the source code or when different programmers need to work
on the same files or need to know what other programmers have changed.

Delphi 5 provides a built-in solution to solve these types of problems as well as ver-
sion tracking in general394. The tool is called TeamSource, and it must be installed
separately from the Delphi environment (note that TeamSource is available only in

393 The concept of managing source and, source code control and related has grown in relevance.
Over the years Subversion emerged at the top tool, later replaced by Git. Whichever tool you
use, it’s fundamental to use one, even if you are coding as a single developer.

394 Today the Delphi IDE offer integration for Subversion and Git.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 925

the Enterprise version of Delphi or as a separate buy). Borland defines TeamSource
as395 “a workflow management tool,” which is actually a good description of what the
tool can do for you (even in a single user situation). TeamSource uses a version con-
trol system behind the scenes for storing and retrieving shared files. You can use
any version control system, called controller, including the simple Borland.zlib,
included in the tool.

note You can use TeamSource for your Delphi development and also for any other programming lan-
guage or set of ASCII-based files. (Files must be at least text-based if you want to be able to
compare the differences and resolve conflicts). For example, you can use TeamSource to manage
the HTML files of a (large) Web site.

TeamSource is a rather complex tool, with many options and features, so I will sim-
ply give you a summary of its capabilities. The basic idea is that each user will have
his or her own version of the source code, can make changes, and then can reconcile
the changes back to the shared remote repository. This is called parallel version
control, because many programmers can modify the source code files at the same
time. Each programmer works on a local copy, as though he or she were the only
developer on the project. Once in a while the user can reconcile the local files with
the remote image, upload the files the user changed, and get a new copy of the files
other programmers have worked on.

This process, however, is not simply a file replacement. TeamSource keeps track of
the file differences, stores all the past versions of the source code files, keeps a log of
the messages every user has added to the system, forwards files and messages by
e-mail, and more. There are some operations, such as reconciling files, that can be
done only by one user at a time. When you perform an operation like that, Team-
Source will automatically place a lock on the entire project (two users cannot
reconcile their own differences at the same time). These automatic locks expire after
a short time, unless you extend them.

TeamSource’s main window uses an Outlook-type menu bar, where you can select
the various areas: remote, local (shown in Figure 19.27), project history, and general
settings. The local section is where you operate on files on the local computer, which
are kept up to date by the reconciliation process. TeamSource compares local infor-
mation with remote shared versions and then displays in this view the changes,
suggesting how to reconcile them (for example, uploading a change to the shared
repository or getting an update that another developer has done). From the local
view, you can see the difference between your version and the one that was last
checked in (choosing one of the available versions).

395 Borland TeamSource no longer exists.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

926 - Chapter 19:More Delphi Techniques

Figure 19.27:
TeamSource main
window, with the Local
view. Image from the
original book.

Contrary to other version control systems, TeamSource allows you to check in your
files but not check them out. You don’t need to let the system know that you are
working on a file (that is, lock the shared file to prevent others from modifying it),
because when you check in, TeamSource will figure out what changes you made and
how to merge those changes into the shared repository on the server. TeamSource is
able to perform this magic by using a “three-way reconciliation” algorithm that com-
pares the source file at the time you last copied it from the server, the modified
source file now on your local machine, and the source file currently on the server.
With these three data points, it can figure out not only what changes you have made
but also what changes have been made to the shared file and how to merge those
together without loss of information. The only time you have to manually merge
changes in TeamSource is when you and another developer modify the same source
line in the same source file at the same time. In this case, the first person to check in
will merge without incident, but the second person to check in will be informed of
the “collision” and prompted to merge the changes by hand. As with optimistic
record locking in databases, these check-in collisions become less and less likely as
the size of the project increases.

The best part about TeamSource is that this magic lets many developers work on the
same project without getting in each other’s way. You simply work on the local copy
of the files with Delphi, in the standard way. This makes TeamSource much less
intrusive than many other version-control systems.

The remote view gives you the state of the project. In this view, you can see all the
changes to the project, do revisions, and compare files in the history list (that is, the

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 19:More Delphi Techniques - 927

files that have been checked in by the various developers over time). The file com-
parison is based on the source code and displays the differences, as you can see in
Figure 19.28. You can see the history list and all the comments logged by the various
users, including the reasons for changes and for acquiring locks. Another important
concept is that of productions. A production indicates to the system that a given file
is the result of the compilation of another one. For example, a DCU file is the pro-
duction of a PAS file, and a RES file is the production of an RC file.

Figure 19.28: The
source code
comparison window of
TeamSource; on the
background, the
Remote view Image
from the original book.

When you need to create a snapshot of the project for later use, you can create a
bookmark. Afterward, you’ll be able to make a local copy of the project (pull-in) of
any of the bookmarks. Creating a bookmark is a way to save the state of your project
at a specific time and date. When pulling project files, you can tell TeamSource to
pull the project files in the state they were in at the time and date of a particular
bookmark. By the way, watch out when you do a pull, as the local changes you have
not checked might get lost. There can be local bookmarks, visible only to the devel-
oper who defined them, and global ones, set up by the administrator.

Another very common notion of version control systems is that of a branch. Con-
sider the case of a development process between two different programmers or
subteams. One team might be fixing bugs for a release, while the other might be
adding features that are not going to be immediately available to the users. This

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

928 - Chapter 19:More Delphi Techniques

would not be possible if everyone checks the same code base. However, TeamSource
allows you to replicate the source code in two different directories, locally and
remotely. In this case, every user will update the local changes to one of the two
directories, containing the different branches. After some time, when the two
groups need to resynchronize their separate efforts, they’ll use TeamSource to syn-
chronize between the branch directory and the original one.

There is much more to TeamSource than this short introduction suggests. You can
produce autonomous local copies for experiments (pulling in the project file you
need), rollback to previously saved versions, and so many other operations. The
only suggestion I can give you is to try for yourself. But its value is worth the effort.

What’s Next?

In this chapter, we have examined some details about the role, definition, and use of
Windows resources in traditional applications and demonstrated how to use them
in Delphi programming and for localizing applications. Then we examined some
techniques related to printing, manipulating files, and using the Clipboard. Next, we
reviewed Delphi’s support for both INI files and the system Registry, and we tried
out some related techniques. Finally, we discussed Delphi’s online help, installation
tools, and TeamSource, giving a brief overview of their use.

This chapter ends our discussion of real-world Delphi techniques. With the next
chapter, we start exploring another advanced topic that has plenty of specific sup-
port in Delphi: Internet and distributed programming.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 929

Chapter 20:

Internet

Programming

In this chapter, I’ll provide an introduction to Internet and Web programming in
Delphi, using some of the components available in the IDE. With the advent of the
Internet era, writing programs for the World Wide Web has become common-
place396.

We’ll start by looking at HTML files and building a couple of HTML generators. The
next step will include the coverage of ActiveForms. Then we’ll go on with the use of
Delphi socket components, other Internet components, and techniques you can use
for automated e-mail processing.

396 While this indication was in the right direction, the growth of web technologies in general has
been so extensive and pervasive it would have been difficult to anticipate in its full extension.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

930 - Chapter 20: Internet Programming

Finally, we’ll focus on the server side, particularly the development of server exten-
sions based on the Common Gateway Interface (CGI), ISAPI, and Active Server
pages (ASP). Of course, I’ll try to focus on database publishing on the Web using the
specific components and tools provided in Delphi. Notice that most of these compo-
nents are part of the WebBroker technology, available only in Delphi Enterprise or
as a separate add-on.

note To test some of the examples in this chapter, you’ll need access to a Web server. The best test bed
is probably the use of a server under Windows NT or Windows 2000, but you can try the exam-
ples with Microsoft’s Personal Web Server, as well, which is included in Windows 98397.

HyperText Markup Language (HTML)

The HyperText Markup Language, better known by its acronym HTML, is a very
widespread format for hypertext on the Web. HTML is the format Web browsers
typically read. HTML is a standard defined by the W3C, the World Wide Web Con-
sortium, which is one of the bodies controlling the Internet. The current standard is
represented by HTML 4, although not all of the browsers fully support it398. When
building a Web site, you always need to choose a lowest common denominator
approach to support most of the browsers in use, that is, unless you are targeting a
specific group of users who you ask to adopt a specific browser (as happens in
Intranet situations). If you don’t know much about the tags included in HTML files,
you may want to read the sidebar “The Format of HTML Files” for a fast introduc-
tion.

On the client side of the Web, the main activity is browsing—reading HTML files.
We’ve already seen in Chapter 16 how you can write a simple customized browser by
embedding Microsoft Internet Controls into your application (that is, using the
WebBrowser component available in the Internet page of Delphi’s Components pal-
ette).

397 Nowadays, Microsoft IIS is available in all editions of Windows, but you can also install a local
copy of the Apache server or build a stand along HTTP server in Delphi, using Indy compo-
nents.

398 The current situation is very different, with most browsers adopting a single engine
(Chromium) and all of the others trying to conform to it. While browser differences exists,
they are not the issue they used to be at the time I wrote this book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 931

You can also activate directly the browser installed on the computer of the user, for
example, opening an HTML page by calling the ShellExecute method (defined in
the ShellApi unit):

ShellExecute (Handle, 'open',
 FileName, '', '', sw_ShowNormal);

Using ShellExecute we can simply execute a document, such as a file. Windows will
start the program associated with the HTM extension399, using the action passed as
the parameter (in this case, open). You can use a similar call to view a Web site, by
simply using a string like ‘http://www.borland.com’ instead of a filename400. In this
case, the system recognizes the http section of the request as requiring a Web
browser, and launches it.

On the server side, you generate and make available the HTML pages. At times, it
may be enough to have a way to produce static pages, occasionally extracting new
data from a database table to update the HTML files as needed. In other cases, you’ll
need to generate pages dynamically based on a request from a user. I’m going to
write a couple of examples covering the first case in this chapter, but I’ll defer the
dynamic generation to the next chapter.

The Format of HTML Files

If you have a little familiarity with HTML but don’t work with it often enough to have all the
basic elements “down cold,” here’s a quick summary.

HTML files are basically ASCII text files. Besides plain text, an HTML file contains many tags,
which might determine the style of the font, the type of paragraph, or a link to another HTML
file or an image, among other things.

Most tags are paired as opening tags and closing tags (the closing tag is usually the same as the
opening tag but is preceded by a / slash symbol) to indicate where the style begins and ends. For
example, you write important to set the word important in bold, and you write
<title>Document title</title> to set the title of a document.

Some tags, however, have no closing version (or “termination”). The <p> tag, used to separate
paragraphs, is one of these. The <p> tag is a particularly important one, because the line spaces
and new-line characters in an HTML file are totally ignored. Only by using a <p> or tag, or
by starting a new heading, will you move the following text to a new line.

399 Or the HTML extension, more common now.

400 Beside favoring https over http, notice that the domain listed here currently doesn’t respond
any more. Today, I’d have used as a demo ‘https://www.embarcadero.com’.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

932 - Chapter 20: Internet Programming

An HTML document begins with the <html> tag and is divided into two parts, marked as
<head> and <body>. Each of these three tags requires the corresponding terminator. In the head
portion of the HTML file, you’ll generally write the title (often displayed in the title bar of the
browser) and a few other generic elements.

In the body, you write the contents of the file, generally starting with its visible title. You can
have several headings with different levels, marked with the <hX> tag, where you’d replace X
with a number from 1 to 6. These are followed by plain paragraphs (<p>), preformatted
paragraphs (<pre>, a style generally used for program listings), various types of lists, and many
other elements. The text will often have links to other pages or other parts of the current page,
using the <a> tag.

Another relevant element of HTML is tables. The <table> and </table> tags indicates the
beginning and the end of the table, and its optional border attribute displays borders with a
given width. The <tr> and </tr> tags introduce and close each row, and the tags <th>, </th>,
<td>, and </td> indicate a table header cell and a table data cell, respectively. The number of
columns depends on the items in each row. Different rows, in fact, can have a different number
of items.

HTML is the subject of many books (from Sybex and other publishers), and you can find dozens
of HTML tutorials just by browsing the Web.

Delphi’s HTML Producer Components

If your version of Delphi includes the HTML producer components (available on the
Internet page of the Components Palette), you can use them to generate the HTML
files and particularly to turn a database table into an HTML table401. Many develop-
ers believe that the use of these components makes sense only when writing a Web
server extension. Although they were introduced for this purpose and are part of the
WebBroker technology, you can still use three out of the four producer components
in any application in which you have to generate a static HTML file.

Before looking at the HtmlProd example, which demonstrates the use of these
HTML producer components, let me summarize their role:

· The simplest of the HTML producer components is the PageProducer, which
manipulates an HTML file in which you’ve embedded special tags402. The advan-

401 These components have long been available in each version of Delphi, but they are fairly use-
less by today’s HTML standards.

402 Recently (in RAD Studio 12.2) Embarcadero introduced an HTML template engine called
WebStencils, which is the first full replacement for PageProducer and it compatible with the
original produce interface (so it’s a plug-in replacement). The scripting features are extensive.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 933

tage of this approach is that you can generate such a file using the HTML editor
you prefer. At run time, the PageProducer converts the special tags to actual
HTML code, giving you a straightforward method for modifying sections of an
HTML document. The special tags have the basic format <#tagname>, but you
can also supply named parameters within the tag. You’ll process the tags in the
OnTag event handler of the PageProducer.

· The DataSetPageProducer extends the PageProducer by automatically replacing
tags corresponding to field names of a connected data source.

· The DataSetTableProducer component is generally useful for displaying the con-
tents of a table, query, or other dataset. The idea is to produce an HTML table
from a dataset, in a simple yet flexible way. The component has a very nice pre-
view, so you can see how the HTML output will look in a browser directly at
design time403.

· The QueryTableProducer is similar to the previous one (it is actually a subclass),
but it’s specifically tailored for building parametric queries based on input from
an HTML search form. For this reason, I’ll delay the coverage of this component
until I cover server-side programming.

Producing HTML Pages404

A very simple example of using tags is creating an HTML file that displays fields
with the current date or a date computed relative to the current date, such as an
expiration date. If you examine the HtmlProd example, you’ll find the following
component in the main form:

object PageProducer1: TPageProducer
 HTMLDoc.Strings = (...)
 OnHTMLTag = PageProducer1HTMLTag
end

The source HTML can be specified using an external file (with the advantage that
you can edit it without having to recompile the application using it) or a string list,
stored in the HTMLDoc property. This is a plain HTML file that might contain a few
special tags introduced by the # symbol:

403 While there isn’t a direct repalcement, WebStencils is focused on helping generating HTML
files mapped to datasets.

404 This section (and the following ones) make sense only in a historical perspective, as these com-
ponents are no longer recommended.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

934 - Chapter 20: Internet Programming

<HTML><HEAD>
<TITLE>Producer Demo</TITLE>
</HEAD><BODY>
<H1>Producer Demo</H1>
This is a demo of the page produced by the <#appname>
application on <#date>.<p>
<hr>
The prices in this catalog are valid until
<#expiration days=21>.<p>
</BODY></HTML>

note If you prepare this file with an HTML editor (something I suggest you do), it might automatically
place quotes around tag parameters, as in days=”21”, because this is required by HTML 4. The
PageProducer component in Delphi 5 has a new StripParamQuotes property, which can be
activated to remove those extra quotes when the component parses the code (before calling the
OnHTMLTag event handler).

The Demo Page button simply copies the PageProducer component’s output to the
Text of a Memo with the statement

 Memo1.Text := PageProducer1.Content;

As you call the Content function of the PageProducer component, it reads the input
HTML code, parses it, and triggers the OnTag event handler for every special tag. In
this method, we check the value of the tag (passed in the TagString parameter) and
return a different HTML text (in the ReplaceText reference parameter), producing
the output of Figure 20.1.

procedure TFormProd.PageProducer1HTMLTag(Sender: TObject;
 Tag: TTag; const TagString: String; TagParams: TStrings;
 var ReplaceText: String);
var
 nDays: Integer;
begin
 if TagString = ‘date’ then
 ReplaceText := DateToStr (Now)
 else if TagString = ‘appname’ then
 ReplaceText := ExtractFilename (Forms.Application.Exename)
 else if TagString = ‘expiration’ then
 begin
 nDays := StrToIntDef (TagParams.Values[‘days’], 0);
 if nDays <> 0 then
 ReplaceText := DateToStr (Now + nDays)
 else
 ReplaceText := ‘<I>{expiration tag error}</I>‘;
 end;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 935

Figure 20.1: The
output of the HtmlProd
example, a simple
demonstration of the
PageProducer
component, when the
user presses the Demo
Page button. Image
from the original book.

Notice in particular the code we’ve written to convert the last tag, expiration, which
requires a parameter. The PageProducer places the entire text of the tag parameter
(in this case, days=21) in a string that’s part of the TagParams list. To extract the
value portion of this string (the portion after the equal sign), you can use the Values
property of the TagParams string list and search for the proper entry at the same
time. If it can’t locate the parameter or if its value isn’t an integer, the DLL displays
an error message.

note The PageProducer component supports user-defined tags, which can be any string you like, but
you should first review the special tags defined by the TTags enumeration. The possible values
include tgLink (for the LINK tag), tgImage (for the IMAGE tag), tgTable (for the TABLE
tag), and a few others. If you create a custom tag, as in the PageProd example, the value of the
Tag parameter to the HTMLTag handler will be tgCustom.

Producing Pages of Data

The HtmlProd example has also a DataSetPageProducer component, with the fol-
lowing settings and HTML source code:

object DataSetPageProducer1: TDataSetPageProducer
 HTMLDoc.Strings = (
 ‘<HTML><HEAD>‘
 ‘<TITLE>Data for <#name></TITLE>‘
 ‘</HEAD><BODY>‘
 ‘<H1><CENTER>Data for <#name></CENTER></H1>‘
 ‘Capital: <#capital><p>‘
 ‘Continent: <#continent><p>‘

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

936 - Chapter 20: Internet Programming

 ‘Area: <#area><p>‘
 ‘Population: <#population><p>‘
 ‘<HR>‘
 ‘Last updated on <#date>
‘
 ‘HTML file produced by the program <#program>‘
 ‘</BODY></HTML>‘)
 OnHTMLTag = DataSetPageProducer1HTMLTag
 DataSet = Table1
end

Simply by using tags with the names of the fields of the connected dataset (the usual
Country.DB database table), the program automatically gets the value of the fields
of the current record and replaces it automatically, producing the output of Figure
20.2. In the source code of the program related to this component, in fact, there is
no reference to the database data:

procedure TFormProd.BtnLineClick(Sender: TObject);
begin
 Memo1.Clear;
 Memo1.Text := DataSetPageProducer1.Content;
 BtnSave.Enabled := True;
end;

procedure TFormProd.DataSetPageProducer1HTMLTag(
 Sender: TObject; Tag: TTag; const TagString: String;
 TagParams: TStrings; var ReplaceText: String);
begin
 if TagString = ‘program’ then
 ReplaceText := ExtractFilename (Forms.Application.Exename)
 else if TagString = ‘date’ then
 ReplaceText := DateToStr (Date);
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 937

Figure 20.2: The
output of the HtmlProd
example for the Print
Line button. Image
from the original book.

Producing HTML Tables

The last button of the HtmlProd example is Print Table. This button is connected to
a DataSetTableProducer component405, again calling its Content function and copy-
ing its result to the Text of the Memo. By simply connecting the DataSet property of
the DataSetTableProducer to Table1, you can produce a standard HTML table.
Actually, the component by default generates only 20 rows, as indicated by the
MaxRows property. If you want to get all the records of the table you can set this
property to -1, a simple but undocumented setting.

note The DataSetTableProducer component starts from the current record rather than from the first
one. This means that the second time you press the Print Table button, you’ll see no records in the
output. Adding a call to the First method of the table before calling the Content method of the
producer component fixes the problem.

To make the output of this producer component more complete, you can do two dif-
ferent operations. The first is to provide some Header and Footer information, to
generate the HTML heading and closing elements, and add a Caption to the HTML

405 Again, this works today, but it’s not recommended.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

938 - Chapter 20: Internet Programming

table. The second is to customize the table itself, by using the setting specified by
the RowAttributes, TableAttributes, and Columns properties. The property editor
of the columns, which is also the default component editor, allows you to set most of
these properties, providing at the same time a very nice preview of the output, as
you can see in Figure 20.3. Before using this editor, you can set up properties for
fields of the table, using the Fields Editor. This is how, for example, you can format
the output of the population and area fields to use thousand separators.

Figure 20.3: The
editor of the Columns
property of the
DataSetTableProducer
component provides
you with a preview of
the final HTML table
(if the database table is
active). Image from the
original book.

There are three techniques you can use to customize the HTML table, and it’s worth
reviewing each of them:

· You can use the table producer component’s Column property to set properties,
such as the text and color of the title, or the color and the alignment for the cells
in the rest of the column. You can see the values for the example in the listing
above.

· You can use the TField properties, particularly those related to output. In the
example, I’ve set the DisplayFormat property of the Table1Continent field object
to ###,###,###. This is the approach to use if you want to determine the actual

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 939

output of each field. You might go even further and embed HTML tags in the
output of a field.

· You can handle the DataSetTableProducer component’s OnFormatCell event to
customize the output further. In this event, you can set the various column
attributes uniquely for a given cell, but you can also customize the output string
(stored in the CellData parameter) and embed HTML tags. This is something
you can’t do using the Columns property.

In the example I’ve used a handler for this event to turn the text of the Population
and Area columns to bold font and to a red background for large values (unless it is
the header row). Here is the code:

procedure TFormProd.DataSetTableProducer1FormatCell(
 Sender: TObject; CellRow, CellColumn: Integer;
 var BgColor: THTMLBgColor; var Align: THTMLAlign;
 var VAlign: THTMLVAlign; var CustomAttrs, CellData: String);
begin
 if (CellRow > 0) and
 (((CellColumn = 3) and (Length (CellData) > 8)) or
 ((CellColumn = 4) and (Length (CellData) > 9))) then
 begin
 BgColor := ‘red’;
 CellData := ‘‘ + CellData + ‘‘;
 end;
end;

The rest of the code is summarized by the settings of the table producer component:

object DataSetTableProducer1: TDataSetTableProducer
 Caption = ‘<h2>American Countries</h2>‘
 Columns = <
 item
 BgColor = ‘Silver’
 FieldName = ‘Name’
 Title.Align = haLeft
 Title.BgColor = ‘Silver’
 Title.Caption = ‘Country’
 end
 item
 FieldName = ‘Capital’
 end
 item
 FieldName = ‘Continent’
 end
 item
 Align = haRight
 FieldName = ‘Area’
 end
 item
 Align = haRight

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

940 - Chapter 20: Internet Programming

 FieldName = ‘Population’
 end>
 Footer.Strings = (
 ‘<hr><i>Produced by EmplProd</i>‘
 ‘</body></html>‘)
 Header.Strings = (
 ‘<html><head>‘
 ‘<title>DataSetTableProducer Demo</title>‘
 ‘</head><body>‘
 ‘<h1><center>DataSetTableProducer Demo</center></h1>‘)
 MaxRows = -1
 DataSet = Table1
 TableAttributes.Border = 1
 TableAttributes.CellPadding = 5
 OnFormatCell = DataSetTableProducer1FormatCell
end

You can see the output of this program in Figure 20.4. I suggest you study the
source code of the HTML file this program generates so that you can see the rich-
ness of its output and therefore the advantage of using this component.

Using Style Sheets

The latest incarnations of HTML include a very powerful mechanism for separating
content from presentation: cascading style sheets (CSS)406. Using a style sheet you
can separate the formatting of the HTML (colors, fonts, font sizes, and so on) from
the actual text displayed (the content of the page). This approach makes your code
more flexible and your Web site easier to update. In addition, you can separate the
task of making the site graphically appealing (the work of a Web designer) from
automatic content generation (the work of a programmer). Style sheets are a rather
complex technique, in which you give formatting values to the main types of HTML
sections and to special “classes” (which have nothing to do with OOP). Again, see an
HTML reference for the details.

406 While this is a core feature today, rather than a new one, using a CSS remains fundamental in
today’s Web development.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 941

Figure 20.4: The
output of the Print All
button of the HtmlProd
example, which is
based on the
DataSetTableProducer
component. Image
from the original book.

How can we update table generation in the HtmlProd example to include style
sheets? Simply enough, we can provide a link to the style sheet to use in the Header
property of a second DataSetTableProducer component, with the line

<link rel=”stylesheet” type=”text/css” href=”test.css”>

We can then update the code of the OnFormatCell event handler with the following
action (instead of the two lines changing the color and adding the bold font tag):

CustomAttrs := ‘class=”highlight”’;

The style sheet I’ve provided (TEST.CSS, available in the source code of the exam-
ple) defines a highlight style, which has exactly the bold font and red background
that were hard-coded in the code of the first DataSetTableProducer component.

The advantage of this approach is that now a graphic artist can modify the CSS file
and give our table a nicer look without touching its code. When you want to provide
many formatting elements, using a style sheet can also reduce the total size of the
HTML file. This is an important element that can reduce download time.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

942 - Chapter 20: Internet Programming

Publishing Static Databases on the Web

Once you know how to produce files, you can simply add links from one to another
and produce a series of cross-linked HTML files, representing a portion of a Web
site. There are circumstances in which writing a program that examines a database
and produces files is the best approach for publishing database data on a Web
site407. You can use a similar technique if the following conditions apply:

· If the data doesn’t change very often: A catalogue updated monthly or
weekly is a good example. Even if you can update the site automatically every
night, this is still a possible technique. (For real-time information, of course, this
is certainly not a good approach!)

· If the amount of data is limited and smaller than your available space
on the Web site: This seems obvious, but the formatted HTML output might
take much more space than the original database files. If you use a server-side
program (like those I’ll be discussing in the next chapter) to generate the HTML
from the database data on the fly, you might need less disk space on the Web
site. Keep in mind that preparing all the HTML files beforehand usually results
in much better performance (faster server response time to Web requests, and
lower memory overhead to process the requests) than generating the data on the
fly.

· If the number of ways to navigate is limited: If there are three or four
obvious paths of navigation (a main one and two or three cross-references) you
can generate all of them statically. Otherwise, the cross-referencing HTML files
will be much larger than the files with the actual data, and the time required to
generate them may become excessive.

Even if only parts of these conditions apply to your specific needs, you can consider
using a mixed approach. You can have a portion of the data and of the navigational
files generated periodically and have a CGI and ISAPI application on the site, as well
as let users do free searches and follow other less frequent paths. We’ll see how later
in this chapter. For the moment, though, I’ll focus instead on another totally differ-
ent technology: publishing ActiveX controls and ActiveForms on a Web site.

407 I’d say generating static HTML for a complex web site is less and less common these days, but
some of the advice in this chapter should be taken into consideration anyway.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 943

ActiveForms in Web Pages

In Chapter 16, you learned how you can use Delphi’s ActiveForm technology to cre-
ate a new ActiveX control. In that chapter, I mentioned that an ActiveForm is
simply an ActiveX control based on a form. Borland documentation often implies
that ActiveForms should be used in HTML pages, but you can use any ActiveX con-
trol on a Web page408.

Basically, each time you create an ActiveX library, Delphi enables the Project Web
Deployment Options and Project Web Deploy menu items. The first allows you to
specify how and where to deliver the proper files. As shown in Figure 20.5, in this
dialog box you can set the server directory for deploying the ActiveX component,
the URL of this directory, and the server directory for deploying the HTML file
(which will have a reference to the ActiveX library using the URL you provide).

Figure 20.5: The
Web Deployment
options dialog box.
Image from the
original book.

You can also specify the use of a compressed CAB file, which can store the OCX file
and other auxiliary files, such as packages, making it easier and faster to deliver the
application to the user. A compressed file, in fact, means a faster download. Using

408 The entire idea of using ActiveX controls and ActiveForms in the browser had severe security
issues and was strictly tied to the Windows platform and the use of the Internet Explorer
browser. Needless to say, these elements make the feature totally obsolete – although you
might still be able to make it work.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

944 - Chapter 20: Internet Programming

the options shown in Figure 20.5, Delphi generates the HTML file and CAB file for
the XClock project (built in Chapter 16) in the same directory. Opening this HTML
file in Internet Explorer (remember, Netscape has no support for ActiveX controls)
produces the output shown in Figure 20.6.

Figure 20.6: The
XClock control in the
sample HTML page.
Image from the
original book.

note At times, when you load an HTML page referring to an ActiveX, all you get is a red X marker indi-
cating a failure to download the control. There are various possible explanations for this problem.
First, Internet Explorer must be set up properly, allowing the download of controls and (if the
control is not signed) lowering the security level. Second, other problems might arise when the
control requires a DLL or a package that is not part of the downloaded CAB file. Third, you might
get the red slash marker when there is a mismatch in the version number—or you might see an
older version of the control in action. That’s because even when you’ve rebuilt the control, Inter-
net Explorer might decide to use the cached version instead (stored in either the
windows/occache or the windows/downloaded program files directory). You can use
version information and other related techniques to avoid this third problem. It’s not very profes-
sional, but as a last resort you can simply remove the copy of the file from the cache when
everything else fails. Due to bugs in Internet Explorer 3 and 4, if an older version of the ActiveX
control is still loaded in the browser’s in-memory cache, the browser will not download or install a
newer version of the control even when the HTML object tag reference makes it clear that it is a
newer version number. Also, the file of the cached control might be locked, so in order to be able
to deploy the file correctly, you need to shut down Internet Explorer and then deploy the file.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 945

Besides showing you how to deploy the XClock control on a Web page, I’ve created
the XForm1 example to demonstrate the problems with event handlers of Active
Forms mentioned at the end of Chapter 16, in the section “ActiveForm Internals.”
Because the form events are exported as events of the control, you should not han-
dle the events of the form directly but add some code to the default handlers
provided by the Active Form. For example, if you add a handler for the OnPaint
event of the form and write the following code, it will never be executed:

procedure TFormX1.FormPaint(Sender: TObject);
begin
 Canvas.Brush.Color := clYellow;
 Canvas.Ellipse(0, 0, Width, Height);
end;

If you want to paint something on the form’s background, instead, you have to mod-
ify the corresponding handler installed by the ActiveForm Wizard:

procedure TFormX1.PaintEvent(Sender: TObject);
begin
 Canvas.Brush.Color := clBlue;
 Canvas.Rectangle (20, 20,
 ClientWidth - 20, ClientHeight - 20);
 if FEvents <> nil then FEvents.OnPaint;
end;

As an alternative, you can place a frame, a panel, or another component on the sur-
face of the form, and handle its events. In the XForm1 example I’ve simply added a
PaintBox component, with a bevel component behind it to make the area of the
PaintBox visible.

The Role of an ActiveX Form on a Web Page

Before we look at another example, it is important to stop for a second to consider
the role of an ActiveX form placed inside a Web page. Basically, placing a form in a
Web page corresponds to letting a user download and execute a custom Windows
application. There is little else happening. You download an executable file and start
it. (This is one of the reasons the ActiveX technology raises so many concerns about
security.409)

409 As I mentioned earlier, these concerns for security ended up killing the use of ActiveX controls
in the browser.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

946 - Chapter 20: Internet Programming

A simple example can highlight the situation. For the following example, I gener-
ated a new ActiveForm, added a button and a label to it, and then wrote the
following code for the OnClick event of the button:

procedure TXFormUser.Button1Click(Sender: TObject);
var
 UserName: string;
 Size: Cardinal;
begin
 Size := 128;
 SetLength (UserName, Size);
 GetUserName (PChar(UserName), Size);
 Label1.Caption := UserName;
end;

This method simply calls the GetUserName Windows API function, and its effect is
certainly not astonishing, as the name of the user will simply be displayed in a label.
However, this example highlights a couple of important points (which apply both to
ActiveForms and ActiveX controls in general):

· In an ActiveX control or form, you can call any Windows API function (which
means the user viewing the Web page must have Windows on his or her com-
puter) or certain Windows API-compatible libraries.

· An ActiveX can access the system information of the computer, such as the user
name, the directory structure, and so on. This is why, before downloading an
ActiveX, Web browsers check whether the ActiveX has a proper authentication,
or signature. (You should note that this signature simply identifies the author of
the control and that the module has not been corrupted or tampered with since
the author published it; it doesn’t prove in any way that the control is safe.)

Well, I could continue, but I think my point is clear. ActiveX controls and Active-
Forms are great tools, particularly in an intranet. On the Internet, however, some
users might not like having to use ActiveX controls.

A Multipage ActiveForm

As a final example, I’ll take an existing program and turn it into an ActiveForm. We
have seen that there are three standard approaches in the development of a complex
program: MDI, multiple modal or modeless forms, and multipage forms. The last
approach is the one best suited for the development of a complex ActiveForm.

If you want to turn an existing form into an ActiveX form, there are several
approaches you can follow. The simplest is probably to select all of the components

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 947

in the original program, build a component template out of them (so that you copy
the component properties and their event handlers), and then paste them into a
new ActiveForm. An alternative to this approach is to take the existing form and
place it inside an ActiveForm. This is not a particularly complex task, and it pro-
vides the great advantage that there is nothing you have to change in the original
source code, not even the methods handling events of the form. (Because the source
is not the ActiveForm, its events are not connected to the outside world.)

To show you this approach in practice, I’ve taken the WizardUI example of Chapter
8, added Web connectivity to it, and then hosted it inside an ActiveForm. The new
example is called XWebWiz. If you remember the original example, it showed infor-
mation about Web sites. I’ve taken the labels and list boxes referring to Web sites
and set their properties, as in the following case:

object Label2: TLabel
 Cursor = crHandPoint
 Caption = ‘Main site: www.inprise.com’
 Font.Color = clBlue
 Font.Style = [fsUnderline]
 OnClick = LabelLinkClick
end

The blue underlined text will look like a typical link inside a browser, and the hand
cursor completes the picture. To activate these links, we can extract the Web site’s
URL from the label caption or list-box item and call the ShellExecute API function
to browse the URL. To turn the program into an ActiveForm, I’ve simply created a
new ActiveForm, added the unit of the original form to the project, and written the
following OnCreate handler for the active form:

uses
 WizForm;

procedure TXWizForm.FormCreate(Sender: TObject);
begin
 WizardForm := TWizardForm.Create (Self);
 WizardForm.Parent := Self;
 WizardForm.Align := alClient;
 WizardForm.BorderStyle := bsNone;
 WizardForm.Show;
end;

By setting the Parent property to the active form, aligning it, and removing the bor-
der, the existing form will cover the entire surface of the active form, making the
two indistinguishable. You can see an example of the output in Figure 20.7.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

948 - Chapter 20: Internet Programming

note Of course, a multipage ActiveForm can be based on frames, as we’ve already seen in Chapter 8 for
multipage forms.

Figure 20.7: The
output of the XWebWiz
control in an HTML
page. By selecting the
links, you can jump to
the corresponding Web
site. Image from the
original book.

Setting Properties for the XArrow

An ActiveForm has a few properties you can set when you use it inside a develop-
ment environment, and a plain ActiveX control has even more. For example, if you
want to set properties in the HTML file hosting the control, you can use a special
Param tag, but the control must support a special interface known as
IPersistPropertyBag.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 949

Starting with Delphi 4, the IPersistPropertyBag support is built in, providing sup-
port for all of the properties of the ActiveX control or ActiveForm. As an example,
I’ve used the Web Deploy options on the XArrow control built in Chapter 16. Then,
I’ve modified the automatically generated HTML file with three Param tags:

<OBJECT
 classid=“clsid:5551EB27-0AC6-11D2-B9F1-004845400FAA”
 codebase=“./XArrow.cab”#version=1,0,0,0
 width=350
 height=250
 align=center
 hspace=0
 vspace=0
>
<Param Name=“ArrowHeight” Value=“100”>
<Param Name=“Filled” Value=“-1”>
<Param Name=“FillColor” Value=“111829”>
</OBJECT>

You can compare the default and customized output of the control in Figure 20.8.

Figure 20.8: By using
the Param tag, we can
set values for the
properties of an
ActiveX control in the
HTML file hosting it.
The two copies of the
program show the
default and the
customized output.
Images from the
original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

950 - Chapter 20: Internet Programming

Socket Programming with Delphi

Up to now in this chapter we’ve seen how to publish static HTML files on a Web site
and how to make the HTML pages richer by inserting Windows programs (in the
form of ActiveX controls) into them.

Now I’m going to focus more on Internet programming, specifically the use of the
connectivity provided by Delphi socket components, which are based on TCP/IP
and the low-level Windows Sockets. Before we look into the foundations of sockets,
let me list a number of alternative approaches you can use for Internet program-
ming, which I’ll cover in more detail in the next few sections:

· The Delphi Socket Components provide a good interface for a direct use of the
Windows sockets API, implementing some custom protocol of your own. Using
Delphi higher-level socket components is generally much easier than using the
low-level API410.

· For standard protocols, you can also use the FastNet Tools VCL components
(from NetMasters), included in Delphi, or look for similar controls from other
third-parties411.

· The WinInet (Windows Internet) library is a collection of higher-level services
provided by Microsoft. These services make the development of HTTP and FTP
programs very simple412.

410 The core socket Delphi components still exists,, but they are not recommended.

411 What Delphi has long been shipping is a different set of open source components, called Inter-
net Direct (or Indy, for short). Indy offers low level TCP/IP components but also high end pro-
tocols, both on the server and the client side. Despite a few issues, Indy remains by far the
most use Internet library by Delphi develoeprs.

412 As an alternative, Delphi now includes an HTTP client library (and also a REST client library
based on it). This library encapsulates the platform HTTP library for each operating system,
rather than offering a custom implementation like Indy does. For HTTP clients, the HTTP
client library is the recommended approach, as it offers HTTPS support without having to de-
ploy an SLL library.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 951

Foundations of Socket Programming

To understand the description of the Socket components in the Delphi Help file,
and also to read along the description of the examples in the book, you need to be
confident with a number of terms related to the Internet in general and with sockets
in particular.

The heart of the Internet is the Transmission Control Protocol/Internet Protocol
(TCP/IP for short), a combination of two separate protocols which work together to
provide connection over the Internet (and can also provide connection over a pri-
vate intranet). In brief, IP is responsible for defining and routing the datagrams
(Internet transmission units) and specifying the addressing scheme. TCP is respon-
sible for higher-level transport services. Beside TCP there is another, less-known
protocol: UDP (User Datagram Protocol).

Configuring a Local Network: IP Addresses413

If you have a local network available, you’ll be able to test the following programs;
otherwise, you can simply use the same computer as client and server. In this case,
as I’ve done in the examples, you can use the address 127.0.0.1 (or localhost),
which is invariably the address of the current computer. If your network is complex,
ask your network administrator to set up proper IP addresses for you. If you want to
set up a simple network with a couple of spare computers, you can simply set up the
IP address yourself, a 32-bit number usually represented with each of its four com-
ponents (called octets) separated by a dot. These numbers have a complex logic
underneath them, with the first octet indicating the class of the address.

There are actually specific IP addresses reserved for unregistered internal networks.
Internet routers will ignore these address ranges, so you can freely do your tests
without interfering with an actual network. The “free” IP address range
192.168.0.0 through 192.168.255.0 can be used for experiments on a network of
fewer than 255 machines.

Local Domain Names

How does the IP address map to a name? On the Internet, the client program looks
up the values on a domain name server. But it is also possible to have a local hosts
file, a text file that you can easily edit to provide nice local mappings. You can take a

413 While all of these is likely very well known by most developers today, it wasn’t the same when
the book had been written. At the time, many developers had little information about the
foundations of ntwworking.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

952 - Chapter 20: Internet Programming

look at the Hosts.SAM414 file (installed in the Windows directory) to see a sample and
then eventually rename the file as HOSTS, without the extension, to activate local
host mapping.

Should you use an IP or a host name in your programs? Host names are easier to
remember and won’t require a change if the IP address changes (for whatever rea-
son). On the other hand, IP addresses don’t require any resolution, while host
names must be resolved (a time-consuming operation if the lookup takes place on
the Web).

TCP Ports

Each TCP connection take place though a port. A port is represented by a 16-bit
number. The IP address and the TCP port together specifies an Internet connection,
or a socket (to use a more precise term). Different processes running on the same
machine cannot use the same socket—the same port.

Some TCP ports have a standard usage for specific high-level protocols and services.
In other words, you should use those port numbers when implementing those ser-
vices and stay away from them in any other case. Here is a short list:

Protocol Port

HTTP (Hypertext Transfer Protocol) 80

FTP (File Transfer Protocol) 21

SMTP (Simple Mail Transfer Protocol) 25

POP3 (Post Office Protocol, version 3) 110

Telnet 23

The Services file (another text file similar to the Hosts file) lists the standard ports
used by services. You can add your own entry to the list, giving your service a name
of your own choosing. Client sockets always specify the port number or the service
name of the server socket to which they want to connect.

High-Level Protocols

I’ve used the term protocol many times now, but what does it mean exactly? A pro-
tocol is a set of rules the client and the server agree upon to determine the
communication flow. The low-level Internet protocols, such as TCP/IP, are usually
implemented by an operating system. But the term protocol is also used for high-

414 This is now the hosts file in the c:\Windows\System32\Drivers\etc folder.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 953

level Internet Standard Protocols (such as HTTP, FTP, or SMTP). These protocols
are defined in standard documents available on the Web on the
http://www.internic.net site.

If you want to implement a custom communication, you can define your own (possi-
bly simple) protocol, a set of rules determining which request the client can send to
the server and how the server can respond to the various possible requests. We’ll see
an example of a custom protocol later on. Transfer protocols are at a higher level
than transmission protocols, because they abstract from the transport mechanism
provided by TCP/IP. This makes the protocols independent not only from the oper-
ating system and the hardware but also from the physical network.

Socket Connections

How do you start the communication through a socket? The server program starts
running first, but it simply waits for a request from a client. The client program
requests a connection indicating the server it wishes to connect to. When the client
sends the request, the server can accept the connection, starting a specific server-
side socket, which connects to the client-side socket.

To support this model, there are three different types of socket connections:

· Client connections are initiated by the client and connect a local client socket
with a remote server socket. Client sockets must describe the server they want to
connect to, by providing either its host name or IP address and its port.

· Listening connections are passive server sockets waiting for a client. Once a
client makes a new request, the server spawns a new socket devoted to that spe-
cific connection and then gets back to listening. Listening server sockets must
indicate the port that represents the service they provide. (In fact, the client is
going to connect through that port.)

· Server connections are the connections activated by servers, as they accept a
request from a client.

These different types of connections are important only for establishing the link
from the client to the server. Once the link is established, both sides are free to
make requests and to send data to the other side.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

954 - Chapter 20: Internet Programming

Delphi Socket Components415

Delphi has both a client-socket component and a server-socket component. The aim
of the socket components is to make it very simple to read and write information
over a TCP/IP connection.

On the Components Palette there are just two socket components, TServerSocket
and TClientSocket. Both classes inherit from the base class TAbstractSocket, an
abstract base class for all socket components, defined in the ScktComp unit. The
properties of TAbstractSocket describe the IP address of the socket and the service
it provides or seeks. Not all descendants of TAbstractSocket use all of these proper-
ties. For example, server sockets do not make the IP address available, because it is
read implicitly from the system running the application.

Using a socket component you can determine a host and a service by using any of
the following:

· The Host property, indicating the domain name and service of a particular sys-
tem (used by client sockets)

· The Address property, a string with the four numbers in the standard Internet
dot notation (used by client sockets)

· The Port property, a number indicating the port

· The Service property, a string indicating the service name

However, these are not the only classes providing socket support. For interfacing
with Windows sockets, there is a TCustomWinSocket class with three subclasses:
TServerWinSocket, TClientWinSocket, and TServerClientWinSocket. These classes
wrap the handle of the Windows socket connection, and they are used by the main
socket components to manage the Windows socket API calls and to store informa-
tion about a socket communication link. The TCustomWinSocket class refers to the
socket handle, indicated by the SocketHandle property, and also to the handle of a
hidden window used to receive socket messages, indicated by the Handle property.

Descendants of TCustomWinSocket represent different types of connections:
TClientWinSocket represents a client connection, TServerWinSocket represents the
listening connection, and TServerClientWinSocket represents the server connec-
tion. Finally, there is a specific TStream subclass, TWinSocketStream, and a specific
TThread subclass, TServerClientThread.

415 As mentioned, these components still work, but they are not recommended, compared to using
the Indy socket components.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 955

Using Sockets

After all that theory, let us take a look at a couple of simple examples. The first is
stored in the Sock1 directory and is made of the Server1 and Client1 applications.
The server has a form with the following component:

object ServerSocket1: TServerSocket
 Active = True
 Port = 50
 ServerType = stNonBlocking
 OnClientConnect = ServerSocket1ClientConnect
 OnClientDisconnect = ServerSocket1ClientDisconnect
 OnClientRead = ServerSocket1ClientRead
end

All the code of the application relates to the events of this component, as the pro-
gram provides no specific interaction with the user. However, the server has three
list boxes for outputting the status, the messages sent from the client, and a log of
the events. For example, as a client connects, the server adds the client address to
the log:

procedure TForm1.ServerSocket1ClientConnect(Sender: TObject;
 Socket: TCustomWinSocket);
begin
 lbLog.Items.Add (‘Connected: ‘ +
 Socket.RemoteHost + ‘ (‘ +
 Socket.RemoteAddress + ‘)’);
 PostMessage (Handle, wm_RefreshClients, 0, 0);
end;

Notice that the OnClientConnect event indicates the first occasion for the server to
know about the connected client. Using the Socket property, which refers to the low-
level TCustomWinSocket, the server can track who is trying to connect. At the end of
this and other events I want to update the list of the connections, using the
ActiveConnections property of the server. However, in the OnClientConnect event
handler this list is still not updated, so I post a message to the form to delay the
operation:

const
 wm_RefreshClients = wm_User;

procedure TForm1.RefreshClients; // message wm_RefreshClients
var
 I: Integer;
begin
 lbClients.Clear;
 for I := 0 to ServerSocket1.Socket.ActiveConnections - 1 do
 with ServerSocket1.Socket.Connections [I] do

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

956 - Chapter 20: Internet Programming

 lbClients.Items.Add (
 RemoteAddress + ‘ (‘ + RemoteHost + ‘)’);
end;

Similar code is executed as the client disconnects from the server:

procedure TForm1.ServerSocket1ClientDisconnect(Sender: TObject;
 Socket: TCustomWinSocket);
begin
 lbLog.Items.Add (‘Disconnected: ‘ +
 Socket.RemoteHost + ‘ (‘ +
 Socket.RemoteAddress + ‘)’);
 PostMessage (Handle, wm_RefreshClients, 0, 0);
end;

Finally, as the client sends some information to the server (writes to the socket) the
server can read the message by calling the ReceiveText function. You should do this
read operation only when there is some data available—that is, when the
OnClientRead event is fired. Notice also that this is a destructive read: the informa-
tion extracted from the stream is removed from it. Here is the code:

procedure TForm1.ServerSocket1ClientRead(Sender: TObject;
 Socket: TCustomWinSocket);
begin
 // read from the client
 lbMsg.Items.Add (Socket.RemoteHost + ‘: ‘ +
 Socket.ReceiveText);
end;

Now we can move to the client side of the application, which has a form hosting a
client-socket component with the following properties:

object ClientSocket1: TClientSocket
 Active = False
 Address = ‘127.0.0.1’
 ClientType = ctNonBlocking
 Port = 50
 OnConnect = ClientSocket1Connect
 OnDisconnect = ClientSocket1Disconnect
end

The client form is more interactive. It has two edit boxes and a check box. In the
first edit box, you can type the address of the server you want to connect to (to
replace the default value listed above), using the check box to activate or deactivate
the socket connection:

procedure TForm1.cbActivateClick(Sender: TObject);
begin
 if not ClientSocket1.Active then
 ClientSocket1.Address := EditServer.Text;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 957

 ClientSocket1.Active := cbActivate.Checked;
end;

As you connect or disconnect, the program simply updates the caption of the form.
In the second edit box, you can type a message to send to the server and a button
you can press to send the message:

procedure TForm1.btnSendClick(Sender: TObject);
begin
 ClientSocket1.Socket.SendText (EditMsg.Text);
end;

Notice that this example program doesn’t check whether the connection is active
before using it, which can result in errors. In Figure 20.9, you can see an example of
the client and the server. As the server indicates, there is a second copy of the client
application running on another computer and connected to it.

Figure 20.9: The
client and server
applications of the
Sock1 example,
demonstrating the use
of the socket
components. Image
based on a picture of
the original printed
book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

958 - Chapter 20: Internet Programming

Using Sockets with a Custom Protocol

Unless you want to send and receive only simple text messages, you might want to
define some communication rules between the client and the server. A set of com-
munication rules is generally indicated as a protocol. Basically, the server can
receive different requests, and depending on the type of request and whether it can
be accomplished or not, reply to the client.

The server program of the Sock2 example accepts four types of requests: the listing
of a directory, a bitmap file, a text file, and the execution of a program on the server.
When the server sends back a file, its reply should indicate both what it is going to
send back and the actual information. The only method modified from the Sock1
example is the ServerSocket1ClientRead procedure, which starts by extracting the
five initial characters of the text received by the client that host the command:

 strCommand := Socket.ReceiveText;
 lbLog.Items.Add (‘Client: ‘ + Socket.RemoteAddress +
 ‘: ‘ + strCommand);
 // extract the file name (all commands have 5 characters)
 strFile := Copy (strCommand, 6, Length (strCommand) - 5);

The actual code depends on the initial command defined by the protocol (in this
case either EXEC! to execute a file on the server, TEXT! to return a text file, BITM!
to retrieve a bitmap file, or LIST! to return a directory listing). Here is the code for
two out of these four alternatives:

 // send back a text file
 if Pos (‘TEXT!’, strCommand) = 1 then
 begin
 if FileExists (strFile) then
 begin
 strFeedback := ‘TEXT!’;
 Socket.SendText (strFeedback);
 Socket.SendStream (TFileStream.Create (
 strFile, fmOpenRead or fmShareDenyWrite));
 end
 else
 begin
 strFeedback := ‘ERROR’ + strFile + ‘ not found’;
 Socket.SendText (strFeedback);
 end;
 end
 // send back a directory listing
 else if Pos (‘LIST!’, strCommand) = 1 then
 begin
 if DirectoryExists (strFile) then
 begin
 strFeedback := ‘LIST!’;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 959

 Socket.SendText (strFeedback);
 FileListBox1.Directory := strFile;
 Socket.SendText (FileListBox1.Items.Text);
 end
 else
 begin
 strFeedback := ‘ERROR’ + strFile + ‘ not found’;
 Socket.SendText (strFeedback);
 end;
 end
 else
 begin
 strFeedback := ‘ERROR’ + ‘Undefined command: ‘ + strCommand;
 Socket.SendText (strFeedback);
 end;

For the directory listings, I’ve used an invisible FileListBox component. For sending
back the text file, I’ve used the SendStream method, creating a new stream on the
fly. The advantage is that there is no need to destroy the temporary stream, as the
SendStream method becomes the owner of the stream and destroys it when it is
done.

The program sends back multiple pieces of information one after the other. This will
create a few problems on the client side, as all the information is received in a single
stream. However, the server responds with a five-character header that we can use
to determine the content of the rest of the stream. After receiving these headers, the
client application sets a status field so that it knows which type of information is
coming next. In other words, in the client program we implement a very simple
finite-state machine, a typical technique for socket programming. The client appli-
cation has five possible states, listed in an enumerated type:

type
 TCliStatus = (csIdle, csList, csBitmap, csText, csError);

This type is used for the CliStatus field of the form. The form has two edit boxes
referring to a directory or a file a user can request from the server. When the user
presses the Get Dir button, the client program passes to the server the name of the
directory indicated by the first edit box. The server will return a list of files that the
client program saves in a list box. At this point, the user can select one of the files
from the list box, and the client program will copy it, along with the complete path,
into the second edit box. The text of this second edit box is used by the other three
buttons, Exec, Bitmap, and Text, which send further requests to the server. In Fig-
ure 20.10, you can see an example of the main form of the client program after a
directory has been retrieved.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

960 - Chapter 20: Internet Programming

Figure 20.10: The
form of the Client2
program after the
server has returned the
list of the files of a
directory. Image based
on a picture of the
original printed book.

The core of the program is in the ClientSocket1Read method, triggered by the
socket when there is data to read. The method is first used to get the header indicat-
ing which type of data is reaching the program and to set the client program to the
proper status:

 case CliStatus of
 // look for data to receive
 csIdle:
 begin
 Socket.ReceiveBuf (Buffer, 5);
 strIn := Copy (Buffer, 1, 5);
 if strIn = ‘TEXT!’ then
 CliStatus := csText
 else if strIn = ‘BITM!’ then
 CliStatus := csBitmap
 // .. and so on

Since we don’t retrieve all the data, the event is triggered again soon afterwards, and
this time we are ready to get the actual data. Here are two more branches of the
case statement:

 // get a directory listing
 csList:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 961

 begin
 ListFiles.Items.Text := Socket.ReceiveText;
 cliStatus := csIdle;
 end;
 // read a bitmap file
 csBitmap:
 with TFormBmp.Create (Application) do
 begin
 Stream := TMemoryStream.Create;
 Screen.Cursor := crHourglass;
 try
 while True do
 begin
 nReceived := Socket.ReceiveBuf (Buffer, sizeof (Buffer));
 if nReceived <= 0 then
 Break
 else
 Stream.Write (Buffer, nReceived);
 // delay (200 milliseconds)
 Sleep (200);
 end;
 // reset and load the temporary file
 Stream.Position := 0;
 Image1.Picture.Bitmap.LoadFromStream (Stream);
 finally
 Stream.Free;
 Screen.Cursor := crDefault;
 end;
 Show;
 cliStatus := csIdle;
 end;

For loading the bitmap, I simply move the data to a Buffer (declared as array
[0..9999] of Char) and then from the buffer to a memory stream, which is later
loaded in the Image component of the secondary form. Because the data flow can
slow down, the program has a hard-coded delay of 200 milliseconds every time
some data is read. Unlike file-reading operations, the loop doesn’t stop when the
data read is less than the data requested, but only when no data is read. (In case of
error, the value returned by the ReceiveBuff method is –1.)

Blocking, Nonblocking, and Multithreaded
Connections

Reading and writing over sockets can occur asynchronously, so that it does not
block the execution of other code in your network application. This is called a non-
blocking connection and is what we have done up to now, leaving the ClientType

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

962 - Chapter 20: Internet Programming

property and the ServerType property of the two socket components to the default
value, ctNonBlocking. Nonblocking connections read and write asynchronously: the
OnRead and OnWrite events of the client and OnClientRead or OnClientWrite events
of servers inform your socket when the other end of the connection tries to read or
write some data.

As an alternative to this asynchronous approach, you can also use blocking connec-
tions, where your application waits for the reading or writing to be completed before
executing the next line of code416. In this case, you have to write the code in
sequence on both sides, because otherwise the events won’t be triggered. When
using a blocking connection, you must use a thread on the server, and you’ll gener-
ally use a thread also on the client. On the server the alternative value for the
ServerType property is stThreadBlocking.

As mentioned before, when writing threaded code that is working on a blocking
connection, you can use TWinSocketStream class to do the actual reading and writ-
ing operations. You can use the WaitForData method of the TWinSocketStream class
to wait until the socket on the other end is ready to write. You can also create the
socket stream class and specify a timeout value, so that if the connection is lost, it
won’t hang forever.

Sending Database Data over a Socket
Connection

Using the techniques we’ve seen so far, we can write an application that moves data-
base records over a socket. The idea will be to write a front end for data input and a
back end for data storage. The client application will have a simple data entry form
and use a database table with string fields for Company, Address, State, Country,
Email, and Contact, and a floating-point field for the company ID (called CompID).

note Moving database records over a socket is exactly what you can do with MIDAS and a sockets con-
nection component. This is discussed in the next chapter.

The client program I’ve come up with works on a table with this structure saved in
the current directory. (You can see the related code in the OnCreate event handler.)
The core method on the client side is the handler of the OnClick event of the Send

416 Indy uses blocking connections and requires using threads. This is true for most socket client
libraries. Servers need to use threading, to offer connections to multiple clients at the same
time.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 963

All button, which sends all the new records to the server. The new records are deter-
mined by looking to see if the record has a valid value for the CompID field. This
field, in fact, is not set up by the user but is determined by the server application
when the data is sent.

For all new records, the client program packages the field information in a string
list, using the structure FieldName=FieldValue, obtained using the Values property
of the string list. The string corresponding to the entire list is then sent to the server.
At this point, the program stops in an apparently infinite loop:

// save database data in a string list
Data := TStringList.Create;
table1.First;
while not Table1.Eof do
begin
 // if the record is still not logged
 if Table1CompID.IsNull or (Table1CompId.AsInteger = 0) then
 begin
 lbLog.Items.Add (‘Sending ‘ + Table1Company.AsString);
 Data.Clear;
 // create strings with structure “FieldName=Value”
 for I := 0 to Table1.FieldCount - 1 do
 Data.Values [Table1.Fields[I].FieldName] :=
 Table1.Fields [I].AsString;
 // send the record
 ClientSocket1.Socket.SendText (Data.Text);
 // wait for response
 fWaiting := True;
 while fWaiting do
 Application.ProcessMessages;
 end;
 Table1.Next;
end;

The program waits forever…or until the handler of another message sets the
fWaiting field of the form to False. This happens when the server sends some feed-
back indicating that the record was received or when the user presses the Stop
button. The btnSendAllClick method automatically connects to the server at the
beginning and disconnects at the end.

Now let us look at the server. This program has a database table, again stored in the
local directory, with two new fields added to the client application’s table:
LoggedBy, a string field; and LoggedOn, a data field. The values of the two extra
fields are determined automatically by the server as it receives data, along with the
value of the CompID field. All these operations are done in the
ServerSocket1ClientRead method after unpacking the data received by the client:

 // read from the client

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

964 - Chapter 20: Internet Programming

 strCommand := Socket.ReceiveText;
 // reassemble the data
 Data := TStringList.Create;
 try
 Data.Text := strCommand;
 // new record
 Table1.Insert;
 // set the fields using the strings
 for I := 0 to Table1.FieldCount - 1 do
 Table1.Fields [I].AsString :=
 Data.Values [Table1.Fields[I].FieldName];
 // complete with random ID, sender, and date
 Table1CompID.AsInteger := GetTickCount;
 Table1LoggedBy.AsString := Socket.RemoteAddress;
 Table1LoggetOn.AsDateTime := Date;
 Table1.Post;
 // get the value to return
 strFeedback := Table1CompID.AsString;
 // send results back
 lbLog.Items.Add (strFeedback);
 Socket.SendText (strFeedback);
 finally
 Data.Free;
 end;

Except for the fact that some data might be lost, there is no problem when fields
have a different order and if they do not match, because the data is stored in the
FieldName=FieldValue structure. After receiving all the data and posting it to the
local table, the server sends back the company ID to the client. The client program,
after sending the record, goes into waiting mode, a situation modified by receiving
feedback from the server:

procedure TForm1.ClientSocket1Read(Sender: TObject;
 Socket: TCustomWinSocket);
begin
 if fWaiting then
 begin
 Table1.Edit;
 Table1CompId.AsString := Socket.ReceiveText;
 Table1.Post;
 lbLog.Items.Add (Table1Company.AsString +
 ‘ logged as ‘ + Table1CompId.AsString);
 fWaiting := False;
 end;
end;

When receiving feedback, the client program saves the company ID, which marks
the record as sent. If the user modifies the record, there is no way to send an update
to the server. To accomplish this, you might add a modified field to the client data-
base table and make the server check to see if it is receiving a new field or a

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 965

modified field. With a modified field, the server should not add a new record but
update the existing one.

This is one of the many additions you can make to the program, to make it usable in
a real-world environment. The existing code of the program and the previous exam-
ples on sockets should provide all you need to complete a similar task. I’ve limited
myself to this version of the application, as shown in Figure 20.11. Notice that the
server program has two pages, one with the usual log and the other with a DBGrid
showing the current data of the server database table.

Figure 20.11: The
client and server
programs of the
database socket
example (DbSock).
Image based on a
picture of the original
printed book.

Internet Protocols

After discussing the generation of HTML files, the use of the ActiveX technology on
Web sites, and the low-level socket components, we are ready to delve in the final

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

966 - Chapter 20: Internet Programming

topic of this chapter, the use of higher-level Internet protocols. This is actually the
simplest part of the chapter, as the high-level protocols we’ll cover can be pro-
grammed using high-level components or APIs.

As already mentioned, Delphi ships with a collection of Internet components by
NetMasters. These components provide a complete solution, using an alternative
approach to Delphi’s own socket components. The more interesting components of
the FastNet Tools series are those implementing specific protocols, NMFinger,
NMNNPT, NMFTP, NNHTTP, NMPOP3, NMSMTP. These components are gener-
ally used on client applications to connect to specific servers. Delphi ships with
ready-to-use examples for most of the NetMasters components417.

note These third-party components are already installed in the Delphi IDE, but they are not the only
possible solution. There are many free, shareware, and retail Delphi components providing imple-
mentations of Internet protocols. One of the most interesting solutions is the Winshoes open
source project lead by Chad Hower418. You can find more information and the actual components
to download on the site www.pbe.com/Winshoes.

Sending and Receiving Mail

Probably the most common operation you do on the Internet is to send and receive
e-mail. There is generally very little need to write a complete application to handle
e-mail, as some of the existing programs are actually rather complete. For this rea-
son, I have no intention of writing a general-purpose mail program here. You can
find some examples of those among Delphi Internet demos.

Other than creating a general-purpose mail application, what else can one do with
the mail components and protocols? There are many possibilities, which I’ve tried
to group in two areas:

Automatic generation of mail messages. An application you’ve written can
have an About box for sending a registration message back to your marketing
department or a specific menu item for sending a request to your tech support. You
might even decide to enable a tech-support connection whenever an exception
occurs. Another related task would be automating the dispatching of a message to a
list of people or generating an automatic message from your Web site, an example
I’ll show you toward the end of this chapter.

417 This isn’t true any more. For a long time, Delphi ahs included the Indy components, instead.

418 This library later morphed into what is known as Indy. I doubt that site exists. Today the main
location to look for is https://github.com/IndySockets/Indy.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://github.com/IndySockets/Indy

Chapter 20: Internet Programming - 967

Usage of mail protocols for communication with users who are only
occasionally online. When you have to move some data between users who are
not always online, you can write an application on a server to synchronize among
them, and you can give each user a specialized client application for interacting with
the server. An alternative is to use an existing server application, such as a mail
server, and write the two specialized programs based on the mail protocols. The
data sent over this connection will generally be formatted in special ways, so you’ll
want to use a specific e-mail addresses for these messages (not your primary e-mail
address).

Sending Messages to the Mail Program

The simplest technique for automating the generation of an e-mail message is to use
your existing mail application, adding a message to its outbox. Using the
ShellExecute API function, you can easily send a message to Outlook Express (or
whichever mail program is registered as your default in Windows, although there
are a few exceptions).

To test this technique, I’ve prepared a simple form with two edit boxes and a memo
for the input. Pressing a button creates a string with all the information about the
message and then sends it, simply executing the string with the mailto: prefix. Here
is the code of the Send button of the MailGen example:

uses
 ShellApi;

procedure TForm1.BtnSendClick(Sender: TObject);
var
 strMsg: string;
 I: Integer;
begin
 // set the basic information
 strMsg := ‘mailto:’ + EditAddress.Text +
 ‘?Subject=‘ + EditSubject.Text +
 ‘&Body=‘;
 // add first line
 if Memo1.Lines.Count > 0 then
 strMsg := strMsg + Memo1.Lines [0];
 // add subsequent lines separated by the newline symbol
 for I := 1 to Memo1.Lines.Count - 1 do
 strMsg := strMsg + ‘%0D%0A’ + Memo1.Lines [I];
 // send the message
 ShellExecute (Handle, ‘open’, pChar (strMsg),
 ‘‘, ‘‘, SW_SHOW);
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

968 - Chapter 20: Internet Programming

To show the body of the message on multiple lines, you can separate each line with
the carriage return and line feed characters (usually indicated in Delphi as #13 and
#10). These values should be explicitly added to the string in hexadecimal format
and prefixed by the % sign, as required by a URL. You can actually obtain this
encoding automatically by using the NMURL component.

The WinInet API419

When you need to use the FTP and HTTP protocols, as alternatives to using specific
VCL components, you can use a simple and high-level API provided by Microsoft in
the WinInet DLL. This library is part of the core operating system and is available
on the Microsoft Web site for download. It basically implements the FTP and HTTP
protocols on top of the Windows sockets API.

Simply with three calls—InternetOpen, InternetOpenURL, and InternetReadFile—
you can retrieve a file corresponding to any URL and store a local copy or analyze it.
Other simple methods can be used for FTP: I suggest you look for the source code of
the Delphi unit, listing all the functions, and for the specific Help file for the DLL,
which is not part of the SDK Help shipping with Delphi.

As an example of the use of the HTTP protocols, I’ve decided to write a very specific
search application. The program simply hooks onto the Yahoo Web site, searches for
a keyword, and retrieves the first hundred sites found. Instead of showing the
resulting HTML file, the program parses it to extract only the URLs of the related
sites. So the program demonstrates two techniques at once: retrieving a Web page
and parsing its HTML code.

After a little testing, I’ve noticed that the WinInet functions take a lot of time to exe-
cute, as they have to gather information from the Web. For this reason, I’ve decided
to implement the program using a background thread for the actual processing.
This approach also gives the advantage of being able to start multiple searches at
once. The thread class used by the WebFind application receives as input a URL to
look for, strUrl:

type
 TFindWebThread = class(TThread)
 protected
 strAddr, strStatus: string;
 procedure Execute; override;
 procedure AddToList;
 procedure ShowStatus;

419 The successor of this API is now embedded in Delphi’s the HTTP client library.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 969

 public
 strUrl: string;
 end;

The class has two output procedures, AddToList and ShowStatus, to be called inside
the Synchronize method. (Refer to Chapter 17 for the details on threading.) The
code of these two methods sends some results or some feedback to the main form,
respectively adding a line to the memo and changing the status bar SimpleText
property. The key method of the thread is the Execute method, of course. Before we
look at it, however, let me show you how the thread is activated by the main form:

procedure TForm1.BtnFindClick(Sender: TObject);
var
 FindThread: TFindWebThread;
begin
 // create suspended, set initial values, and start
 FindThread := TFindWebThread.Create (True);
 FindThread.FreeOnTerminate := True;
 FindThread.strUrl :=
 ‘http://search.yahoo.com/bin/search?p=‘ +
 EditSearch.Text + ‘&n=100&h=s&b=1’;
 FindThread.Resume;
end;

The URL string is made of the main address of the search engine, followed by some
parameters. The first, p, indicates the words you are looking for. The second,
n=100, indicates the number of sites to retrieve; you cannot use numbers at will but
are limited to few alternatives, with 100 being the largest possible value. The h=s
parameter indicates that the program is supposed to look for Web sites (and not for
categories), and the final parameter, b=1, indicates the number of the starting ele-
ment. To get the sites from 101 to 200, you should replace this last parameter with
b=101.

note The WebFind program works with the server on the Yahoo Web site at the time this book was
written and tested. The custom software on the site can change any day, however, which might
prevent WebFind from operating correctly.

The Execute method of the thread, activated by the Resume call, is made of two
parts. In the first, the program connects to the HTTP server by calling the
InternetOpen function and then using the resulting handle in the InternetOpenURL
call. This second call returns a handle to the URL that you can pass to the
InternetReadFile function in order to read blocks of data. The data is stored in a
local string, and while it’s retrieving the data, the program also updates the status
bar of the main form. When all the data has been read, the program closes the con-

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

970 - Chapter 20: Internet Programming

nection to the URL and the Internet session by calling the InternetCloseHandle
function twice. Here is the first part of the Execute method:

procedure TFindWebThread.Execute;
var
 hHttpSession, hReqUrl: HInternet;
 Buffer: array [0..1023] of Char;
 nRead: Cardinal;
 strRead: string;
 nBegin, nEnd: Integer;
begin
 strRead := ‘‘;
 hHttpSession := InternetOpen (‘FindWeb’,
 INTERNET_OPEN_TYPE_PRECONFIG, nil, nil, 0);
 try
 hReqUrl := InternetOpenURL (hHttpSession, PChar(StrUrl),
 nil, 0,0,0);
 strStatus := ‘Connected to ‘ + StrUrl;
 Synchronize (ShowStatus);
 try
 // read all the data
 repeat
 InternetReadFile (hReqUrl, @Buffer,
 sizeof (Buffer), nRead);
 strRead := strRead + string (Buffer);
 strStatus := ‘Retrieved ‘ + IntToStr (Length (strRead)) +
 ‘ of ‘ + StrUrl;
 Synchronize (ShowStatus);
 until nRead = 0;
 finally
 InternetCloseHandle (hReqUrl);
 end;
 finally
 InternetCloseHandle (hHttpSession);
 end;

The second part extracts the URLs referring to other Web sites from the result, the
strRead string. The program looks for subsequent occurrences of the href=“http
substring, copying the text up to the closing > character. If the found string contains
the word yahoo, it is considered a local link and omitted from the result. You can
find this parsing code in the program source and see the output of this program in
Figure 20.12. Notice that I’ve already gotten the result of a request, but the program
is currently retrieving another page, as indicated in the status bar. You can start
multiple searches at the same time, but be aware that the results will all be added to
the same memo component.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 971

Figure 20.12: The
WebFind application
can be used to search
for a list of sites on the
Yahoo search engine.
Image based on a
picture of the original
printed book.

Dynamic Web Pages

When you browse a Web site, you generally download static pages—HTML-format
text files—from the Web server to your client computer. As a Web developer, you
can create these pages manually, but for most businesses, it makes more sense to
build the static pages from information in a database. Using this approach, you’re
basically generating a snapshot of the data, which is quite reasonable if the data isn’t
subject to frequent changes. This approach was discussed in the previous chapter.

As an alternative to static HTML pages, you can build dynamic ones. To do this, you
extract information directly from a database in response to the browser’s request, so
that the HTML sent by your application displays current data, not an old snapshot
of the data. This approach makes sense if the data changes frequently.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

972 - Chapter 20: Internet Programming

As mentioned earlier, there are a couple of ways you can program custom behavior
at the Web server, and these are ideal ways for you to generate HTML pages dynam-
ically. The two most common protocols for programming Web servers are CGI (the
Common Gateway Interface) and the Web server APIs420. A third technique, Active
Server Pages (ASP), is becoming very popular. I’ll discuss ASP at the end of the
chapter because Delphi 5 includes specific support for it.

note Keep in mind that Delphi’s WebBroker technology (available in Delphi 5 both in the Enterprise
and in the Professional editions) flattens the differences between CGI, WinCGI, and ISAPI by pro-
viding a common class framework. This way, you can easily turn a CGI application into a WinCGI
one or upgrade it to use the ISAPI model.

An Overview of CGI

CGI is a standard protocol for communication between the client browser and the
Web server. It’s not a particularly efficient protocol, but it is widely used and is not
platform-specific. This protocol allows the browser both to ask for and to send data,
and it is based on the standard command-line input and output of an application
(usually a console application). When the server detects a page request for the CGI
application, it launches the application, passes command-line data from the page
request to the application, and then sends the standard output of the application
back to the client computer.

There are many tools and languages you can use to write CGI applications, and Del-
phi is only one of them. Given the obvious limitation that your Web server must be
an Intel-based Windows NT or Windows 95 system, you can build some fairly
sophisticated CGI programs in Delphi. Despite the fact that it’s called a standard,
there are actually different flavors of CGI. Traditional CGI uses the standard com-
mand-line input and output, along with environment variables. WinCGI uses an INI
file passed as a command-line parameter to the application (instead of environment
variables) and specific input and output files (instead of using command-line
input/output). Server vendors developed WinCGI primarily for Visual Basic pro-
grammers, who cannot access environment variables. Another new variation, called
FastCGI, is supposed to make the entire process of calling a CGI application much
faster, but it’s not widely supported yet.

420 The world has moved a lot in this area, but using CGI and server APIs (like in IIS and Apache
modules) is still actual.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 973

To build a CGI program without using any support class, you can simply create a
Delphi console application, remove the typical project source code, and replace it
with the following statements:

program CgiDate;
{$APPTYPE CONSOLE}

uses SysUtils;

begin
 writeln (‘HTPP/1.0 200 OK’);
 writeln (‘CONTENT-TYPE: TEXT/HTML’);
 writeln;
 writeln (‘<HTML><HEAD>‘);
 writeln (‘<TITLE>Time at this site</TITLE>‘);
 writeln (‘</HEAD><BODY>‘);
 writeln (‘<H1>Time at this site</H1>‘);
 writeln (‘<HR>‘);
 writeln (‘<H3>‘);
 writeln (FormatDateTime(
 ‘“Today is “ dddd, mmmm d, yyyy,’ +
 ‘“
 and the time is” hh:mm:ss AM/PM’,
 Now));
 writeln (‘</H3>‘);
 writeln (‘<HR>‘);
 writeln (‘<I>Page generated by CgiDate.exe</I>‘);
 writeln (‘</BODY></HTML>‘);
end.

CGI programs produce a header followed by the HTML text using the standard out-
put. If you execute this program directly, you’ll see the text in a terminal window. If
you run it instead from a Web server and send the output to a browser, the format-
ted HTML text will appear, as shown in Figure 20.13.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

974 - Chapter 20: Internet Programming

Figure 20.13: The
output of the CgiDate
application, as seen in
Microsoft’s Internet
Explorer. Image based
on a picture of the
original printed book.

Building advanced and complex applications with plain CGI requires a lot of work.
For example, to extract status information on the HTTP request, you need to access
to the relevant environment variables, as in:

// get the path name
GetEnvironmentVariable (‘PATH_INFO’,
 PathName, sizeof (PathName));

An Overview of ISAPI/NSAPI

A completely different approach is the use of the Web server APIs, the popular
ISAPI (Internet Server API, introduced by Microsoft) and the less common NSAPI
(Netscape Server API)421. These APIs allow you to write a DLL that the server loads
into its own address space and usually keeps in memory for some time. Once it
loads the DLL, the server can execute individual requests via threads within the
main process, instead of launching a new EXE for every request as it must in CGI
applications.

421 The Netscape server is long gone. ISAPI remains a viable option. Apache has been the most
popualr web server for many years (and it has a module architecture Delphi supports both on
Windows and on Linux), now Nginx is going strong.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 975

When the server receives a page request, it loads the DLL (if it hasn’t done so
already) and executes the appropriate code, which may launch a new thread or use
an existing one to process the page request (the IIS Web server offers thread pooling
support to avoid creating a new thread for each request). The DLL code then sends
the appropriate data back to the client that requested the page. Because this com-
munication generally occurs in memory, this type of application is much faster than
CGI, and a given system will be able to support more simultaneous page requests
this way.

The main drawback to server API DLLs is that their tight integration with the server
is an Achilles’ heel; if the DLL crashes or produces memory leaks, the entire Web
server can crash. However, the most recent releases of Microsoft’s IIS Web server
fix the problem by running the DLL in a protected space. Another problem is that
when the DLL is in memory, you cannot compile an updated version; you need to
unload the DLL first or momentarily stop the Web server (an operation you can do
only on a test-bed computer).

Technically, ISAPI DLLs are not very different from plain Windows DLLs. They
must export a couple of specific functions that the Web server will call:
GetExtensionVersion and HttpExtensionProc. The server calls the first function
when it loads the DLL for the first time and the second function for every following
request. The parameters of these functions are complex data structures holding
input data and server methods you can call to produce the result. Here is a sample
of this function (taken from the IsapiDem example), which uses the lpszPathInfo
field and the WriteClient function:

function HttpExtensionProc (
 var ECB: TEXTENSION_CONTROL_BLOCK): DWORD; stdcall;
var
 OutStr: string;
 StrLength: Cardinal;
begin
 with ECB do
 begin
 OutStr :=
 ‘<HTML><HEAD><TITLE>First Isapi Demo</TITLE></HEAD><BODY>‘ +
 ‘<H2><CENTER>First Isapi Demo</CENTER></H2>‘ +
 ‘Hello Mastering Delphi Readers...<p><hr>‘ +
 ‘Activated by ‘ + PChar (@lpszPathInfo[1]) + ‘<p>‘ +
 ‘<i>From IsapiDLL on ‘ + DateToStr (Now) +
 ‘ at ‘ + TimeToStr (Now) + ‘</i>‘ +
 ‘</body></html>‘;
 StrLength := Length (OutStr);
 WriteClient(ConnID, PChar (OutStr), StrLength, 0);
 end;
 Result := HSE_STATUS_SUCCESS;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

976 - Chapter 20: Internet Programming

end;

note The program doesn’t simply use the lpzPathInfo parameter but uses the substring starting
with the second characters, to get rid of the initial slash. To be more precise, the expression
PChar (@lpszPathInfo[1]) takes the string starting at the memory address of the second
character of the path (a zero-based characters array).

Delphi’s WebBroker Technology422

The CGI and ISAPI code snippets I’ve shown you so far demonstrate the plain,
direct approach to the protocol and API. Extending these examples at that level is
certainly possible, but what is interesting in Delphi is to use the so-called WebBro-
ker technology, a specific class hierarchy within the VCL built to simplify server-side
development on the Web, and a specific type of data modules, called WebModules.
Both the Enterprise and Professional editions of Delphi 5 include this framework.

Using the WebBroker technology, you can begin developing an ISAPI or CGI appli-
cation very easily. On the first page (New) of the Object Repository, select the Web
Server Application icon. The subsequent dialog box will offer you three alternatives,
ISAPI, CGI, and WinCGI, as you can see in Figure 20.14. If you select the first
option, Delphi will generate the basic structure of an ISAPI application for you.

note As a starting point for your server-side application, you can also use the DB Web Application Wiz-
ard, available in the Business page of the File New dialog box. This wizard generates a program
with a table or query connected to a DataSetTableProducer. It can be helpful, but the generated
code is really very limited.

422 WebBroker remains relevant today. It has been extended with support for Apache modules
and the Linux OS, it is the foundation of DataSnap REST and or RAD Server, and it can now
also be used with WebStencils. WebBroker design was good and it remains a solid foundation.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 977

Figure 20.14: The
alternative options for
building a Web server
application in Delphi
Enterprise. Image from
the original book.

The application that Delphi generates (no matter which type you choose) is based
on the TWebModule class, a container very similar to a data module. The WebModule
code is similar to that of a data module, as we’ll see in a moment, but the code of the
library is worth looking at:

library Project1;

uses
 WebBroker, ISAPIApp,
 Unit1 in ‘Unit1.pas’ {WebModule1: TWebModule};

{$R *.RES}

exports
 GetExtensionVersion,
 HttpExtensionProc,
 TerminateExtension;

begin
 Application.Initialize;
 Application.CreateForm(TWebModule1, WebModule1);
 Application.Run;
end.

note In Delphi 5, your code must refer to the new WebBroker unit. Existing WebBroker applications
referring to the HTTPApp unit must be updated or they won’t compile. This change has been
introduced to reduce the restrictions on the use of run-time packages for components of Web
server applications.

Although this is a library that exports the ISAPI functions, the code looks similar to
that of an application. However, it uses a trick—the Application object used by this
program is not the typical global object of class TApplication but an object of a new
class. This new Application object is of class TISAPIApplication (or
TCGIApplication if you’ve built that type of application), which derives from
TWebApplication.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

978 - Chapter 20: Internet Programming

Although these application classes provide the foundations, you won’t generally use
them very often (just as you don’t use the Application object very often in a form-
based Delphi application). The most important operations take place in the Web-
Module. This component derives from TCustomWebDispatcher, which provides
support for all the input and output of our programs.

In fact, the TCustomWebDispatcher class defines Request and Response properties,
which store the client request and the response we’re going to send back to the
client. Each of these properties is defined using a base abstract class (TWebRequest
and TWebResponse), but an application initializes them using a specific object (such
as the TISAPIRequest and TISAPIResponse subclasses). These classes make avail-
able all the information passed to the server, and so you have a single, simple
approach to accessing all the information. The same is true of a response, which is
very easy to manipulate. One advantage to this approach is that an ISAPI DLL writ-
ten with this framework is very similar to a CGI application; in fact, they are
frequently identical in the source code you write.

If this is the structure of Delphi’s framework, how do you write the application
code? Well, in the WebModule you can use the Actions editor (shown in Figure
20.15), to define a series of actions (stored in the Actions array property) depending
on the path name of the request. This path name is a portion of the CGI or ISAPI
application’s URL, which comes after the program name and before the parameters,
such as path1 in the following URL:

http://www.website.com/scripts/cgitest.exe/path1?param1=date

Figure 20.15: The
Actions property editor
of the WebModule,
along with the
properties of one of the
actions in the Object
Inspector. Image from
the original book.

By providing different actions, your application can easily respond to requests with
different path names, and you can assign different producer components or call a
different OnAction event handler for every possible path name. Of course, you can
omit the path name to handle a generic request. Consider also that instead of basing
your application on a WebModule, you can use a plain data module and add a Web-

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 979

Dispatcher component to it. This is a good approach if you want to turn an existing
Delphi application into a Web server extension. The WebModule incorporates the
WebDispatcher and doesn’t require it as a separate component.

note The Actions of the WebDispatcher have absolutely nothing to do with the Actions stored in a
TActionList component.

When you define the accompanying HTML pages that launch the application, the
links will make page requests to the URLs for each of those paths. Having one single
ISAPI DLL that can perform different operations depending on a parameter (in this
case the path name) allows the server to keep a copy of this DLL in memory and
respond much faster to user requests. The same is partially true for a CGI applica-
tion: The server has to run several instances but can cache the file and make it
available faster.

The OnAction event is where you put the code to specify the response to a given
request, the two main parameters passed to the event handler. Here is a simple
example:

procedure TWebModule1.WebModule1WebActionItem1Action(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
begin
 Response.Content :=
 ‘<HTML><HEAD><TITLE>Hello Page</TITLE></HEAD><BODY>‘ +
 ‘<H1>Hello</H1>‘ +
 ‘<hr><I>Page generated by Marco</I>‘ +
 ‘</BODY></HTML>‘;
end;

The Content property of the Response parameter is where you enter the HTML code
that you want users to see. The only drawback of this code is that the output in a
browser will be correctly displayed on multiple lines, but looking at the HTML
source code, you’ll see a single line corresponding with the entire string. To make
the HTML source code more readable, by splitting it up onto multiple lines, you can
insert the #13 newline character.

To let other actions handle this request, you’ll set the last parameter, Handled, to
False. Otherwise, the default value is True, and once you’ve handled the request
with your action, the WebModule assumes you’re finished. Most of an ISAPI appli-
cation’s code will be in the OnAction event handlers for the actions defined in the
WebModule container. These actions receive a request from the client and return a
response using the Request and Response parameters.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

980 - Chapter 20: Internet Programming

When using the producer components, your OnAction event often returns, as
Response.Content, the Content of the producer component, with a simple assign-
ment. In Delphi 5, you can shortcut this code by assigning a producer component to
the Producer property of the action itself, with no need to write these simple event
handlers any more.

Building a Multipurpose WebModule

To demonstrate how easily you can build a feature-rich server-side application
using Delphi’s support, I’ve created the BrokDemo example. This example can be
compiled as a CGI or an ISAPI application, simply by choosing the proper project
file. The WebModule is shared by the two projects, without any difference in the
source code, a practical proof that using the WebBroker framework you can move
from ISAPI to CGI and vice versa. In practice, I tend to test the programs with CGI
(to avoid having to stop the server to free the library and recompile it) and then
deploy them with ISAPI.

note If your aim is to build an ISAPI application you can also use a specific ISAPI DLL debugging tool.
One of such tools, called IntraBob, has been built by Bob Swart and is available on his Web site
(www.drbob42.com) and is freeware423.

A key element is the list of actions we’re going to support with this application,
which you can see in the Actions editor in Figure 20.16. Actions are visible also in
the Designer of the Web data module, so you can graphically see their relationship
with database objects, as shown by the figure424. If you examine the figure or the
source code, you’ll notice that I’ve given a specific name to every action. I’ve also
given meaningful names to the OnAction event handlers. For instance, TimeAction
as a method name should be much more understandable than the
WebModule1WebActionItem1Action name automatically generated by Delphi.

Every action has a different path name, with one of them marked as default and
executed even if no path name is specified. The first interesting idea in this program
is the use of two PageProducer components, used for the initial and final portion of
every page, PageHead and PageTail. Centralizing this code makes it easier to modify
it, particularly if it is based on external HTML files. The HTML produced by these
components is added at the beginning and the end of the resulting HTML in the
OnAfterDispatch event handler of the Web module:

423 While Bob Swart is still active, I don’t know if this tool still exists.

424 This designer doesn’t exist any more, as covered in the database chapters.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 981

procedure TWebModule1.WebModule1AfterDispatch(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
begin
 Response.Content := PageHead.Content +
 Response.Content + PageTail.Content;
end;

I’m adding the initial and final HTML at the end of the page generation simply
because this allows the components to produce the HTML as if they were making all
of it. Starting with some HTML in the OnBeforeDispatch event means that you can-
not directly assign the producer components to the actions, or the producer
component will override the Content you’ve already provided in the response.

Figure 20.16: The
actions of the
BrokDemo example, as
shown by the Actions
editor and the Data
Module Designer.
Image from the
original book. Notice
that this Data Diagram
doesn’t exist any more.

The OnBeforeDispatch event fetches the script name, to make it available to the
PageProducer component events (which don’t receive as parameter the Request).
Here are two code snippets showing this combined effect:

procedure TWebModule1.WebModule1BeforeDispatch(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
begin
 // code shared by all actions

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

982 - Chapter 20: Internet Programming

 ScriptName := Request.ScriptName;
 Table1.Open;
end;

procedure TWebModule1.PageTailHTMLTag(Sender: TObject;
 Tag: TTag; const TagString: String; TagParams: TStrings;
 var ReplaceText: String);
begin
 if TagString = ‘script’ then
 ReplaceText := ScriptName;
end;

This code is activated to expand the <#script> tag of the PageTail component’s
HTMLDoc property. The code of the time and date actions is straightforward. The
really interesting part begins with the Menu path, which is the default action. In its
OnAction event handler, the application simply builds a list of the available actions,
providing a link to each of them (with an anchor, an <a> tag) in a for loop:

procedure TWebModule1.MenuAction(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
var
 I: Integer;
begin
 Response.Content := ‘<H3>Menu</H3>‘#13;
 for I := 0 to Actions.Count - 1 do
 Response.Content := Response.Content +
 ‘ <a href=”‘ + ScriptName +
 Action[I].PathInfo + ‘“> ‘ + Action[I].Name + ‘‘#13;
 Response.Content := Response.Content + ‘‘;
end;

Another action of the BrokDemo example provides users with a list of the system
settings related to the request, something that is quite useful for debugging pur-
poses. It is also instructive to learn how much information, and exactly what
information, the HTTP protocols transfer from a browser to a Web server and vice
versa. To produce this list, the program looks for the value of each property of the
TWebRequest class, as this initial snippet demonstrates:

procedure TWebModule1.StatusAction(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
var
 I: Integer;
begin
 Response.Content := ‘<H3>Status</H3>‘#13 +
 ‘Method: ‘ + Request.Method + ‘
‘#13 +
 ‘ProtocolVersion: ‘ + Request.ProtocolVersion + ‘
‘#13 +
 ‘URL: ‘ + Request.URL + ‘
‘#13 +

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 983

 ‘Query: ‘ + Request.Query + ‘
‘#13 + ...

Dynamic Database Reporting

The BrokDemo example defines two more actions, indicated by the /table and
/record path names. For these two last actions, our program produces a main list of
names and then displays the details of one record, using a DataSetTableProducer
component to format the entire table and a DataSetPageProducer component to
build the record view. Here are the properties of these two components:

object DataSetTableProducer1: TDataSetTableProducer
 DataSet = Table1
 OnFormatCell = DataSetTableProducer1FormatCell
end
object DataSetPage: TDataSetPageProducer
 HTMLDoc.Strings = (
 ‘<H3>Employee: <#LastName></H3>‘
 ‘ Employee ID: <#EmpNo>‘
 ‘ Name: <#FirstName> <#LastName>‘
 ‘ Phone: <#PhoneExt>‘
 ‘ Hired On: <#HireDate>‘
 ‘ Salary: <#Salary>‘)
 OnHTMLTag = PageTailHTMLTag
 DataSet = Table1
end

To produce the entire table, we simply connect the DataSetTableProducer to the
Producer property of the corresponding actions, without providing any specific
event handler. The table is made more powerful by adding internal links to the spe-
cific records. The following code is executed for each cell of the table but activated
only for the first column or the first row (the one with the title):

procedure TWebModule1.DataSetTableProducer1FormatCell(
 Sender: TObject; CellRow, CellColumn: Integer;
 var BgColor: THTMLBgColor; var Align: THTMLAlign;
 var VAlign: THTMLVAlign; var CustomAttrs, CellData: String);
begin
 if (CellColumn = 0) and (CellRow <> 0) then
 CellData := ‘<a href=”‘ + ScriptName + ‘/record?LastName=‘ +
 Table1[‘LastName’] + ‘&FirstName=‘ + Table1 [‘FirstName’] +
 ‘“> ‘ + CellData + ‘ ‘;
end;

You can see the result of this action in Figure 20.17. When the user selects one of the
links, the program is called again, and it can check the QueryFields string list and

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

984 - Chapter 20: Internet Programming

extract the parameters from the URL. It then uses the values corresponding to the
table fields used for the record search (which is based on the FindNearest call).

Figure 20.17: The
output corresponding
to the table path of the
BrokDemo example,
which produces an
HTML table with
internal links by using
Delphi components.
Image from the
original book.

procedure TWebModule1.RecordAction(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
begin
 Table1.Open;
 // go to the requested record
 Table1.FindNearest ([Request.QueryFields.Values[‘LastName’],
 Request.QueryFields.Values[‘FirstName’]]);
 // get the output
 Response.Content := Response.Content +
 DataSetPage.Content;
end;

note The example we’ve just built accesses a Paradox table via the BDE. The CGI version executes once
for every request and will actually load and unload the BDE each time it runs. As alternatives, you
can consider using ISAPI, accessing the data from a plain file or running another BDE application
on the server, so that the BDE will remain loaded in memory.

Of Queries and Forms

The previous example used some of the HTML producer components introduced
earlier in this chapter. There is another component of this group we haven’t used

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 985

yet, the QueryTableProducer. As we’ll see in a moment, this component makes
building even complex database programs a breeze. Suppose you want to search for
some customers in a database. You might construct the following HTML form
(embedded in an HTML table for better formatting):

<h4>Customer QueryProducer Search Form</h4>
<form action=”/scripts/CustQueP.dll/search” method=”POST”>
<table>
<tr><td>State:</td>
 <td><input type=”text” name=”State”></td></tr>
<tr><td>Country:</td>
 <td><input type=”text” name=”Country”></td></tr>
<tr><td></td>
 <td><center><input type=”Submit”></center></td></tr>
</form>

note As in Delphi, an HTML form hosts a series of controls (typically, things like input fields). There
are visual tools to help you design these forms, or you can manually enter the proper HTML code.
The available controls include buttons, input text (or edit boxes), selections (or combo boxes), and
radio buttons (or input buttons). You can define buttons as specific types, such as Submit or
Reset, which imply standard behaviors. An important element of forms is the request method,
which can be either POST (data is passed behind the scenes, and you receive it in the
ContentFields property) or GET (data is passed as part of the URL, and you extract it from the
QueryFields property).

You can see the output of this form in Figure 20.18. There is another important ele-
ment to notice: the names of the input components (State and Country), which
should match the parameters of a Query component425:

select
 Company, State, Country
from
 CUSTOMER.DB
where
 State = :State or Country = :Country

This code is used in the CustQueP (Customer Query Producer) example. To build it,
I’ve placed a Query component inside the WebModule and generated the field
objects for it. In the same WebModule I’ve added a QueryTableProducer component
connected to the Producer property of the /search action. The ISAPI DLL will gen-
erate the proper response. How does this work? When we activate the
QueryTableProducer component by calling its Content function, it initializes the

425 Interesting that this SQL query based on parameters avoids the risk of “SQL injection” a com-
mon pitfall in the history of web development – but something not frequently discussed at the
time this book had been written.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

986 - Chapter 20: Internet Programming

Query component by obtaining the parameters from the HTTP request. The compo-
nent can automatically examine the request method and then use either the
QueryFields property (if the request is a GET) or the ContentFields property (if the
request is a POST).

Figure 20.18: The
HTML form used by
the CustQueP example
has been formatted by
placing the controls in
an HTML table. Image
from the original book.

One problem with using a static HTML form as we did before is that it doesn’t tell
us which states and countries we can search for. To address this, we can use a selec-
tion control instead of an edit control in the HTML form. However, if the user adds
new records to the database table, we’ll need to update the element list automati-
cally. As a final solution, we can design the ISAPI DLL to produce a form on the fly,
and we can fill the selection controls with the available elements.

We’ll generate the HTML for this page in the /form action, which we’ve connected
to a PageProducer component. The PageProducer contains the following HTML
text, which embeds two special tags:

<h4>Customer QueryProducer Search Form</h4>
<form action=”CustQueP.dll/search” method=”POST”>
<table>
<tr><td>State:</td><td><select name=”State”>
<#State>
</select>
</td></tr>
<tr><td>Country:</td><td><select name=”Country”>
<option> </option>
<#Country>
</select>
</td></tr>
<tr><td></td><td><center><input type=”Submit”></center></td></tr>
</form>

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 987

You’ll notice that the tags have the same name as some of the table’s fields. When
the PageProducer encounters one of these tags, it adds an <option> HTML tag for
every distinct value of the corresponding field. Here’s the OnTag event-handler’s
code, which is quite generic and reusable:

procedure TWebModule1.PageProducer1HTMLTag(
 Sender: TObject; Tag: TTag; const TagString: String;
 TagParams: TStrings; var ReplaceText: String);
begin
 ReplaceText := ‘‘;
 Query2.SQL.Clear;
 Query2.SQL.Add (‘select distinct ‘ +
 TagString + ‘ from customer’);
 try
 Query2.Open;
 try
 Query2.First;
 while not Query2.EOF do
 begin
 ReplaceText := ReplaceText +
 ‘<option>‘ + Query2.Fields[0].AsString +
 ‘</option>‘#13;
 Query2.Next;
 end;
 finally
 Query2.Close;
 end;
 except
 ReplaceText := ‘{wrong field: ‘ + TagString + ‘}’;
 end;
end;

This method used a second Query component, which I manually placed on the form
and connected to the DBDemos database, and it produces the output shown in Fig-
ure 20.19.

Finally, this Web server extension, like many others we’ve built, allows the user to
view the details of a specific record. As in the last example, we can accomplish this
by customizing the output of the first column (column zero), which is generated by
the QueryTableProducer component:

procedure TWebModule1.QueryTableProducer1FormatCell(
 Sender: TObject; CellRow, CellColumn: Integer;
 var BgColor: THTMLBgColor; var Align: THTMLAlign;
 var VAlign: THTMLVAlign; var CustomAttrs, CellData: String);
begin
 if (CellColumn = 0) and (CellRow <> 0) then
 CellData := ‘<a HREF=”‘ + Request.ScriptName +
 ‘/record?’ + CellData + ‘“>‘ + CellData + ‘‘#13;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

988 - Chapter 20: Internet Programming

Figure 20.19: The
form action of the
CustQueP example
produces an HTML
form with a selection
component
dynamically updated to
reflect the current
status of the database.
Image from the
original book.

The action for this link is /record, and we’ll pass a specific element after the ?
parameter (without the parameter name, which is slightly nonstandard). The code
we use to produce the HTML tables for the records doesn’t use the producer compo-
nents as we’ve been doing; instead, it is very similar to the code of an early ISAPI
example:

procedure TWebModule1.RecordAction(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
var
 I: Integer;
begin
 if Request.QueryFields.Count = 0 then
 Response.Content := ‘Record not found’
 else
 begin
 Query2.SQL.Clear;
 Query2.SQL.Add (‘select * from customer ‘ +
 ‘where Company=”‘ + Request.QueryFields[0] + ‘“‘);
 Query2.Open;
 Response.Content :=
 ‘<HTML><HEAD><TITLE>Customer Record</TITLE></HEAD><BODY>‘#13 +
 ‘<H1>Customer Record: ‘ + Request.QueryFields[0] +
 ‘</H1>‘#13 +
 ‘<table border>‘#13;
 for I := 1 to Query2.FieldCount - 1 do

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 989

 Response.Content := Response.Content +
 ‘<tr><td>‘ + Query2.Fields [I].FieldName +
 ‘</td>‘#13’<td>‘ + Query2.Fields [I].AsString +
 ‘</td></tr>‘#13;
 Response.Content := Response.Content +
 ‘</table><hr>‘#13 +
 // pointer to the query form
 ‘‘ +
 ‘ Next Query ‘#13 +
 ‘</BODY></HTML>‘#13;
 end;
end;

A Web Hit Counter

The server-side applications we’ve built up to now were based only on text. Of
course, you can easily add references to existing graphics files. What’s more inter-
esting, however, is to build server-side programs capable of generating graphics that
change over time.

A typical example is a page hit counter. To write a Web counter, we save the current
number of hits to a file and then read and increase the value every time the counter
program is called. How do we return this information? If all we need is some HTML
text with the number of hits, the code is straightforward:

procedure TWebModule1.WebModule1WebActionItem1Action(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
var
 nHit: Integer;
 LogFile: Text;
 LogFileName: string;
begin
 LogFileName := ‘WebCont.log’;
 System.Assign (LogFile, LogFileName);
 try
 // read if the file exists
 if FileExists (LogFileName) then
 begin
 Reset (LogFile);
 Readln (LogFile, nHit);
 Inc (nHit);
 end
 else
 nHit := 0;
 // saves the new data
 Rewrite (LogFile);
 Writeln (LogFile, nHit);

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

990 - Chapter 20: Internet Programming

 finally
 Close (LogFile);
 end;
 Response.Content := IntToStr (nHit);
end;

What’s a little more interesting is to create a graphical counter that can be easily
embedded into any HTML page. There are basically two approaches for building a
graphical counter: you can prepare a bitmap for each digit up front and then com-
bine them in the program, or you can simply let the program draw over a memory
bitmap to produce the graphic you want to return. In the WebCount program, I’ve
chosen this second approach.

Basically, we can create an Image component that holds a memory bitmap, which
we can paint on with the usual methods of the TCanvas class. Then we can attach
this bitmap to a TJpegImage object. Accessing the bitmap through the JpegImage
component converts the image to the JPEG format. At this point, we can save the
JPEG data to a stream and return it. As you can see, there are many steps, but the
code is not really complex:

 // create a bitmap in memory
 Bitmap := TBitmap.Create;
 try
 Bitmap.Width := 120;
 Bitmap.Height := 25;
 // draw the digits
 Bitmap.Canvas.Font.Name := ‘Arial’;
 Bitmap.Canvas.Font.Size := 14;
 Bitmap.Canvas.Font.Color := RGB (255, 127, 0);
 Bitmap.Canvas.Font.Style := [fsBold];
 Bitmap.Canvas.TextOut (1, 1, ‘Hits: ‘ +
 FormatFloat (‘###,###,###’, Int (nHit)));
 // convert to JPEG and output
 Jpeg1 := TJpegImage.Create;
 try
 Jpeg1.CompressionQuality := 50;
 Jpeg1.Assign(Bitmap);
 Stream := TMemoryStream.Create;
 Jpeg1.SaveToStream (Stream);
 Stream.Position := 0;
 Response.ContentStream := Stream;
 Response.ContentType := ‘image/jpeg’;
 Response.SendResponse;
 // the response object will free the stream
 finally
 Jpeg1.Free;
 end;
 finally
 Bitmap.Free;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 991

 end;

The three statements responsible for returning the JPEG image are the two that set
the ContentStream and ContentType properties of the Response and the final call to
SendResponse. The content type must match one of the possible MIME types
accepted by the browser, and the order of these three statements is relevant. There
is also a SendStream method in the Response object, but it should be called only
after sending the type of the data with a separate call.

You can see the effect of this program in Figure 20.20. To obtain it I’ve added the
following code to an HTML page:

<img src=”http://127.0.0.1/scripts/webcount.exe”
 border=0 alt=”hit counter”>

Figure 20.20: The
graphical Web hit
counter in action.
Image from the
original book.

Handling Mail Feedback

As a final example, I’m going to show you how to use a server-side application to
generate mail messages with special formatting; these messages will be handled by
a custom program. Why generate e-mail messages instead of saving data locally on
the server computer? E-mail protocols can be used for powerful and complex trans-
actions between two users who are not permanently connected to the Internet. In
this case, in fact, using a direct socket-based program doesn’t work. The mail server
offers a way to desynchronize the server and the client applications.

In other words, a remote user knows when there has been activity on the site, or
when someone has used a program that generated some e-mail, simply by checking

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

992 - Chapter 20: Internet Programming

a mail account. If you have an extra e-mail account (and it is quite easy to get one
for free nowadays), you can also automate the verification process by writing a pro-
gram that extracts and processes the mail messages automatically.

A CGI Mail Server

To illustrate both sides of the e-mail connection, I’ve written two simple programs.
The first is a server-side CGI application that uses the SMTP FastNet component
(described earlier in this chapter). Here is the DFM file for the data modules:

object WebModule1: TWebModule1
 Actions = <
 item
 Default = True
 Name = ‘WebActionItem1’
 OnAction = WebModule1WebActionItem1Action
 end>
 object Mail: TNMSMTP
 Host = ‘XXX’
 Port = 25
 ReportLevel = 0
 UserID = ‘marco’
 PostMessage.ToAddress.Strings = (
 ‘marco@AST’)
 PostMessage.Body.Strings = (
 ‘Subscription’)
 PostMessage.Subject = ‘Subscribe’
 end
end

Of course, you’ll need to update the program with a proper address for the SMTP
host, a proper UserID, and the e-mail address where you want to send the message,
PostMessage.ToAddress. The program has only one method, the handler for its only
action. This method extracts the information the user must have entered in a proper
HTML form, sends the mail message, and displays a result message to the user:

procedure TWebModule1.WebModule1WebActionItem1Action(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
var
 OutString: string;
begin
 OutString := Request.ContentFields.Values [‘firstname’];
 OutString := OutString + ‘ ‘ +
 Request.ContentFields.Values [‘lastname’];
 OutString := OutString + ‘ [‘ +
 Request.ContentFields.Values [‘email’] + ‘]’;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 993

 // send email
 Mail.PostMessage.FromAddress := OutString;
 Mail.Connect;
 Mail.SendMail;
 Mail.Disconnect;

 Response.Content := Response.Content +
 ‘<HTML><HEAD><TITLE>Newsletter</TITLE></HEAD>‘ +
 ‘<BODY><H1>Newsletter</H1><H2>Subscription received</H2><hr>‘ +
 ‘<H4>You’’re registered in our database as
‘ +
 OutString + ‘</h4>‘ +
 ‘</BODY></HTML>‘;
end;

The HTML form used by the program is visible in Figure 20.21, and its HTML
source code is listed below. The HTML code is interesting for two reasons. First, the
edit boxes of the HTML form used for input have a name, which is used by the CGI
application to retrieve the input data. Second, it uses a simple script written with
the JavaScript language (see the onSubmit section of the form) to check whether the
edit boxes are empty before sending the request. Here is the HTML code:

<HTML><HEAD>
 <TITLE>Subscription</TITLE>
</HEAD>

<BODY bgcolor=”#FFFFFF”>
<H1>Subscription Module</H1>

Fill the following form to subscribe to my newsletter.

<form
name=”subscribe”
action=”/cgi-bin/WebMail2.exe/new”
method=”post”
onSubmit=”
 if(!subscribe.lastname.value ||
 !subscribe.firstname.value ||
 !subscribe.email.value)
 {
 alert(‘All fields must be filled’);
 return false;
 };”>
<TABLE>
<TR>
 <TD>First Name:</TD>
 <TD><input name=”firstname”>
</TD>
</TR>
<TR>
 <TD>Last Name:</TD>

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

994 - Chapter 20: Internet Programming

 <TD><input name=”lastname”></TD>
</TR>
<TR>
 <TD>Email:</TD>
 <TD><input name=”email”></TD>
</TR>
<TR>
 <TD></TD>
 <TD><input type=submit value=”Send”></TD>
</TR>
</TABLE>
</form>

</BODY></HTML>

Figure 20.21: The
HTML input form of
the WebMail program.
Image from the
original book.

If you know C or C++, you’ll probably find JavaScript familiar, as it uses a similar
syntax. I don’t want to discuss JavaScript in detail here, but I wanted to show you
that the client side of a Web-based program can be made even more powerful by
incorporating scripts and using many other features of HTML426. A front-end built
in an HTML form is not as flexible as a native Windows application can be, but
HTML with some scripting offers all the basic features required to obtain a decent
input form427.

426 JavaScript was really that popular at the time this book was written, but I was correct in as-
suming it was going to become important – and it is today!

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 995

Retrieving Mail-Based Requests

The other side of the application is the program used to retrieve the mail messages
generated by the CGI server extension. This program is called GetMail and is avail-
able in the same directory as the WebMail program. The GetMail program is based
on a form and has an NMPOP3 component. Again you’ll have to update the program
with the proper Host name, UserID, and Password.

The form also has a list box and two buttons, which are used to move all the new
subscribers to the list box and save them from the list box to a file. A memo compo-
nent is used to show errors and log messages. The program connects to the POP3
mail server, reads the number of messages, and then scans each of the messages in
reverse order. Calling the GetMailMessage method fills the MailMessage property of
the component. At this point, the program checks to see if this is a subscription
message (by looking at the Subject field), extracts the sender, adds its name and
e-mail address to the list box, and removes the message from the server. Any mes-
sage that has a different caption is not removed; instead, its text is added to the
Memo component.

Active Server Pages

One of the biggest problems with ISAPI and CGI applications is the fact that they
follow the rules of the HTTP protocol, which is stateless. Every request arriving
from any user is considered a brand-new request. There are many techniques you
can use to solve this problem, including the use of cookies (quite simple with the
WebBroker architecture) and the use of hidden form fields that pass a user ID from
page to page.

Another solution is the use of a new Microsoft technology, Active Server Pages
(ASP)428. The idea behind ASP is to add scripts to the HTML code, so that part of the
text on a Web page is directly available while other information can be added at run
time on the server. The client receives a plain HTML file. The difference between
this approach and ISAPI is that you don’t need to recompile a program on the server

427 Well, a bit more than that, but it was difficult to foresee it before Gmail and Goole maps and
all of the other apps that followed, along with AJAX and later web services. Still, a good desk-
top app can be have a better UI than most web apps and can be build for a fraction of the cost.

428 ASP was later, even if slowly, abandoned in favor of ASP.NET. Delphi offers this as well, for a
little time. None of the related support remains in Delphi today.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

996 - Chapter 20: Internet Programming

to see a change; you simply update the script. ASP offers a complex model, where
you can attach persistent data to a session (for example, a user moving from page to
page of a section of your Web site) and to the entire application (the section of the
Web site, regardless of the user).

ASP is quite a complex technology, and here I can only discuss it in relation to Del-
phi programming. One of the features of ASP is that it allows you to create COM
objects within a script, and you can write those COM objects in Delphi. Delphi 5
even provides specific support classes and a wizard to help you build ASP objects.
Compared to ISAPI or CGI, one of the advantages is that your ASP object built in
Delphi can get access to session and application information, exactly as an ASP
script does. This means we automatically get extra features as persistent user data
built into our server-side object. By building a compiled ASP object, we can also
increase the speed of complex server-side code. (ASP scripts are not always the best
solution in term of performance.) But, again, I don’t want to discuss ASP in detail,
only focus on Delphi support.

To try this out, simply create a new ActiveX library, and then start the Active Server
Object Wizard (from the ActiveX page of the File New dialog box). As you can see
in Figure 20.22, the wizard has a couple of options. You can build an object inte-
grated with the ASP script by selecting the Page-Level Event Methods radio button,
or an internal object (which can be installed as an MTS object) by using the Object
Context option. Only in the first case does the object automatically handle the
OnStartPage method, which receives as parameter the scripting context. In both
cases, however, the VCL classes you inherit from (TASPObject and TASPMTSObject,
respectively) have properties to access the Request, Response, Session, Server, and
Application ASP objects.

Figure 20.22: The
new Active Server
Object Wizard. Image
from the original book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 997

Once you’ve created the ASP object with the wizard (I’ve used the Page-Level Event
Methods option for the AspTest example), Delphi will bring up the type library edi-
tor, where you can prepare a list of properties and methods for your ASP object.
Simply add the features you need, and then write their code. For example, you can
write the following simple test method

procedure Tasptest.ShowData;
begin
 Response.Write (‘<h3>Delphi wrote this text</h3>’);
end;

and activate it from the following ASP script (only slightly modified from the demo
script the Delphi wizard will generate for you):

<h4>Message</h4>
<% Set DelphiASPObj = Server.CreateObject(“asptest1.asptest”)
 DelphiASPObj.showData
%>

The interesting element is that the same script (or another ASP script of the same
application) can also set global values our Delphi object can access. Similarly, multi-
ple objects can communicate, setting global variables for the application and session
variables for the specific user. For example, we can add the following text to the ASP
page:

<h4>hello</h4>
<%
 Session.Value(“UserName”) = “Marco”
 DelphiASPObj.Hello
 %>

I’ve written the code used to set the property and the method invocation one after
the other, but they can even be in different pages. This new dynamic property
(Microsoft’s term for these values added to an object) is saved in the session, so it
depends on the current user. The Hello method can use the username to welcome
him:

procedure Tasptest.Hello;
var
 strName: string;
begin
 strName := Session [‘UserName’];
 Response.Write (‘<h3>Hello, ‘ + strName + ‘</h3>’);
 Response.Write (‘<p>Page started at ‘ + TimeToStr (StartTime);
end;

You can see the result of this and the previous method combined in Figure 20.23.
The last line of the method uses a variable I’ve set when the page is first loaded, in

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

998 - Chapter 20: Internet Programming

the OnStartPage method (despite the name this is not an event handler, but a
method the ASP engine will call as the page containing the object is activated):

procedure Tasptest.OnStartPage(const AScriptingContext: IUnknown);
begin
 inherited OnStartPage(AScriptingContext);
 StartTime := Now;
end;

Technically, this method retrieves the scripting context. The TASPObject base class
uses the method to initialize all the ASP objects (including the two, Response and
Session, I use in the code), surfacing them as properties.

Figure 20.23: The
Web page generated by
the AspTest object I’ve
built with Delphi.
Image from the
original book.

To generate more complex HTML from the Delphi ASP object, you can use Pro-
ducer components, optionally connecting them to a dataset. In the AspTest
example, I’ve added a Table component and a DataSetTableProducer, connected
them as usual, and written the following code to activate it:

procedure Tasptest.ShowTable;
begin
 DataModule1 := TDataModule1.Create (nil);
 try

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 20: Internet Programming - 999

 Response.Write (DataModule1.DataSetTableProducer1.Content)
 finally
 DataModule1.Free;
 end;
end;

It will actually make more sense to create the data module when the COM object is
created and destroyed (overriding Initialize and Destroy) or when the page is
loaded and unloaded (with OnStartPage and OnEndPage).

What’s Next?

In this long chapter, I’ve introduced you to some Internet-related programming
techniques: the generation of HTML code, the use of ActiveX controls and Active-
Form on Web pages, the low-level socket connections, some high-level Internet
protocols, CGI and ISAPI server-side technologies, the WebBroker framework, and
ASP.

Internet programming technologies are getting a great deal of attention, but they
are also very unstable and immature, and many alternatives often lead to similar
results. For this reason, I’ve tried to give you a very broad overview of the available
technologies, applying them to a broad range of examples. You will learn more
about this topic in the next chapter’s discussion of the new Internet Express archi-
tecture, which Delphi 5 adds to the MIDAS distributed database application
technology.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1000 - Chapter 21: Multitier Database Applications

Chapter 21:

Multitier Database

Applications

Large companies often have broader needs than applications using local database
and SQL servers can meet. In the past few years, Borland has started addressing the
needs of large corporations, and it has even changed its own name to Inprise to
underline this new enterprise focus429. There are many different technologies Delphi
is targeting: three-tier architectures based on Windows NT and DCOM, CORBA
architectures based on NT and Unix servers, TCP/IP and socket applications, and—
most of all—Web-based database front ends430.

429 The name change was short lived. Soon afterwards the company got back to use the Borland
name, only to later move the development tools software in the CodeGear business unit, which
was later sold to Embarcadero, later bought by Idera, Inc.

430 There has big a big shift in these multi-tier technologies, with HTTP-based connectivity taking
the lion’s share. DCOM and CORBA still exist, but their use is swindling, and same for sockets.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1001

Chapter 20 showed how to write simple distributed database applications using
sockets. This chapter will introduce the key ideas of Delphi’s support for three-tier
architecture, using MIDAS, DCOM, TCP/IP, MTS, CORBA, and the new Internet
Express technology431. I’ll concentrate more on the programming aspects of these
architectures than on installation and configuration (these aspects are subject to
change across different operating systems and are too complex to cover thoroughly).
The chapter is intended to serve only as an introduction to some complex technolo-
gies that are related to Delphi programming but would require an entire separate
book to cover, such as CORBA.

Before proceeding, I should emphasize two important elements. First, the tools to
support this kind of development are available only in the Enterprise version of Del-
phi432, and second, in some cases you’ll have to pay a license fee to Borland in order
to deploy the necessary server-side software, MIDAS433. This second requirement
makes this architecture cost-effective mainly for large systems (that is, servers con-
nected to dozens or even hundreds of clients). The license fee is only required for
deployment of the server application. It can be a flat fee for the server (regardless of
the number of clients that will connect) or a per-client fee if you plan to have only a
few clients. The license fee is not required for development or evaluation.

note You spend money on the MIDAS license, but you can save on the SQL server client licenses. Com-
panies have saved tens of thousands of dollars in annual SQL server connection licenses, by
connecting the hundreds or thousands of clients to the MIDAS server instead of the SQL server.
The MIDAS server only needs one SQL server client connection license, and the end-user clients
need none at all.434

One, Two, Three Levels

Initially, database PC applications were client-only solutions: the program and the
database files were on the same computer. From there, adventuresome program-

431 A lot of these technologies are obsolete or no longer applicable. Some key elements have sur-
vived, with changes.

432 This remains true, in terms of DataSnap (the direct MIDAS successor) and RAD Server.

433 A runtime deployment fee is involved in RAD Server, but you can zero it by buying an Archi-
tect edition license.

434 This idea of saving on database licenses theoretically still applies today, however database ven-
dors have often changed their licensing schemes to counter it, to the point of asking for pay-
ment by company employee, regardless of the actual database users.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1002 - Chapter 21: Multitier Database Applications

mers moved the database files onto a network file server. The client computers still
hosted the application software and the entire database engine, but the database
files were now accessible to several users at the same time. You can still use this
type of configuration with a Delphi application and Paradox files (or, of course,
Paradox itself), but the approach was much more widespread just few years ago.

The next big transition was to client/server development, embraced by Delphi since
its first version. In the client/server world, the client computer requests the data
from a server computer, which hosts both the database files and a database engine
to access them. This architecture downplays the role of the client, but it also reduces
its requirements for processing power on the client machine. Depending on how the
programmers implement client/server, the server can do most (if not all) of the data
processing. In this way, a powerful server can provide data services to several less
powerful clients.

Naturally, there are many other reasons for using centralized database servers, such
as the concern for data security and integrity, simpler backup strategies, central
management of data constraints, and so on. The database server is often called a
SQL server, because this is the language most commonly used for making queries
into the data, but it may also be called a DBMS (DataBase Management System),
reflecting the fact that the server provides tools for managing the data, such as sup-
port for backup and replication.

Of course, some applications you build may not need the benefits of a full DBMS, so
a simple client-only solution might be sufficient. On the other hand, you might need
some of the robustness of a DBMS system, but on a single, isolated computer. In
this case, you can use a local version of a SQL server, such as Local InterBase
(included with both the Professional and Enterprise editions of Delphi). Traditional
client/server development is done with a two-tier architecture. However, if the
DBMS is primarily performing data storage instead of data and number crunching,
the client might contain both user interface code (formatting the output and input
with customized reports, data-entry forms, query screens, and so on) and code
related to managing the data (also known as business rules). In this case, it’s gener-
ally a good idea to try to separate these two sections of the program and build a
logical three-tier architecture. The term logical here means that there are still just
two computers (that is, two physical tiers), but we’ve now partitioned the applica-
tion into three distinct elements.

Delphi 2 introduced support for a logical three-tier architecture with data modules.
As you’ll recall, a data module is a non-visual container for the data access compo-
nents of an application, but it often includes several handlers for database-related
events. You can share a single data module among several different forms and pro-
vide different user interfaces for the same data; there might be one or more data-

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1003

input forms, reports, master/detail forms, and various charting or dynamic output
forms.

The logical three-tier approach solves many problems, but it also has a few draw-
backs. First, you must replicate the data-management portion of the program on
different client computers, which might hamper performance, but more of an issue
is the complexity it adds to code maintenance. Second, when multiple clients mod-
ify the same data, there’s no simple way to handle the resulting update conflicts.
Finally, for logical three-tier Delphi applications, you must install and configure the
BDE on every client computer.

The next logical step up from client/server is to move the data-module portion of
the application to a separate server computer and design all the client programs to
interact with it. This is exactly the purpose of remote data modules, which were
introduced in Delphi 3. Remote data modules run on a server computer—generally
called the application server. The application server in turn communicates with the
DBMS (which can run on the application server or on another computer). There-
fore, the client machines don’t connect to the SQL server directly, but indirectly via
the application server435.

At this point there is a fundamental question: Do we still need to install the BDE?
The traditional Delphi client/server architecture (even with the logical three tiers)
requires you to install the BDE on each client, something quite troublesome when
you must configure and maintain hundreds of machines. In the new physical three-
tier architecture, you need to install and configure the BDE only on the application
server, not on the client computers. This generally means installing the BDE and
configuring the drivers and the aliases only on one computer! Since the client pro-
grams have only user interface code and are extremely simple to install, they now
fall into the category of so-called thin clients. To use marketing-speak, we might
even call this a zero-configuration thin-client architecture. But let us focus on tech-
nical issues instead of marketing terminology436.

435 With the advent of extensive web interfaces and mobile applications, the use of multi-tier ar-
chitectures has further grown in relevance, as the same back-end can be used by multiple
clients and because the client side (web or mobile) might offer limited processing, also because
of data and algorithm IP protection issues. The shift to HTTP, on top of this, favors stateless
and salable architectures and helps with security overall.

436 You clearly don’t want to install the BDE, but also database client libraries on the clients (most
database don’t have mobile clients, for example). The goal today remains zero configuration,
stand-alone clients on web, mobile or desktop, which merely use HTTP to connect to the data.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1004 - Chapter 21: Multitier Database Applications

The Technical Foundation: MIDAS

The foundation of Delphi’s physical multitier architecture is MIDAS (Middle-tier
Distributed Application Services), a collection of distinct technologies that work
together to make it easier to build distributed applications with Delphi. Delphi 5
includes the third version of this technology, MIDAS 3, which is also available in C+
+Builder and JBuilder to allow for distributed multi-platform and multi-language
projects437.

MIDAS is a server-side technology, so you’ll have to install it on the middle-tier
computer, the one that should provide your client computers with the data extracted
from the SQL server database or other data sources. Whether the middle-tier appli-
cation server and the SQL server reside on two different machines or on the same
computer isn’t really important and has no effect on the MIDAS architecture. Simi-
larly, MIDAS does not require a SQL server for data storage. MIDAS can serve up
data from a wide variety of sources, including SQL, CORBA, other MIDAS servers,
or just data computed on the fly.

As you would expect, the client side of MIDAS is extremely thin, and it’s easy to
deploy. The only file you need is now called Midas.dll (it was called DbClient.dll in
past versions), a small (260KB) DLL that implements the ClientDataSet and
RemoteServer components and provides the connection to the application server438.
This DLL is basically a small, stand-alone database engine. It caches data from a
remote data module and enforces the rules requested by the Constraint Broker. In
MIDAS 3 you no longer need to register this DLL as a COM server.

The application server uses the same DLL to handle the datasets (called deltas)
returned from the clients when they post updated or new records. However, the
server also requires several other libraries, all of which are installed by MIDAS.

The IAppServer Interface

In previous versions of MIDAS, the two sides of the application communicated
using the IDataBroker and IProvider interfaces. In Delphi 5 these two interfaces
are gone, and you instead use the new IAppServer interface. (This limits the com-

437 While MIDAS as it is presented in this book doesn’t exist any more, the DataSnap architecture,
still available in Delphi today, is based on a lot of the original MIDAS code and the Client-
DataSet component is still implemented in an external library called midas.dll today. As of
JBuilder, this Java IDE has long been dismissed.

438 As mentioned above, this DLL is still distributed today, for the same exact purpose.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1005

patibility of existing programs with MIDAS 3. The Delphi help file lists the changes
required by an application to be ported to this updated architecture.)

The IAppServer interface supersedes the features of the IProvider interface, intro-
ducing a key feature: it is meant to be used with stateless objects. With IProvider,
the server stored status information about the client program—for example, which
records had already been passed to the client. This made it difficult to adapt the
server-side objects to stateless connection layers, like CORBA message queues and
MTS, and also to move toward HTTP and Web-based support.

Other reasons for moving to this new architecture were to make the system more
dynamic (providers are now exported by setting a property, not by changing the
type library) and to reduce the number of calls, or round-trips, which can affect per-
formance. Now MIDAS makes fewer calls but delivers more data each time.

The IAppServer interface has the following methods439:

AS_ApplyUpdates
AS_GetRecords
AS_DataRequest
AS_GetProviderNames
AS_GetParams
AS_RowRequest
AS_Execute

You’ll seldom need to call them directly, anyway, as there are Delphi components to
be used on the client and server sides of the application that embed these calls,
making them easier (and at times even hiding them completely). In practice, in the
type library of a remote data module, you’ll inherit your own interface from this one,
possibly adding new methods. In past versions it was necessary to export specific
provider interfaces from the server type library; now, this is not required, so you
have less need of customizing the derived interface.

The Connection Protocol

MIDAS defines only the higher-level architecture and can use different technologies
for moving the data from the middle tier to the client side. MIDAS supports most of
the leading standards, including the following:

DCOM (or Distributed COM): This technology is directly available in Windows
NT and 98, and it requires no additional run-time applications on the server. You

439 This interface is still the foundation of DataSnap, although the way to access to it remotely
changed over time.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1006 - Chapter 21: Multitier Database Applications

still have to install it on Windows 95 machines. DCOM is basically an extension of
COM technology (discussed in Chapters 15 and 16) that allows a client application to
use server objects that exist and execute on a separate computer440.

MTS: DCOM also allows you to use MTS (Microsoft Transaction Server), which
provides features such as security, component management, and database transac-
tions. MTS is available in versions for Windows NT and Windows 98.

TCP/IP sockets: These are available on most systems. Using TCP/IP you might
distribute clients over the Web, where DCOM cannot be taken for granted. To use
sockets, the server must run the ScktSrvr.exe application provided by Borland, a
single program that can run either as an application or as a service. This program
receives the client requests and forwards them to the remote data module (execut-
ing on the same server) using COM. Sockets provide no protection against failure on
the client side, as the server is not informed and might not release resources when a
client unexpectedly shuts down441.

HTTP: The use of HTTP as a transport protocol over the Internet simplifies con-
nections through firewalls or proxy servers (which generally don’t like custom
TCP/IP sockets). You need a specific Web server application, httpsrvr.dll, which
accepts client requests and creates the proper remote data modules using COM.
These Web connections can use SSL security but must register themselves by
adding a call to EnableWebTransport in the UpdateRegistry method. Finally, Web
connections based on HTTP transport can use a new custom object-pooling sup-
port.442

note The MIDAS HTTP transport can use XML as the data packet format, enabling any platform or
tool that can read XML to participate in MIDAS data transport. This is an extension of the native
MIDAS data packet format, which is also platform independent.

CORBA: Common Object Request Broker Architecture is an official standard for
object management available on most operating systems. Compared to DCOM, the
advantage is that your client and server applications can be also written with Java
and other products. The Inprise implementation of CORBA, Visigenic’s Visibroker
ORB, is available with Delphi Enterprise. CORBA provides many benefits, including

440 While technically DCOM still exists, I’d strongly recommend not using it. Same for MTS,
which might not even be available any more.

441 Socket based connections are still available in DataSnap.

442 The HTTP connection is still available in DataSnap, but there is also an alternative REST layer,
which targets the interface directly rather than via a redirection to the socket layer.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1007

location transparency, load balancing, and fail-over from the ORB run-time soft-
ware443.

OLEnterprise: It is still possible to use Borland’s own OLEnterprise technology.
You must install the run-time version of OLEnterprise on both the client and server
computers. This connection technology can be used to hook with Inprise AppServer
and Entera technologies. This is not a common solution, and the corresponding
connection component is no longer available on the Delphi Component Palette444.

As an extension to this architecture in Delphi 5, you can transform the data packets
into XML and deliver them to a Web browser. In this case you basically have one
extra tier: the Web server gets the data from the middle tier and delivers it to the
client. I’ll discuss this new architecture, called Internet Express, at the end of the
chapter.

Providing Data Packets

The entire Delphi multitier data-access architecture centers around the idea of data
packets. In this context, a data packet is a block of data that moves from the applica-
tion server to the client or from the client back to the server. Technically, a data
packet is a sort of subset of a dataset. It describes the data it contains (usually a few
records of data), and it lists the names and types of the data fields. Even more
important, a data packet includes the constraints—that is, the rules to be applied to
the dataset. You’ll typically set these constraints in the application server, and the
server sends them to the client applications along with the data.

All communication between the client and the server occurs by exchanging data
packets. The provider on the server manages the transmission of several data pack-
ets within a big dataset, with the goal of responding faster to the user. As the client
receives a data packet, the user can edit the records it contains. As mentioned ear-
lier, during this process the client also receives and checks the constraints. When
the client has updated the records and sends a data packet back, that packet is
known as a delta. The delta packet tracks the difference between the original
records and the updated ones, recording all the changes the client requested from
the server. When the client asks to apply the updates to the server, it sends the delta
to the server, and the server tries to apply each of the changes. I say tries because if
a server is connected to several clients, the data might have changed already.

443 CORBA still exists, but not the Delphi support. It’s another old technology I’d recommend
against using, at least from Delphi. DataSnap doesn’t support CORBA.

444 OLEnterprise was also deprecated, and never made it to DataSnap.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1008 - Chapter 21: Multitier Database Applications

Since the delta packet includes the original data, the server can quickly determine if
another client has already changed it. If so, the server fires an OnReconcileError
event, which is one of the vital elements for the thin-client applications. In other
words, the three-tier architecture uses an update mechanism similar to the one Del-
phi uses for cached updates. The ClientDataSet manages data in memory, in a sort
of data cache, and it typically reads only a subset of the records available on the
server side, loading more elements only as they’re needed. When the client updates
the records or inserts new ones, it stores these pending changes in another local
cache on the client, the delta cache.

The client can also save the data packets to disk, which means users can work off-
line. Even error information and other data moves using the data packet protocol,
so it is truly one of the foundation elements of this architecture.

note It’s important to remember that data packets are protocol-independent. A data packet is merely a
sequence of bytes, so anywhere you can move a series of bytes, you can move a data packet. This
was done to make the architecture suitable for multiple transport protocols, such as DCOM,
CORBA, HTTP, and TCP/IP sockets.

Delphi Support Components (Client-Side)

Now that we’ve examined the general foundations of the new three-tier architec-
ture, we can focus on the Delphi components that support it. For developing client
applications, Delphi provides the ClientDataSet component, which provides all the
standard data-set capabilities (it derives from TDataSet) but doesn’t require the
BDE, just like the ADO and InterBase Express components. In this case, the data is
delivered through the remote connection.

This connection to the server application is made via another component you’ll also
need in the client application. You should use one of the four specific connection
components (available in the Midas page):

· The DCOMConnection component can be used on the client side to connect to a
DCOM and MTS server445, located either on the current computer or in another
one indicated by the ComputerName property. The connection is with a registered
object having a given ServerGUID or ServerName.

445 This component still exists today as part of DataSnap.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1009

· The CorbaConnection component can be used to hook with a CORBA server446.
You indicate the HostName (the name or IP address) to indicate the server com-
puter, the RepositoryID to request a specific data module on the server, and
optionally the ObjectName property if the data module exports multiple objects.

· The SocketConnection component can be used to connect to the server via a
TCP/IP socket447. You should indicate the IP address or the host name, and the
GUID of the server object (in the InterceptGUID property). In Delphi 5, this con-
nection component has an extra property, SupportCallbacks, which you can
disable if you are not using callbacks and want to deploy your program on Win-
dows 95 computers that don’t have Winsock 2 installed.

· The WebConnection component is used to handle an HTTP connection that can
easily get through a firewall448. You should indicate the URL where your copy of
httpsrvr.dll is located and the name or GUID of the remote object on the server.

Delphi Support Components (Server-Side)

On the server side (or actually the middle tier), you’ll need to use a remote data
module, a special version of the TDataModule class, or one of the specialized remote
data modules for MTS and CORBA. There are specific wizards in Delphi to create
data modules of each of these types.

The only specific component you need on the server side is the DataSetProvider449.
You need one of these components for every table or query of the server you want to
make available on the client side. The DataSetProvider supersedes the stand-alone
Provider component and the internal Provider object, which was embedded in the
TBdeDataSet sub-classes in past versions. The client applications will then use a
separate ClientDataSet component for every exported dataset (or provider) they
want to use.

446 The CORBA support has been removed, as already mentioned.

447 This component still exists today as part of DataSnap.

448 This component still exists today as part of DataSnap.

449 The DataSetProvider is part of the DataSnap architecture and it can work with various data
access components.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1010 - Chapter 21: Multitier Database Applications

Building a Sample Application

Now we’re ready to build a sample program. This will allow us to observe some of
the components I’ve just described in action, and it will also allow us to focus on
some other problems, shedding some light on other pieces of the Delphi multitier
puzzle. I’ll build the client and application server portions of a three-tier application
in two steps. The first step will simply test the technology using a bare minimum of
elements. These programs will be very simple.

From that point, we’ll add more power to the client and the application server. In
each of the examples, we’ll display data from local Paradox tables, and we’ll set up
everything to allow you to test the programs on a stand-alone computer. I won’t
cover the steps you have to follow to install the examples on multiple computers,
with the various technologies—again, that would be the subject of at least one other
book. I’ll only show you a short introduction to MTS and CORBA later in the chap-
ter.

The First Application Server

The server side of our basic example is very easy to build. Simply create a new appli-
cation and add a remote data module to it using the corresponding icon in the
Multitier page of the Object Repository. The simple Remote Dataset Wizard450 will
ask you for a class name and the instancing style. As you enter a class name, such as
AppServerOne, and click the OK button, Delphi will add a data module to the pro-
gram. This data module will have the usual properties and events, but its class will
have the following Pascal declaration:

type
 TAppServerOne = class(TRemoteDataModule, IAppServerOne)
 private
 { Private declarations }
 protected
 class procedure UpdateRegistry(Register: Boolean;
 const ClassID, ProgID: string); override;
 public
 { Public declarations }

450 This approach is still available in Delphi today, but it’s not the standard way to crate a DataS-
nap multitier application. The Remove Dataset approach is heavily based on COM and used
TCP/IP or HTTP connectivity remapped internally to COM. The “modern” DataSnap by con-
tract offers direct connection to Delphi classes and code, without the COM layer.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1011

 end;

In addition to inheriting from the TRemoteDataModule base class (a change from
past versions), this class implements a new interface, IAppServerOne, which derives
from a default Borland interface (IAppServer). The class also overrides the default
UpdateRegistry method to add the support for enabling the socket and Web trans-
ports, as you can see in the code generated by the wizard. At the end of the unit,
you’ll find the class factory declaration:

initialization
 TComponentFactory.Create(ComServer, TAppServerOne,
 Class_AppServerOne, ciMultiInstance, tmApartment);
end.

Now you can add a Table component to the data module, connect it to a database
and a table, activate it, and finally add a DataSetProvider and hook it. You’ll obtain a
simple DFM file like this:

object AppServerOne: TAppServerOne
 object Table1: TTable
 DatabaseName = ‘DBDEMOS’
 TableName = ‘employee.db’
 end
 object DataSetProvider1: TDataSetProvider
 DataSet = Table1
 Constraints = True
 end
end

What about the main form of this program? Well, it’s almost useless, so we can sim-
ply add a label to it indicating that it’s the form of the server application. When
you’ve built the server, you should compile it and run it once. This operation will
automatically register it as an Automation server on your system, making it avail-
able to client applications. Of course, you should register the server on the computer
where you want it to run, either the client or the middle tier.

The First Thin Client

Now that we have a working server, we can build a client that will connect to it.
We’ll again start with a standard Delphi application and add a DCOMConnection

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1012 - Chapter 21: Multitier Database Applications

component451 to it (or the proper component for the specific type of connection you
want to test). This component defines a ComputerName property that you’ll use to
specify the computer that hosts the application server. If you want to test the client
and application server from the same computer, you can leave this blank.

Once you’ve selected an application server computer, you can simply display the
ServerName property’s combo-box list to view the available servers, the servers’ reg-
istered names (by default the name of the executable file of the server followed by
the name of the remote data module class). Alternatively, you can type the GUID of
the server object in the ServerGUID property. Delphi will automatically enter this
property as you set the ServerName property, if it can determine the GUID by look-
ing it up in the Registry.

At this point, if you set the DCOMConnection component’s Connected property to
True, the server form will appear, indicating that the client has activated the server.
You don’t usually need to perform this operation, because the ClientDataSet compo-
nent typically activates the RemoteServer component for you. I’ve done this simply
to emphasize what’s happening behind the scenes.

As you might expect, the next step is to add a ClientDataSet component to the form.
You must connect the ClientDataSet to the DCOMConnection11 component via the
RemoteServer property, and thereby to one of the providers it exports. You can see
the list of available providers in the ProviderName property, via the usual combo
box. In this example, you’ll be able to select only DataSetProvider1, as this is the
only provider available in the selected server. This operation connects the dataset in
the client’s memory with the file-based dataset on the server. If you activate the
client dataset and add a few data-aware controls (or a DbGrid), you’ll immediately
see the server data appear in them, as illustrated in Figure 21.1.

451 Again, this works today but it’s not the recommended approach. Today’s DataSnap offers bet-
ter options, and RAD Server is significantly better and more REST-oriented, modern, and scal-
able.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1013

Figure 21.1: When
you activate a
ClientDataSet
component connected
to a remote data
module at design time,
the data from the
server becomes visible
as usual. Image from
the original book.

Here is the DFM file for our minimal client application, ThinCli1:

object Form1: TForm1
 Caption = ‘ThinClient1’
 object DBGrid1: TDBGrid
 Align = alClient
 DataSource = DataSource1
 end
 object DCOMConnection1: TDCOMConnection
 ServerGUID = ‘{09E11D63-4A55-11D3-B9F1-00000100A27B}’
 ServerName = ‘AppServ1.AppServerOne’
 end
 object ClientDataSet1: TClientDataSet
 Aggregates = <>
 Params = <>
 ProviderName = ‘DataSetProvider1’
 RemoteServer = DCOMConnection1
 end
 object DataSource1: TDataSource
 DataSet = ClientDataSet1
 end
end

Obviously, our first client and server applications are very simple, but they demon-
strate how easy it is to create a data-set viewer that splits the work between two
executable files. At this point, our client is only a viewer. If you edit the data on the
client, it won’t update the server files with those changes. To accomplish this you’ll
need to add some more code to the client. However, before we do that, let’s add
some features to the server.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1014 - Chapter 21: Multitier Database Applications

Adding Constraints to the Server

When you write a traditional data module in Delphi, you can easily add some of the
application logic, or business rules, by handling the data-set events, and by setting
field object properties and handling their events. You should avoid doing this work
on the client application; instead, write your business rules on the middle tier.

In the initial release of the MIDAS architecture, you could not use table and field
events in the middle tier, because they were not activated. As an alternative, the
middle tier could and still can send some constraints to the client and let the client
program impose those constraints during the user input. Starting with Delphi 4, the
DataSetProvider component allows you to send field properties (such as min and
max values) to the client, and it can also process updates through the dataset used
to access the data (or a companion UpdateSql object).

Field and Table Constraints

When the provider interface creates data packets to send to the client, it includes
the field definitions, the table and field constraints, and one or more records (as
requested by the ClientDataSet component). This implies you can customize the
middle tier and build distributed application logic by using SQL-based constraints.

The constraints you create using SQL expressions can be assigned to an entire table
or to specific fields. The provider sends the constraints to the client along with the
data, and the client applies them before sending updates back to the server. This
reduces network traffic, compared to having the client send updates back to the
application server and eventually up to the SQL server, only to find that the data is
invalid. Another advantage of coding the constraints on the server side is that if the
business rules change, you need to update only the server application and not the
clients. The Constraint Broker provides the basic infrastructure for this logic.

But how do you write constraints452? There are several properties you can use:

· The Table component has a Constraints property, which has a custom property
editor. Similarly, the Constraints property of the BDEDataSet components is a
collection of TCheckConstraint objects. Every object has a few properties,
including the expression and the error message.

452 This approach is no longer consider the best for customizing the business logic at the UI level,
although it was a very interesting model, for sure.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1015

· The Query component defines the same Constraints property, plus a
Constrained Boolean property.

· The Field objects define the CustomConstraint, ImportedConstraint, and
ConstraintErroMessage properties, which are functionally equivalent to the
TCheckConstraint object’s properties.

note An important thing to consider is that if you are using a data dictionary, you can extract con-
straints directly from it453.

Our next example adds a few constraints to a remote data module connected to the
DBDEMOS database’s Country.DB table. After connecting the table to the database
and creating the field objects for it, you can set the following special properties (a
table-wide constraint and a field-specific one):

 object Table1: TTable
 Constraints = <
 item
 CustomConstraint = ‘Name <> ‘‘‘
 ErrorMessage = ‘Must provide a name’
 FromDictionary = False
 end>
 TableName = ‘COUNTRY.DB’
 object Table1Population: TFloatField
 CustomConstraint = ‘Value > 10000’
 ConstraintErrorMessage = ‘Population out of range’
 FieldName = ‘Population’
 end
 end

Including Field Properties

You can control whether the properties of the field objects on the middle tier are
sent to the ClientDataSet (and copied into the corresponding field objects of the
client side), by using the poIncFieldProps value of the Options property of the
DataSetProvider. This flag controls the download of the field properties Alignment,
DisplayLabel, DisplayWidth, Visible, DisplayFormat, EditFormat, MaxValue,
MinValue, Currency, EditMask, and DisplayValues, if they are available in the field.

With this setting you can simply write your middle tier as usual, avoiding the use of
constraints. This approach also makes it faster to move existing applications from a

453 As mentioned, the data dictionary (tied to the BDE library) no longer exists in Delphi.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1016 - Chapter 21: Multitier Database Applications

client/server to a multitier architecture. The main drawback of sending fields to the
client is that transmitting all the extra information takes time. Turning off
poIncFieldProps can dramatically improve network performance of datasets with
many columns.

Besides using a query, a server can filter the fields returned to the client; it does this
by declaring persistent field objects with the Fields editor and omitting some of the
fields. Because a field you’re filtering out might be required to identify the record
for future updates (if the field is part of the primary key), you can also use the field’s
ProviderFlags property on the server to send the field value to the client but make
it unavailable to the ClientDataSet component (this provides some extra security,
compared to sending the field to the client and hiding it there).

Field and Table Events

You can write middle-tier dataset and field event handlers as usual and let the
dataset process the updates received by the client in the traditional way. This means
that updates are considered to be operations on the dataset, exactly as when a user
is directly editing, inserting, or deleting fields locally.

This is accomplished by setting the ResolveToDataSet property of the
TDatasetProvider component, again connecting either the dataset used for input or
a second one used for the updates. Note, by the way, that this provider component is
not limited to the BDE but can be used with any dataset. This also allows you to
remove the BDE from the middle tier, a particularly useful technique if the middle
tier is part of a Web server, where you might not be allowed to install the BDE.

With either technique, the updates are performed by a dataset, which implies a lot
of control (this is Pascal code!) but generally slower performance. Flexibility is
much greater, as you can use standard coding practices. Also, porting existing local
or client/server database applications, which use dataset and field events, is much
more straightforward with this model. However, keep in mind that the user of the
client program will receive your error messages only when the local cache (the
delta) is sent back to the middle tier. Saying to the user that some data prepared half
an hour ago is not valid might be a little awkward. If you follow this approach, you’ll
probably need to apply the updates in the cache at every AfterPost event on the
client side.

Finally, if you choose this architecture, Delphi helps you a lot in handling possible
exceptions. Any exceptions raised by the middle-tier update events (for example,
OnBeforePost) are automatically transformed by Delphi into update errors, which
activate the OnReconcileError event on the client side (more on this event later in

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1017

this chapter). No exception is shown on the middle tier, but the error travels back to
the client.

Adding Features to the Client

After adding constraints to the server, it’s now time to return our attention to the
client application. The first version was very simple, but now there are a number of
features we must add to make it work well.

We’ll start by demonstrating how the client works. To do that we’ll check the record
status and access the delta information (the updates to be sent back to the server).
Then we’ll add features to the program that handle updates, reconcile errors, and
support the briefcase model.

Keep in mind that while you’re using this client to edit the data locally, you’ll be
reminded of any failure to match the business rules of the application, set up on the
server side using constraints. The server will also provide us with a default value for
the Continent field of a new record. In Figure 21.2 you can see one of the error mes-
sages this client application can display, which it receives from the server. This
message is displayed while editing the data locally, not when you send it back to the
server.

Figure 21.2: The
error message
displayed by the
ThinCli2 example
when the value of the
Area field is too small.
Image from the
original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1018 - Chapter 21: Multitier Database Applications

The Status of the Records

The ClientDataSet component has a feature that lets us monitor what’s going on
within the client/server data packets; this is the UpdateStatus method454, which
returns one of the following indicators for the current record:

type
 TUpdateStatus = (usUnmodified, usModified,
 usInserted, usDeleted);

To check the status of every record in the client dataset easily, we can add a string-
type calculated field to the table and compute its value with the following method:

procedure TForm1.ClientDataSet1CalcFields(
 DataSet: TDataSet);
begin
 ClientDataSet1Status.AsString :=
 GetEnumName (TypeInfo(TUpdateStatus),
 Integer (ClientDataSet1.UpdateStatus));
end;

This method converts the current value of the TUpdateStatus enumeration to a
string.

The records are moved from the server to the client depending on the value of the
PacketRecords property of the ClientDataSet component, which determines the
number of records per packet. The default value of this property is 5, which means
that the provider will put five records in each packet transmitted. Alternatively, you
can set this value to zero to ask the server for only the field descriptors and no actual
data. At the other end of the spectrum, using -1 transfers all the records at once
(which is reasonable only for a small dataset).

Accessing the Delta

Beyond examining the status of each record, the best way to understand which
changes have occurred in a given ClientDataSet (but haven’t been uploaded to the
server) is to look at the delta, the list of changes waiting to be applied to the server.
This property is defined as follows:

property Delta: OleVariant;

454 This is still relevant today, also for standalone applications based on an in-memory dataset.
FireDAC offers a similar feature.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1019

The format used by the Delta property is the same as that used to transmit the data
from the client to the server. What we can do, then, is add another ClientDataSet
component to the application and connect it to the data in the Delta property of the
first client dataset:

procedure TForm1.ButtonDeltaClick(Sender: TObject);
begin
 if ClientDataSet1.ChangeCount > 0 then
 begin
 ClientDataSet2.Data := ClientDataSet1.Delta;
 ClientDataSet2.Open;
 FormDelta.DataSource1.DataSet := ClientDataSet2;
 FormDelta.Show;
 end
 else
 FormDelta.Hide;
end;

FormDelta is a very simple form that contains a DataSource and a DBGrid compo-
nent, as you can see in Figure 21.3. You’ll notice that the delta dataset has two
entries for each modified record: the original values and the modified fields.

Figure 21.3: The
ThinCli2 example
allows you to see the
temporary update
requests stored in the
Delta property of the
ClientDataSet. Images
from the original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1020 - Chapter 21: Multitier Database Applications

This code displays the current records in the delta, but it won’t automatically refresh
them when the user makes other changes unless the program copies the new delta
to the second ClientDataSet component every time the data changes.

You can accomplish this in the ClientDataSet component’s AfterPost event handler,
which is executed when the data changes in memory but not when it’s sent to the
server:

procedure TForm1.ClientDataSet1AfterPost(DataSet: TDataSet);
begin
 if FormDelta.Visible and
 (ClientDataSet1.ChangeCount > 0) then
 begin
 ClientDataSet2.Data := ClientDataSet1.Delta;
 end;
end;

Updating the Data

Now that we have a better understanding of what goes on during local updates, we
can try to make this program work by sending the local update (stored in the delta)
back to the application server. To apply all the updates from a dataset at once, pass -
1 to the ApplyUpdates method:

procedure TForm1.ButtonUpdateClick(Sender: TObject);
begin
 ClientDataSet1.ApplyUpdates (-1);
 FormDelta.Hide;
end;

The update operation might trigger the OnReconcileError event455, which allows us
to modify the Action parameter (passed by reference); this value in turn determines
how the server behaves in case of an update collision:

procedure TForm1.ClientDataSet1ReconcileError(
 DataSet: TClientDataSet; E: EReconcileError;
 UpdateKind: TUpdateKind; var Action: TReconcileAction);

This method has three parameters: the client dataset component (in case more than
one client application is interacting with the application server), the exception that
caused the error (with the error message), and the kind of operation that failed
(ukModify, ukInsert, or ukDelete). The return value, which you’ll store in the
Action parameter, can be any one of the following:

455 This event and the concepts behind it are still actual in DataSnap.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1021

type
 TReconcileAction = (raSkip, raAbort, raMerge,
 raCorrect, raCancel, raRefresh);

· The raSkip value specifies that the server should skip the conflicting record,
leaving it in the delta (this is the default value).

· The raAbort value tells the server to abort the entire update operation and not
even try to apply the remaining changes listed in the delta.

· The raMerge value tells the server to merge the data of the client with the data on
the server, applying only the modified fields of this client (and keeping the other
fields modified by other clients).

· The raCorrect value tells the server to replace its data with the current client
data, overriding all field changes already done by other clients.

· You use the raCancel value to cancel the update request, removing the entry
from the delta and restoring the values originally fetched from the database (thus
ignoring changes done by other clients).

· The raRefresh value tells the server to dump the updates in the client delta and
to replace them with the values currently on the server (thus keeping the changes
done by other clients).

If you want to test collisions on a stand-alone computer, you can simply launch two
copies of the client application, change the same record in both clients, and then
post the updates from both. We’ll do this later to generate an error, but let’s first see
how to handle the OnReconcileError event.

This is actually a simple thing to accomplish, but only because we’ll receive a little
help. Since building a specific form to handle an OnReconcileError event is very
common, Delphi already provides such a form in the Object Repository. Simply go
to the Dialogs page and select the Reconcile Error Dialog item. As the source code of
this unit indicates, it exports a function you can directly use to initialize and display
the dialog box:

procedure TForm1.ClientDataSet1ReconcileError(DataSet: TClientDataSet;
 E: EReconcileError; UpdateKind: TUpdateKind;
 var Action: TReconcileAction);
begin
 Action := HandleReconcileError (DataSet, UpdateKind, E);
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1022 - Chapter 21: Multitier Database Applications

note As the source code of the Reconcile Error Dialog unit suggests, you should use the Project
Options dialog to remove this form from the list of automatically created forms (if you don’t, an
error will occur when you compile the project). Of course, you need to do this only if you haven’t
set up Delphi to skip the automatic form creation.

The HandleReconcileError function simply creates the form of the dialog box and
shows it:

function HandleReconcileError(DataSet: TDataSet;
 UpdateKind: TUpdateKind; ReconcileError: EReconcileError):
 TReconcileAction;
var
 UpdateForm: TReconcileErrorForm;
begin
 UpdateForm := TReconcileErrorForm.CreateForm(DataSet,
 UpdateKind, ReconcileError);
 with UpdateForm do
 try
 if ShowModal = mrOK then
 begin
 Result := TReconcileAction(ActionGroup.Items.Objects[
 ActionGroup.ItemIndex]);
 if Result = raCorrect then
 SetFieldValues(DataSet);
 end
 else
 Result := raAbort;
 finally
 Free;
 end;
end;

The Reconc unit, which hosts the Reconcile Error dialog, contains over 350 lines of
code, so we can’t describe it in detail. However, you should be able to understand
the source code by studying it carefully. Alternatively, you can simply use it without
caring about how everything works.

The dialog box will appear in case of an error, reporting the requested change that
caused the conflict and allowing the user to choose one of the possible
TReconcileAction values. You can see an example in Figure 21.4.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1023

Figure 21.4: The
Reconcile Error dialog
provided by Delphi in
the Object Repository
and used by the
ThinCli2 example.
Image from the
original book.

The Update Sequence

To summarize, here is the sequence of operations related to an update and the pos-
sible error events:

1. The client program calls the ApplyUpdates method of a ClientDataSet.

2. The delta is sent to the provider on the middle tier. The provider fires the
OnUpdateData event, where you have a chance to look at the requested
changes before they reach the database server. At this point you can modify the
delta, which is passed in a format compatible with the data of a ClientDataSet.

3. The provider (technically, a part of the provider called the “resolver”) applies
each row of the delta to the database server. Before applying each update, the
provider receives a BeforeUpdateRecord event. If you’ve set the
ResolveToDataSet flag, this update will eventually fire local events of the
dataset in the middle tier.

4. In case of a server error, the provider fires the OnUpdateError event (on the
middle tier) and the program has a chance of fixing the error at that level.

5. If the middle-tier program doesn’t fix the error, the corresponding update
request remains in the delta. The error is returned to the client side at this point
or after a given number of errors has been collected, depending on the value of
the MaxErrors parameter of the ApplyUpdates call.

6. Finally, the delta packet with the remaining updates is sent back to the client,
firing the OnReconcileError event of the ClientDataSet for each of them. In

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1024 - Chapter 21: Multitier Database Applications

this event handler, the client program can try to fix the problem (possibly
prompting the user for help), modifying the update in the delta, and later
reissuing it.

Refreshing Data

You can obtain an updated version of the data, which other users might have modi-
fied, by calling the Refresh method of the ClientDataSet. However, this operation
can be done only if the user has no pending update operations in the cache, as call-
ing Refresh clears the Delta. If there are pending updates, you can call
RefreshRecords instead, which tries to reapply the changes you have on log in the
delta to the new data available on the middle tier, raising an OnReconcileError in
case of a conflict (that is, if one of the records modified on the client has already
been modified on the database server).

Adding an Undo Feature

Since the update data is stored in the local memory (in the delta), besides applying
the updates and sending them to the application server, we can reject them, remov-
ing entries from the delta. The ClientDataSet component has a specific
UndoLastChange method to accomplish this. The parameter of this method allows
you to follow the undo operation (the name of this parameter is FollowChange).
This means the client dataset will move to the record that has been restored by the
undo operation.

Here is the code connected to the Undo button of the example:

procedure TForm1.ButtonUndoClick(Sender: TObject);
begin
 ClientDataSet1.UndoLastChange (True);
end;

I suggest you try using this feature yourself, to fully understand how it works456.

456 Again, this is still relevant and supported by in-memory datasets in general.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1025

Supporting the Briefcase Model

The last capability of the ThinCli2 example is support for the “briefcase” model457.
The idea here is that you might need to use the client program even when you’re not
physically connected to the application server. In this case, you can save all the data
you expect to need in a local file for travel with a laptop (perhaps visiting client
sites). You’ll use the client program to access the local version of the data, edit the
data normally, and when you reconnect, apply all the updates you’ve performed
while disconnected.

The ThinCli2 example’s main form has two buttons: one to save a snapshot of the
data to a local file and one to restore it. The OnClick event handlers for these but-
tons use the standard OpenDialog and SaveDialog components to connect to the
database file:

procedure TForm1.ButtonSnapClick(Sender: TObject);
begin
 if SaveDialog1.Execute then
 ClientDataSet1.SaveToFile (SaveDialog1.FileName);
end;

procedure TForm1.ButtonReloadClick(Sender: TObject);
begin
 if OpenDialog1.Execute then
 ClientDataSet1.LoadFromFile (OpenDialog1.FileName);
end;

After working offline and modifying the local file, you can reload it and apply the
updates to the server.

When you use the briefcase model, it’s best to download the whole dataset before
saving it locally; as you’ll recall, you can do that by setting the PacketRecords prop-
erty of the ClientDataSet to -1. If you don’t do this, you’ll simply save the records
that happened to be in the memory table, and the client application won’t know
about the other records still on the server.

457 Both ClientDataSet and FireDAC’s FDMemTable offer the ability to store a snap shot of data
originating from a server to a local, temporary file. This can be used for caching information or
to allow editing while disconnected. It’s important to save bandwidth for mobile apps, for ex-
ample, and let them work smoothly even under limited connectivity. This concept overall re-
mains fundamental and it common today, it was quite unique when Borland introduced it.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1026 - Chapter 21: Multitier Database Applications

Advanced MIDAS Features

There are many more features in MIDAS than I’ve covered up to now. Here is a
quick tour of some of the more advanced features of the architecture, partially
demonstrated by the AppSPlus and ThinPlus examples. Unfortunately, demonstrat-
ing every single idea would turn this chapter into an entire book (and not every
Delphi programmer can afford MIDAS), so I’ll limit myself to an overview.

Besides the features discussed in the following sections, the AppSPlus and ThinPlus
examples demonstrate the use of a socket connection, limited logging of events and
updates on the server side, and direct fetching of a record on the client side. The last
feature is accomplished with this call:

procedure TClientForm.ButtonFetchClick(Sender: TObject);
begin
 ButtonFetch.Caption := IntToStr (cds.GetNextPacket);
end;

This allows you to get more records than are actually required by the client user
interface (the DbGrid)458. In other words, you can fetch methods directly, without
waiting for the user to scroll down in the grid. I suggest you study the details of
these complex examples after reading the rest of this section.

Parametric Queries

If you want to use parameters in a query or stored procedure, instead of building a
custom solution (with a custom method call to the server), you can let Delphi help
you. First define the query on the middle tier with a parameter, such as:

select * from customer
 where Country = :Country

Use the Params property to set the type and default value of the parameter. On the
client side, you can use the Fetch Params command of the ClientDataSet’s shortcut
menu, after connecting it to the proper provider. At run time you can call the equiv-
alent FetchParams method of the ClientDataSet component.

Now you can provide a local default value to the parameter by acting on the Params
property. This will be sent to the middle tier when you fetch the data. The ThinPlus
example refreshes the parameter with the following code:

458 This is still an option today, in the various multitier technologies Delphi support.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1027

procedure TFormQuery.btnParamClick(Sender: TObject);
begin
 cdsQuery.Close;
 cdsQuery.Params[0].AsString := EditParam.Text;
 cdsQuery.Open;
end;

You can see the secondary form of this example, which shows the result of the para-
metric query in a grid, in Figure 21.5. In the figure you can also see some custom
data sent by the server, as explained in the section “Customizing the Data Packets.”

Figure 21.5: The
secondary form of the
ThinPlus example,
showing the data of a
parametric query

Custom Method Calls

Since the server has a normal COM interface, we can add more methods or proper-
ties to it and call them from the client459. Simply open the type library editor of the
server and use it as with any other COM server. In the AppSPlus example, I’ve
added a custom Login method with the following implementation:

procedure TAppServerPlus.Login(
 const Name, Password: WideString);
begin
 // TODO: add actual login code...
 if Password <> Name then
 raise Exception.Create (

459 Adding custom method calls is what modern REST servers are all about, although technologies
like RAD Server allow you to easily export a database, this is done by automatically offering a
number of method calls mapped to HTTP URLs.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1028 - Chapter 21: Multitier Database Applications

 ‘Wrong name/password combination received’)
 else
 Query.Active := True;
 ServerForm.Add (‘Login:’ + Name + ‘/’ + Password);
end;

The program makes a simple test, instead of checking the name/password combina-
tion against a list of authorizations as a real application should do. Also, disabling
the Query doesn’t really work, as it can be activated by the provider. Disabling the
DataSetProvider is actually a more robust approach. The client has a simple way to
access the server, the AppServer property of the remote connection component.
Here is a sample call from the ThinPlus example, which takes place in the
AfterConnect event of the connection component:

procedure TClientForm.ConnectionAfterConnect(
 Sender: TObject);
begin
 Connection.AppServer.Login (Edit2.Text, Edit3.Text);
end;

Note that you can call extra methods of the COM interface through DCOM and
CORBA, and also over a socket-based or HTTP connection. Because the program
uses the safecall calling convention, the exception raised on the server is automat-
ically forwarded and displayed on the client side. This way, when a user selects the
Connect check box, the event handler used to enabled the client datasets is inter-
rupted, and a user with the wrong password won’t be able to see the data.

Besides direct method calls from the client to the server, you can also implement
callbacks from the server to the client. This can be used, for example, to notify every
client of specific events. Using COM events is a way to do this. As an alternative, you
can add a new interface, implemented by the client, which passes the implementa-
tion object to the server. This way, the server can call the method on the client
computer. Callbacks are not possible with HTTP connections, though. With socket-
based connections, callbacks are possible only on computers with WinSock2
installed, which includes Windows 98 computers and Windows 95 machines with a
recent version of Internet Explorer.

Master/Detail Relationships

If your middle-tier application exports multiple datasets, you can retrieve them
using multiple ClientDataSet components on the client side and connect them
locally to form a master/detail structure. This will create quite a few problems for
the detail dataset unless you retrieve all of the records locally.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1029

This solution also makes it quite complex to apply the updates; you cannot usually
cancel a master record until all related detail records have been removed, and you
cannot add detail records until the new master record is properly in place. (Actually,
different servers handle this differently, but in most cases where a foreign key is
used, this is the standard behavior.) What you can do to solve this problem is to
write complex code on the client side to update the records of the two tables accord-
ing to the specific rules.

A completely different approach is to retrieve a single dataset that already includes
the detail as a dataset field, a field of type TDatasetField. To accomplish this, you
need to set up the master/detail relationship on the server application:

object TableCustomer: TTable
 DatabaseName = ‘DBDEMOS’
 TableName = ‘customer.db’
end
object TableOrders: TTable
 DatabaseName = ‘DBDEMOS’
 MasterFields = ‘CustNo’
 MasterSource = DataSourceCust
 TableName = ‘ORDERS.DB’
end
object DataSourceCust: TDataSource
 DataSet = TableCustomer
end
object ProviderCustomer: TDataSetProvider
 DataSet = TableCustomer
end

On the client side, the detail table will show up as an extra field of the ClientDataSet,
and the DbGrid control will display it as an extra column with an ellipsis button.
Clicking the button will display a secondary form with a grid displaying the detail
table (see Figure 21.6). If you need to build a flexible user interface on the client,
you can then add a secondary ClientDataSet connected to the dataset field of the
master dataset, using the DataSetField property. Simply create persistent fields for
the main ClientDataSet and then hook up the property:

object cdsDet: TClientDataSet
 DataSetField = cdsTableOrders
end

With this setting you can show the detail dataset in a separate DbGrid placed as
usual in the form (the bottom grid of Figure 21.6) or in any other way you like. Note
that with this structure, the updates relate only to the master table, and the server
should handle the proper update sequence even in complex situations.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1030 - Chapter 21: Multitier Database Applications

Figure 21.6: The
ThinPlus example
shows how a dataset
field can either be
displayed in a grid in a
floating window or
extracted by a
ClientDataSet and
displayed in a second
form. You’ll generally
do one of the two
things, not both! Image
from the original book.

More Provider Options

I’ve already mentioned the Options property of the DataSetProvider component,
noting that it can be used to add the field properties to the data packet. There are
several other options you can use to customize the data packet and the behavior of
the client program. Here is a short list:

· You can minimize downloading BLOB data with poFetchBlobsOnDemand option.
In this case, the client application can download BLOBs by specifying the
FetchOnDemand property of the ClientDataSet to True or by calling the
FetchBlobs method for specific records. Similarly, you can disable the automatic
downloading of detail records by setting the poFetchDetailsOnDemand option.
Again, the client can use the FetchOnDemand property or call the FetchDetails
method.

· When you are using a master/detail relationship, you can control cascades with
either of two options. The poCascadeDeletes flag controls whether the provider
should delete detail records before deleting a master record. You can set this
option if the database server performs cascaded deletes for you as part of its ref-
erential integrity support. Similarly, you can set the poCascadeUpdates option

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1031

when the update of key values of a master detail relationship can be performed
automatically by the server.

· You can limit the operations on the client side. The most restrictive option is
poReadOnly, which disables any update. If you want to give the user a limited
editing capability, you can use poDisableInserts, poDisableEdits, or
poDisableDeletes.

· You can resend to the client a copy of the records the client has modified with
poAutoRefresh, which is useful in case other users have simultaneously made
other, nonconflicting changes. You can also send back to the client changes done
in the BeforeUpdateRecord or AfterUpdateRecord event handlers by specifying
the poPropogateChanges option. This option is also handy when you are using
autoincrement fields, triggers, and other techniques that modify data on the
server or middle tier beyond the changes requested from the client tier.

Finally, if you want the client to drive the operations, you can enable the
poAllowCommandText option. This lets you set the SQL query or table name of the
middle tier from the client, using the GetRecords or Execute methods.

The Simple Object Broker

The SimpleObjectBroker component460 provides an easy way to locate a server
application among several server computers. You simply provide a list of available
computers, and the client will try each of them in order until it finds one that is
available.

Moreover, if you enable the LoadBalanced property, the component will randomly
choose one of the servers; when many clients use the same configuration, the con-
nections will be automatically distributed among the multiple servers. If this seems
like a “poor man’s” object broker, consider that some highly expensive load-balanc-
ing systems don’t actually offer much more than this.

Object Pooling

When multiple clients connect to your server at the same time, you have two
options. The first is to create a remote data module object for each of them and let

460 It might sound surprising, but the component is still there in the current version of Delphi.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1032 - Chapter 21: Multitier Database Applications

each request be processed in sequence (the default behavior for a COM server with
the ciMultiInstance style). Alternatively, you can let the system create a different
instance of the application for every client (ciSingleInstance). This requires more
resources and more SQL server connections (and licenses), potentially overloading
the BDE (we saw in Chapter 17 that the BDE cannot handle more than a set number
of threads or processes).

An alternative approach is offered by the support in MIDAS 3 for object pooling. All
you need to do to request this feature is add a call to RegisterPooled in the overrid-
den UpdateRegistry method. Combined with the stateless support now built into
MIDAS, the pooling capability allows you to share some middle-tier objects among a
much larger number of clients.

The users on the client computers will spend most of their time reading data and
typing in updates, and they generally don’t continue to keep asking for data and
sending updates. When the client is not calling a method of the middle-tier object,
this can be used for another client. Being stateless, in fact, every request reaches the
middle tier as a brand-new operation, even when a server is dedicated to a specific
client.

This pooling mechanism is built into MTS and CORBA, but MIDAS 3 makes it avail-
able also for HTTP and socket-based connections, and for the Internet Express Web
client.

Customizing the Data Packets

There are many ways to include custom information within the data packet handled
by the IAppServer interface. The simplest is probably to handle the
OnGetDataSetProperties event of the provider itself. This event has a Sender
parameter, a dataset parameter indicating where the data is coming from, and an
OleVariant array Properties parameter, in which you can place the extra informa-
tion. You need to define one variant array for each extra property and include the
name of the extra property, its value, and whether you want the data to return to the
server along with the update delta (the IncludeInDelta parameter).

Of course, you can pass properties of the related dataset component, but you can
also pass any other value (extra fake properties)461. In the AppSPlus example I pass
to the client the time the query was executed and its parameters:

461 I’d recommend you to avoid going down this route and use a modern approach, like adding
content to the JSON payload of a REST request, but that's different world. I assume this tech-
nically works today.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1033

procedure TAppServerPlus.ProviderQueryGetDataSetProperties(
 Sender: TObject; DataSet: TDataSet; out Properties: OleVariant);
begin
 Properties := VarArrayCreate([0,1], varVariant);
 Properties[0] := VarArrayOf([‘Time’, Now, True]);
 Properties[1] := VarArrayOf([‘Param’,
 Query.Params[0].AsString, False]);
end;

On the client side, the ClientDataSet component has a GetOptionalParameter
method to retrieve the value of the extra property with the given name. The Client-
DataSet also has the SetOptionalParameter method to add more properties to the
dataset. These values will be saved to disk (in the briefcase model) and eventually
sent back to the middle tier (by setting the IncludeInDelta member of the variant
array to True). Here is a simple example of the retrieval of the dataset in the code
above:

Caption := ‘Data sent at ‘ + TimeToStr (
 TDateTime (cdsQuery.GetOptionalParam(‘Time’)));
Label1.Caption := ‘Param ‘ +
 cdsQuery.GetOptionalParam(‘Param’);

The effect of this code was visible in Figure 21.5. An alternative and more powerful
approach for customizing the data packet sent to the client is to handle the
OnGetData event of the provider, which receives the outgoing data packet in the
form of a client dataset. Using the methods of this client dataset, you can edit data
before it is sent to the client. For example, you might encode some of the data or fil-
ter out sensitive records.

The Hidden Power of the
ClientDataSet Component462

The ClientDataSet component supports many features, some of which are related to
the three-tier architecture, but it can also be used in other circumstances. This com-
ponent represents a database completely mapped in memory, and this makes it
possible to do on-the-fly operations, like creating an index, that other datasets usu-

462 This was a very important point I made in this book. This component is so powerful that Cary
Jensen wrote an entire book on it! Today, the FDMemTable component offers even more
featrures, with the advantage of being 100% implemented in Delphi code, while ClientDataSet
requires the distribution of the midas library.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1034 - Chapter 21: Multitier Database Applications

ally don’t support. To sort a query, for example, you basically reexecute it. To index
a local table, you need the index to be defined. Only ADO datasets have some
dynamic indexing capability like that of ClientDataSet.

Indexing is not all the ClientDataSet has to offer. When you have an index, you can
define groups based on it, possibly with multiple levels of grouping. There is even
specific support for determining the position of a record within a group (first, last,
or middle position). Over groups or entire tables you can define aggregates; that is,
you can compute the sum or average value of a column for the entire table or the
current group on the fly. The data doesn’t need to be posted to a physical server,
because these aggregate operations take place in memory. You can even define new
aggregate fields, to which you can directly connect data-aware controls.

The important thing to keep in mind is that all of these features are available not
only to MIDAS applications, but also to client/server and even local thin applica-
tions. The ClientDataSet component, in fact, can get its data from a remote MIDAS
connection, from a local dataset (creating a snapshot of its data), or from a local file
(as in the briefcase model, but with the entire table defined only within the client
dataset).

This is another huge area to explore, so I’ll simply show you a couple of examples
highlighting key features. These examples won’t be based on MIDAS but on local
tables.

Defining Abstract Data Types

An interesting feature of the VCL database support you can activate when using a
ClientDataSet based on a local file is the definition of abstract data types. Simply
place a ClientDataSet component onto a form, activate the editor for the FieldDefs
property, add a couple of fields, and select the ftADT value for the DataType property
of one of them. Now move to the ChildDefs property and define the child fields.
This is the field definition of the AdtDemo example:

 FieldDefs = <
 item
 Name = ‘ID’
 DataType = ftInteger
 end
 item
 Name = ‘Name’
 ChildDefs = <
 item
 Name = ‘LastName’
 DataType = ftString

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1035

 Size = 20
 end
 item
 Name = ‘FirstName’
 DataType = ftString
 Size = 20
 end>
 DataType = ftADT
 Size = 2
 end>

At this point, simply type in a name for the FileName property of the ClientDataSet,
right-click the component, and select the Create Table command; you are ready to
compile and run the application (after connecting data-aware components to it).
The data will be automatically extracted from the file you’ve supplied and the
changes will be saved onto it when you close the program.

If you use a DBGrid to view the resulting dataset, it will allow you to expand or col-
lapse the sub-fields of the ADT field, as you can see in Figure 21.7. You can provide
the condensed value of the field by defining its OnGetText event (there was a default
value in Delphi 4, but it’s not available in Delphi 5):

procedure TForm1.ClientDataSet1NameGetText(Sender: TField;
 var Text: String; DisplayText: Boolean);
begin
 Text := ClientDataSet1NameFirstName.AsString + ‘ ‘ +
 ClientDataSet1NameLastName.AsString;
end;

Figure 21.7: The
AdtDemo example
shows the support for
expanding or
collapsing the
definition of an ADT
field. Image from the
original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1036 - Chapter 21: Multitier Database Applications

On-the-Fly Indexing

Once you have data on a ClientDataSet, the data is entirely in memory. When we
base the component on a local file, as in the AdtDemo example, the entire file is
loaded in memory when the program starts. This is different from, say, a Paradox
table, for which the BDE loads only the fields you are accessing.

An advantage of having the entire table in memory is that you can easily sort it quite
fast. With the ClientDataSet component, you can do this simply by assigning a
proper field name to the IndexFieldNames property. In the AdtDemo (as in many
programs), this index change is performed as you click on a title in the DBGrid con-
trol (firing the OnTitleClick event):

procedure TForm1.DBGrid1TitleClick(Column: TColumn);
begin
 if Column.Field.FullName = ‘Name’ then
 ClientDataSet1.IndexFieldNames := ‘Name.LastName’
 else
 ClientDataSet1.IndexFieldNames := Column.Field.FullName;
end;

The program uses the FullName property of the field (not the FieldName property)
because of the ADT definition. For the child fields, in fact, the index should be based
on Name.LastName, not simply on LastName. Also, the ADT field cannot itself be
indexed, so if it is selected, the program uses as index the LastName subfield. These
indexes are not persistent; they are not saved in a file but are simply applied to the
data in memory.

note A ClientDataSet can have an index based on a calculated field, specifically an internally calculated
field, a type of field available only for this dataset.

Grouping

Once you’ve defined an index for a ClientDataSet, you can group the data by that
index. In practice, a group is defined as a list of consecutive records (according to
the index) for which the value of the indexed field doesn’t change. For example, if
you have an index by state, all the addresses within that state will fall in the group.

The CdsCalcs example has a ClientDataSet component that extracts its data from
the Country table of the familiar DBDEMOS database. This operation can be per-
formed at design time, using the Assign Local Data command of the ClientDataSet
component’s shortcut menu. To extract the data at run time, getting an updated

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1037

snapshot, you can add a DataSetProvider component to the form, connecting the
three components as follows:

object Table1: TTable
 Active = True
 DatabaseName = ‘DBDEMOS’
 TableName = ‘COUNTRY.DB’
end
object DataSetProvider1: TDataSetProvider
 DataSet = Table1
end
object ClientDataSet1: TClientDataSet
 ProviderName = ‘DataSetProvider1’
end

Now we can focus on the definition of the group. This is obtained, along with the
definition of an index, by specifying a grouping level for the index itself:

object ClientDataSet1: TClientDataSet
 IndexDefs = <
 item
 Name = ‘ClientDataSet1Index1’
 Fields = ‘Continent’
 GroupingLevel = 1
 end>
 IndexName = ‘ClientDataSet1Index1’

When you have a group active, you can make this obvious to the user by displaying
the grouping structure in the DBGrid, as shown in Figure 21.8. Simply handle the
OnGetText event for the grouped field (the Continent field in the example), and
show the text only if the record is the first of the group:

procedure TForm1.ClientDataSet1ContinentGetText(Sender: TField;
 var Text: String; DisplayText: Boolean);
begin
 if gbFirst in ClientDataSet1.GetGroupState (1) then
 Text := Sender.AsString
 else
 Text := ‘‘;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1038 - Chapter 21: Multitier Database Applications

Figure 21.8: The
CdsCalcs example
demonstrates that by
writing a little code,
you can have the
DBGrid control visually
show the grouping
defined in the
ClientDataSet. Image
from the original book.

Defining Aggregates

Another extremely powerful feature of the ClientDataSet component is the support
for aggregates. An aggregate is a calculated value based on multiple records, such
as the sum or the average value of a field for the entire table or a group of records
(defined with the grouping logic I’ve just discussed). Aggregates are maintained;
that is, they are recalculated immediately if one of the records changes. For exam-
ple, the total of an invoice can be maintained automatically while the user types in
the invoice items.

note Aggregates are maintained incrementally, not by recalculating all the values every time one value
changes. Aggregate updates take advantage of the deltas tracked by the ClientDataSet. For exam-
ple, to update a Sum when a field is changed, the ClientDataSet subtracts from the aggregate the
old value and adds the new value. Only two calculations are needed, even if there are thousands of
rows in that aggregate group. For this reason, aggregate updates are instantaneous.

There are two ways to define aggregates. You can use the Aggregates property of the
ClientDataSet, which is a collection, or you can define aggregate fields using the
Fields editor. In both cases you define the aggregate expression, give it a name, and

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1039

connect it to an index and a grouping level (unless you want to apply it to the entire
table). Here is the Aggregates collection of the CdsCalcs example:

object ClientDataSet1: TClientDataSet
 Aggregates = <
 item
 Active = True
 AggregateName = ‘Count’
 Expression = ‘COUNT (NAME)’
 GroupingLevel = 1
 IndexName = ‘ClientDataSet1Index1’
 Visible = False
 end
 item
 Active = True
 AggregateName = ‘TotalPopulation’
 Expression = ‘SUM (POPULATION)’
 Visible = False
 end>
 AggregatesActive = True

Notice in the last line above that you have to activate the support for aggregates, in
addition to activating each specific aggregate you want to use. Disabling aggregates
is important, because having too many of them can slow down a program. The alter-
native approach, as I mentioned, is to use the Fields editor, select the New Field
command of its shortcut menu, and choose the Aggregate option (available, along
with the InternalCalc option, only in a ClientDataSet). This is the definition of an
aggregate field:

object ClientDataSet1: TClientDataSet
 object ClientDataSet1TotalArea: TAggregateField
 FieldName = ‘TotalArea’
 ReadOnly = True
 Visible = True
 Active = True
 DisplayFormat = ‘###,###,###’
 Expression = ‘SUM(AREA)’
 GroupingLevel = 1
 IndexName = ‘ClientDataSet1Index1’
 end

The aggregate fields are displayed in the Fields editor in a separate group, as you
can see in Figure 21.9. The advantage of using an aggregate field, compared to a
plain aggregate, is that you can define the display format and hook the field directly
to a data-aware control, such as a DBEdit in the CdsCalcs example. Because the
aggregate is connected to a group, as soon as you select a record of a different group,
the output will be automatically updated. Also, if you change the data, the total will
immediately show the new value.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1040 - Chapter 21: Multitier Database Applications

Figure 21.9: The
bottom portion of the
Fields editor of a
ClientDataSet displays
aggregate fields. Image
from the original book.

To use plain aggregates, instead, you have to write a little code, as in the following
example (notice that the Value of the aggregate is a variant):

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption :=
 ‘Area: ‘ + ClientDataSet1TotalArea.DisplayText +
 #13’Population : ‘ + FormatFloat (‘###,###,###’,
 ClientDataSet1.Aggregates [1].Value) + #13’Number : ‘ +
 IntToStr (ClientDataSet1.Aggregates [0].Value);
end;

High-End Distributed Services (MTS
and CORBA)463

Besides using plain socket, DCOM, or HTTP-based connections, Delphi and MIDAS
support two higher-level and more powerful transport and object-broker architec-
tures. MTS is the Microsoft solution to distributed computing, while CORBA is a
more open standard embraced by most Unix vendors and often used in Java envi-
ronments. Both topics would require separate books for complete coverage. My aim
here is only to highlight a few of their features and discuss Delphi’s support for
them.

463 Considering these features are no longer actual, this section is more or less useless today. I
won’t add a footnte fo reach obsolete feature, because everything is obsolete!

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1041

Microsoft Transaction Server

In addition to plain DCOM servers, Delphi also allows you to create Microsoft
Transaction Server components. You can actually build plain MTS components or
an MTS remote data module. In both cases you’ll start the development by using
one of the available Delphi wizards. MTS is an operating-system service you can
install on Windows NT and 98. MTS is also one of the cornerstones of the Windows
2000 COM+ technology; MTS is actually going to be folded into COM+, and the
MTS name will eventually disappear.

MTS is a run-time environment that provides database transaction services, secu-
rity, resource pooling, and an overall improvement in robustness for DCOM
applications. The MTS run-time environment manages objects called MTS compo-
nents. These are COM objects stored in an in-process server (that is, a DLL). While
other COM objects run directly in the client application, MTS objects are handled by
the MTS run-time environment. The MTS libraries, in fact, are installed into the
MTS environment. MTS objects must support specific COM interfaces, starting with
IObjectControl, which is the base interface (like IUnknown for a COM object).

Before getting into too many technical and low-level details, let’s consider MTS
from a different perspective. What are the benefits of this approach? MTS provides
a few interesting features, including:

· Role-based security: The role assigned to a client determines if it has the right
to access the interface of a data module.

· Reduced database resources: You can reduce the number of database con-
nections, as the middle tier logs on to the server and uses the same connections
for multiple clients (although you cannot have more clients connected at once
than you have licenses for the server). Moreover, you can set up the component
so that the MTS server will instantiate the data modules only for the minimum
necessary time.

· Database transactions: MTS transaction support includes multiple database
support, although few SQL server databases support MTS.

Creating an MTS Data Module

If you select the MTS Data Module icon in the Multitier page of the File New dia-
log box (in Delphi Enterprise), you can easily set up an MTS-compliant remote
server. The MTS Data Module Wizard (see Figure 21.10) allows you to enter a name

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1042 - Chapter 21: Multitier Database Applications

for the class of the MTS component, the threading model (because MTS serializes
all the requests, Single or Apartment will generally do), and a transaction model:

· Requires a transaction indicates that each call from the client to the server is
considered to be an MTS transaction (unless the caller supplies an existing trans-
action context).

· Requires a new transaction indicates that each call is considered a new MTS
transaction.

· Supports transactions indicates that the client must explicitly provide a transac-
tion context.

· Does not support transaction (the default choice) indicates that the remote data
module won’t be involved in any MTS transaction.

Figure 21.10:
Delphi’s MTS Data
Module Wizard. Image
from the original book.
This tool no longer
exists.

Once you’ve created an MTS data module, you can easily build it as we’ve done in
earlier examples for remote data modules, adding a DataSet component and export-
ing its provider property. You can also add custom methods to the data module type
library. Within the MTS data module, you can use the GetObjectContext method,
which returns the IObjectContext interface of the MTS object.

The IObjectContext interface provides support for transactions. You can use
SetComplete to tell the MTS environment that the object has finished working and
can be deactivated, so that the transaction can be committed. Call EnableCommit to
indicate that the object hasn’t finished but the transaction should be committed;
DisableCommit to stop the commit operation even if the method is done, disabling
the object deactivation between method calls; SetAbort to say that the object has
finished and can be activated but the transaction cannot be committed; or
IsInTransaction to check whether the object is part of a transaction. Other meth-

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1043

ods of the IContextObject interface include CreateInstance, which creates another
MTS object in the same context and within the current transaction,
IsCallerInRole, which checks if the object’s caller is in a particular “security” role,
and IsSecurityEnabled (whose name is self-explanatory).

Once you’ve built an MTS server library, you can easily install it by using the Run
Install MTS Object option. You can add the new library to an existing MTS package
(not to be confused with a Delphi component package) or create a new one right
from the Delphi environment. After the MTS object has been installed, it will be
directly available to other applications and visible in the Transaction Server
Explorer application. This configuration program by Microsoft should be installed
on your computer along with the MTS support.

After you’ve built this server, you can connect to it in a client application using the
DCOMConnection component, as we’ve done in earlier examples. This brief intro-
duction should have given you an idea of how to use MTS for the development of
multitier applications. The advantages in terms of installation, if compared with the
direct use of DCOM, are really worth the extra effort of using MTS.

CORBA

After a fast overview of MTS, we are ready for a similar excursion into the world of
the Common Object Request Broker Architecture. The CORBA standard is defined
by the Object Management Group (OMG) and addresses the complexity of building
and deploying distributed applications based on objects.

One of the key elements of CORBA is that is it completely independent of platforms
and operating systems. CORBA opens up the non-Microsoft world to Delphi pro-
grammers: Although modules built with Delphi can run only on Windows, they can
connect with other CORBA objects running on different operating systems. For
example, CORBA provides a good integration with Java and you can leverage the
Borland/Inprise multitier architecture from both Delphi and JBuilder, Borland’s
Java development environment. You can actually use a MIDAS CORBA architecture
to build Delphi clients with the Java MIDAS server on Unix (or Linux) boxes or you
can build a Java front end for your Windows NT MIDAS servers built with Delphi.

The CORBA specification defines how client-side programs communicate with
server-side objects through an Object Request Broker (ORB). Inprise’s VisiBroker
ORB is the request broker you can find in each copy of Delphi Enterprise. Of course,
you’ll need a deployment license to ship applications built with this ORB, as with
any other.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1044 - Chapter 21: Multitier Database Applications

A Simple CORBA Server

You can build a simple CORBA server, based on a data module. When you select the
CORBA Data Module option in the Multitier page of the Object Repository, Delphi
displays the simple CORBA Data Module Wizard illustrated in Figure 21.11.

Figure 21.11: The
CORBA Data Module
Wizard lets you build a
remote data module
with CORBA support.
Image from the
original book. This
feature no longer
exists.

In this wizard you can specify the instancing and threading models. These models
are different from the one used by COM:

· Per-client instancing indicates that a new instance of the data module is created
for each connection.

· Shared instancing indicates that a single instance of the data module handles all
the requests of multiple clients. This second approach is possible only for a state-
less protocol, which is a no-brainer in MIDAS 3.

In a single-threaded server each data module receives only one client request at a
time, so that the data of the instance is safe from possible conflicts. In a multi-
threaded server, by contrast, the client can send multiple simultaneous requests,
and this imposes some extra care on the developer.

Once the data module has been created, you can continue the development as for
any other remote data module. The class TCorbaDataModule inherits directly from
TRemoteDataModule. The data module also has a corresponding entry in the type
library, as you can see by opening the corresponding editor or looking at the trans-
lated Pascal code. In the translated Corba1_TLB file, you can see the IFirstCorba
interface and the IFirstCorbaDisp dispinterface, as for COM applications.

In fact, in Delphi 5, the CORBA support is still limited. The main limiting factor to
Delphi’s CORBA support is that it allows only method calls through CORBA’s late-
bound dispatch, called DII. This is analogous to calling COM dispinterface methods
via variants (variant method calls). In fact, Delphi’s CORBA method calls can be
made through variants, but are dispatched through CORBA services, not COM. Like

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1045

dispinterface calls in COM, DII in CORBA is not the fastest way to invoke CORBA
methods.

note That’s why there is interest in an IDL-to-Pascal converter—to generate stubs and skeletons that
communicate with the CORBA ORB directly without the overhead of late binding. Borland has
recently announced that it’s working on native CORBA support, including a CORBA IDL-to-Pas-
cal converter. This support is expected some time after Delphi 5 ships, and it might actually be
available by the time you read this.

The role of the CORBA stub is to mimic the remote object in the local address space,
by taking the calls, writing the arguments into a buffer, transmitting them to the
remote server, and returning the result. This way, the program can work as if the
remote object was local. The role of the skeleton is the opposite: it runs in the server
address space and receives the requests from the client, unpacking the buffer
received from the stub, and making the server believe that the client is local.

The type library editor also allows you to convert the COM-based IDL code into the
CORBA version, using the Export button at the far end of the toolbar. The CORBA
IDL can be used by other programming languages to generate the proper interfaces
or to register the IDL in the Interface Repository Server, managed with the IREP and
IDL2IR command line utilities. These steps are not needed to build and run a simple
CORBA example.

Getting back to the example, once you’ve compiled it, you can run it. Contrary to
COM, you don’t need to statically register the server, but you have to run it to make
it available to the ORB. Because the program tries to register itself as it starts, you
need to have the ORB installed on the system and a Smart Agent running on your
network before you can run it. The CORBA Smart Agent is a dynamic, distributed
directory service that locates an available server, which in turn provides the imple-
mentation of the CORBA object.

To test the program on a stand-alone system, simply run the Visibroker Smart
Agent from the Visibroker menu (available under the Borland Delphi 5 entry of the
Windows Start Program menu). At this point you can simply run the server (but
not from the Delphi debugger, because you’ll need to create a separate client appli-
cation).

A Simple CORBA Client

While the server program is running, a client program can connect to it. If you want
to test the client with live data at design time, you need to keep the server running
while you are building the client program.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1046 - Chapter 21: Multitier Database Applications

The development of this client program can proceed simply by adding a CorbaCon-
nection component to a form. To indicate the proper server, in this case, there is no
combo box to choose from. You should simply enter in the RepositoryID property
the program name and data module name separated by a slash (not a period, as for
a COM server). For example, you can enter the string ‘Corba1/FirstCorba’. To test if
this value is correct and everything is working properly, simply toggle the Connected
property of the component.

In this client program you can add a ClientDataSet component, select the
CorbaConnection1 component for the RemoteServer property, and select one of the
available provider interfaces in the ProviderName property (this time using the
combo box). Finally, add a DataSource component and some data-aware controls.

As you compile and run the program, it will simply hook with the CORBA data mod-
ule to fetch the data, something you can already do at design time. Again, the server
must be manually started (which was not the case in the COM-based examples).

ActiveForm Thin Clients464

In this chapter we’ve built thin-client programs, which did not directly access a
database but got the data from an application server running on the so-called mid-
dle tier. Some networks might want to move the front end of these applications to
an intranet or the Internet, deploying them through a browser. That’s what Active-
Forms are for, and it’s what we’ll do to demonstrate a client program that requires
no installation or configuration whatsoever.

If we build an ActiveForm that connects to a MIDAS application server, the server
will deliver live SQL data to us as necessary, we’ll be able to send back updates, and
we won’t need to install the BDE on the client computer.

The ActiveForm of this example, called AfRemote, connects to one the application
servers we built earlier in this chapter (specifically, AppServ2). If you haven’t
already done so, you’ll need to build and run this server application to register it and
make it available to this client ActiveX control. The registration should take place on
the server only.

464 Taking in consideration what I wrote about the ActiveForm technology, a terribly insecure web
technology working only in Internet Explorer, this is another section with zero value today,
even if the support was not removed from Delphi.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1047

The connection, this time, will be based on a SocketConnection component, so that
we can use TCP/IP; this means that every Windows 95 computer connected to the
Internet will be capable of running it. Here are the key properties of the components
of the client program, which is actually an ActiveForm:

object ActiveRemote: TActiveRemote
 Caption = ‘ActiveRemote’
 object DBGrid1: TDBGrid
 Align = alClient
 DataSource = DataSource1
 end
 object Panel1: TPanel
 Align = alTop
 object CheckActive: TCheckBox
 Caption = ‘Active’
 OnClick = CheckActiveClick
 end
 object BtnApply: TButton
 Caption = ‘Apply Updates’
 OnClick = BtnApplyClick
 end
 end
 object ClientDataSet1: TClientDataSet
 ProviderName = ‘DataSetProvider1’
 RemoteServer = SocketConnection1
 OnReconcileError = ClientDataSet1ReconcileError
 end
 object DataSource1: TDataSource
 DataSet = ClientDataSet1
 end
 object SocketConnection1: TSocketConnection
 ServerGUID = ‘{C5DDE903-2214-11D1-98D0-444553540000}’
 ServerName = ‘AppServTwo.RdmCount’
 Address = ‘127.0.0.1’
 end
end

In this test case, the remote computer is the current one, so I’ve used the address
127.0.0.1. You should update it with whatever IP address your server has. To make
the example work, the server will need to run the Borland Socket Server. The code
of the AfRemote example’s three methods is very straightforward:

procedure TActiveRemote.CheckActiveClick(Sender: TObject);
begin
 if CheckActive.Checked and not SocketConnection1.Connected then
 SocketConnection1.Connected := True;
 ClientDataSet1.Active := CheckActive.Checked;
end;

procedure TActiveRemote.BtnApplyClick(Sender: TObject);
begin

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1048 - Chapter 21: Multitier Database Applications

 if ClientDataSet1.Active then
 ClientDataSet1.ApplyUpdates (-1);
end;

procedure TActiveRemote.ClientDataSet1ReconcileError(
 DataSet: TClientDataSet; E: EReconcileError;
 UpdateKind: TUpdateKind; var Action: TReconcileAction);
begin
 Action := HandleReconcileError (DataSet, UpdateKind, E);
end;

As we did before, on an update error we display the standard Reconcile dialog box.
The output of the AfRemote program in Microsoft’s Internet Explorer appears in
Figure 21.12.

Figure 21.12: The
ActiveForm of the
AfRemote example
uses the live data
provided from an
application server,
following Delphi’s
three-tier architecture.
Image from the
original book.

Although you can certainly use an ActiveForm as a MIDAS client, this approach has
a few problems. First, users must have a Win32 computer and Internet Explorer
(not another browser) and probably a recent version of it. Second, downloading
ActiveX components exposes the user to considerable risks, exactly like running a
program downloaded from the Web on a computer. I’m not particularly referring to
the viruses the ActiveX control could implant on your computer, but to the fact that

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1049

the ActiveX control can grab any file from your machine and send it to a server—
without your knowledge. In practice, many Web surfers disable the ActiveX control
support, even in browsers that allow it. Finally, downloading an ActiveX control can
require a lot of time over a slow Internet connection.

As I mentioned earlier, this approach is reasonable on an intranet but not for the
open world of the Internet, particularly if you want to get as many visitors as possi-
ble on your Web site. The alternative approach Delphi 5 introduces is the Web
MIDAS client, made possible by a technology called Internet Express.

Internet Express465

Now that we know how to build MIDAS servers and client programs, we might want
to open up this architecture and generate HTML pages on the Web to let any user
interact with our middle-tier server through a Web server. The idea behind Internet
Express is that you write a Web server extension (CGI or ISAPI, as discussed in the
previous chapter), which in turn produces Web pages hooked to your MIDAS
server. Your custom application acts as a MIDAS client and produces pages for a
browser client. Internet Express offers the services required to build this custom
application easily.

I know this sounds confusing, but Internet Express is a four-tier architecture: SQL
server, application server (the MIDAS server), the Web server with a custom appli-
cation, and finally the Web browser. Of course, you can place the first three levels on
a single computer, but there is still a logical division into four levels. Also, you can
shortcut the MIDAS level, hooking the Web server to a local file.

Internet Express uses multiple technologies to accomplish this:

· The MIDAS data packets (based on OleVariants in the Delphi implementation)
are converted to XML format, to let the program embed the data in the HTML
page. Actually, the Delta data packet is also represented in XML. These opera-
tions are performed by the new XMLBroker component, a dataset similar to the
ClientDataSet, which can handle XML and provide data to the new JavaScript
components.

465 Like many other areas of this chapter, this technology is noi longer actual and this section has
very little value, outside of the historical perpective.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1050 - Chapter 21: Multitier Database Applications

· There is a new MidasPageProducer component, which allows you to generate
HTML forms from datasets, in a visual way similar to the development of a Del-
phi form. Instead of using VCL components, you use JavaScript ones.

· To make the editing operations on the client side powerful, the MidasPagePro-
ducer uses special JavaScript components and code. Delphi 5 embeds a rather
large JavaScript library, which the browser will have to download. This might
seem a nuisance, but it is the only way the browser interface (which is based on
dynamic HTML) can be rich enough to support field constraints and other busi-
ness rules with the browser. This is really impossible with plain HTML.

Of course, to deploy this architecture you don’t need anything special on the client
side, as any browser up to the HTML 4 standard (which cuts a lot of them out of the
picture) can be used on any operating system! The Web server, instead, must be a
Win32 server and you must deploy MIDAS on it (after paying the proper license fee,
even if you hook up the Web server application to a local file).

 Building a First Example

My first Internet Express example, called IeFirst, is a very simple one, including
only the minimal elements required to move a simple MIDAS client (in this case the
ThinCli1 example) to a browser-based interface. I’ve created a new CGI application
and added a DCOMConnection component to it, hooked to the AppServ1 server. The
next step is to add an XMLBroker component and connect it with the remote server
and a provider:

object XMLBroker1: TXMLBroker
 ProviderName = ‘DataSetProvider1’
 RemoteServer = DCOMConnection1
 WebDispatch.MethodType = mtAny
 WebDispatch.PathInfo = ‘XMLBroker1’
 ReconcileProducer = PageProducer1
 OnGetResponse = XMLBroker1GetResponse
end

The ReconcileProducer is required to show a proper error message in case of an
update conflict. As we’ll see later, one of the Delphi demos includes some custom
code, but in this simple example I’ve simply connected a traditional PageProducer
with a generic HTML error message.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1051

After setting up the XML broker, you can add a MidasPageProducer466 to the Web
data module. This component has a standard HTML skeleton you can customize
without touching the special entries:

<HTML>
<HEAD>
</HEAD>
<BODY>
<#INCLUDES><#STYLES><#WARNINGS><#FORMS><#SCRIPT>
</BODY>
</HTML>

The special tags are automatically expanded using the JavaScript files of the direc-
tory specified by the IncludePathURL property. You must set this property to refer to
the Web server directory where these files reside. You can find them in the
Source/Webmidas sub-directory of the Delphi5 folder.

note In the MidasPageProducer component you can refer to an external style sheet file or an embedded
set of styles. The support for style sheets in this component and in the entire Internet Express
architecture is quite complete.

To customize the resulting HTML of the MidasPageProducer you can use its editor,
which is a rather complex tool. Just double-click on the component, and Delphi
opens up a window like the one you can see in Figure 21.13. In this editor you can
create complex structures, starting with a query form, a data form, or a generic lay-
out group. In the data form of my simple example, I’ve added a DataGrid and a
DataNavigator component, without customizing them any further (an operation you
do by adding child buttons, columns, and other objects, which fully replace the
default ones).

466 A DataSetPageProducer component and a DataSnapTableProducer component were later
added to DataSnap, with a similar role. So it’s still possible to use a similar feature today, but
not recommended at all.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1052 - Chapter 21: Multitier Database Applications

Figure 21.13: The
MidasPageProducer
editor allows you to
build complex HTML
forms visually. Image
from the original book.

The DFM code for these components in my example is the following:

 object DataForm1: TDataForm
 object DataGrid1: TDataGrid
 XMLBroker = XMLBroker1
 DisplayRows = 5
 TableAttributes.CellSpacing = 0
 end
 object DataNavigator1: TDataNavigator
 XMLComponent = DataGrid1
 end
 end

But the value of these components is in the HTML they generate, which you can
preview by selecting the HTML tab of the MidasPageProducer editor. The initial
part of the table definition in this HTML script looks like this (only one data cell is
visible here):

<FORM NAME=DataForm1>
<TABLE><TR><TD COLSPAN=2>
<TABLE CELLSPACING=0 BORDER=1><TR>
<TH>EmpNo</TH>
<TH>LastName</TH>
...
</TR><TR><TD><DIV><INPUT TYPE=TEXT
 NAME=“DataGrid1_EmpNo”

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1053

 SIZE=10
 onFocus=‘if(xml_ready)DataGrid1_Disp.xfocus(this);’
 onkeydown=‘if(xml_ready)DataGrid1_Disp.keys(this);’>
</DIV></TD>
...

When the HTML generator is set up, you can go back to the Web data module, add
an action to it, and connect the actions with the MidasPageProducer via the
Producer property. This should be enough to make the program work through a
browser, as you can see in Figure 21.14.

If you look at the HTML file received by the browser, you’ll find the table mentioned
definition above, some JavaScript code here and there, and the database data in
XML format (preceded by the metadata):

<XML ID=XMLBroker1_Doc>
 <DATAPACKET Version=“2.0”>
 <METADATA>
 <FIELDS>
 <FIELD attrname=“EmpNo” fieldtype=“i4”/>
 <FIELD attrname=“LastName” fieldtype=“string”
 WIDTH=“20”/>
 ...
 </FIELDS>
 <PARAMS DEFAULT_ORDER=“1”
 PRIMARY_KEY=“1” LCID=“1033”/>
 </METADATA>
 <ROWDATA>
 <ROW EmpNo=“2” LastName=“Nelson” FirstName=“Robert”
 PhoneExt=“250” HireDate=“19881228” Salary=“40000”/>
 <ROW EmpNo=“4” LastName=“Young” FirstName=“Bruce”
 PhoneExt=“233” HireDate=“19881228” Salary=“55500”/>

Figure 21.14: The
IeFirst example in a
Web browser. Notice
the M code in the last
column, indicating that
the record has been
modified. Image from
the original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1054 - Chapter 21: Multitier Database Applications

This data is assembled by the XML broker and passed to the producer component to
be embedded in the HTML file. Notice that the number of records sent to the client
depends on the XMLBroker, not on the number of lines in the grid. Once the XML
data is sent to the browser, in fact, you can use the buttons of the navigator compo-
nent to move around in the data without requiring further access to the server to
fetch more.

At the same time, the JavaScript classes in the system allow the user to type in new
data, following the rules imposed by the JavaScript code hooked to dynamic HTML
events. Notice that the grid, by default, has an extra asterisk column, indicating
which records have been modified. The update data is collected in an XML data
packet in the browser, and sent back to the server when the user clicks the Apply
Updates button. At this point the browser activates the action specified by the
WebDispath.PathInfo property of the XMLBroker. There is no need to export this
action from the Web data module, as this operation is automatic (although you can
disable it by setting WebDispath.Enable to False).

The XMLBroker applies the changes to the server, returning the content of the
provider connected to the ReconcileProvider property (or raising an exception if
this is not defined). When everything works fine, the XMLBroker redirects the con-
trol to the main page that contains the data. However, I’ve experienced some
problems with this technique when using Personal Web Server for Windows 98, and
for this reason the IeFirst example handles the OnGetReponse events with this code:

procedure TWebModule1.XMLBroker1GetResponse(Sender: TObject;
 Request: TWebRequest; Response: TWebResponse;
 var Handled: Boolean);
begin
 Response.Content := ‘<h1>Updated</h1><p>‘ +
 MidasPageProducer1.Content;
 Handled := True;
end;

Master/Detail on the Web

My second and last Internet Express example goes a little beyond the basics by pro-
viding a master/detail data packet for Web browsing. The program uses the
AppPlus server, which defines the master/detail relationship. The dataset field
embedded in the table will be transformed into a nested XML structure, delivering
the same information.

The program uses a combination of XMLBroker, MidasPageProducer, and DCOM-
Connection, as in the last example. This time, however, I’ve customized the Web

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1055

components, creating fields and selecting the information to display. You can see
part of this structure in the Tree view of the Web data module in Figure 21.15, along
with the intricate connections between some of the components in the Data Dia-
gram view. Here is a rather long listing of this structure: I’ve removed some extra
information but think it is worth looking at it:

object XMLBroker1: TXMLBroker
 ProviderName = ‘ProviderCustomer’
 RemoteServer = DCOMConnection1
 WebDispatch.PathInfo = ‘XMLBroker1’
end
object MidasPageProducer1: TMidasPageProducer
 IncludePathURL =
 ‘C:/Program Files/Borland/Delphi5/Source/Webmidas/’
 object DataForm1: TDataForm
 object DataNavigator1: TDataNavigator
 XMLComponent = FieldGroup1
 object FirstButton1: TFirstButton
 XMLComponent = FieldGroup1
 Caption = ‘|<‘
 end
 object PriorButton1: TPriorButton
 XMLComponent = FieldGroup1
 Caption = ‘<‘
 end
 object NextButton1: TNextButton
 XMLComponent = FieldGroup1
 Caption = ‘>‘
 end
 ...
 object ApplyUpdatesButton1: TApplyUpdatesButton
 Caption = ‘Apply Updates’
 XMLBroker = XMLBroker1
 XMLUseParent = True
 end
 end
 object FieldGroup1: TFieldGroup
 XMLBroker = XMLBroker1
 object CustNo: TFieldText
 DisplayWidth = 10
 Caption = ‘CustNo’
 FieldName = ‘CustNo’
 end
 object Company: TFieldText
 DisplayWidth = 30
 Caption = ‘Company’
 FieldName = ‘Company’
 end
 ...
 end
 object DataNavigator2: TDataNavigator
 XMLComponent = DataGrid1

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1056 - Chapter 21: Multitier Database Applications

 object FirstButton2: TFirstButton
 XMLComponent = DataGrid1
 Caption = ‘|<‘
 end
 object PriorPageButton1: TPriorPageButton
 XMLComponent = DataGrid1
 Caption = ‘<<‘
 end
 ...
 end
 object DataGrid1: TDataGrid
 XMLBroker = XMLBroker1
 XMLDataSetField = ‘TableOrders’
 DisplayRows = 8
 object OrderNo: TTextColumn
 DisplayWidth = 10
 Caption = ‘OrderNo’
 FieldName = ‘OrderNo’
 end
 object SaleDate: TTextColumn
 DisplayWidth = 18
 Caption = ‘SaleDate’
 FieldName = ‘SaleDate’
 end
 ...
 end
 end
end
object DCOMConnection1: TDCOMConnection
 Connected = True
 ServerName = ‘AppSPlus.AppServerPlus’
end

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1057

Figure 21.15: The
structure of the
MidasPageProducer of
the IeMd example.
Image from the
original book. As
mentioned the Data
Diagram doesn't exist
any more.

Once the structure is set up, you can deploy the CGI executable on the Web server
and see the effect illustrated in Figure 21.16 directly in a browser. Notice that the
HTML you receive is rather large, as it includes the entire master/detail structure.
Once you’ve received it, however, you can browse the master table and the detail
grid without having to ask the server for more data.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1058 - Chapter 21: Multitier Database Applications

Figure 21.16: A
master/detail
relationship displayed
in a browser by the
IeMd example. Image
from the original book.

Obviously, much more could be said about the capabilities of the Internet Express
MIDAS components of Delphi 5 and the technologies behind it, as I haven’t really
introduced you to XML and JavaScript. My point was simply to give you an idea of
what can be done and how fast it can be achieved using this brand-new Delphi 5
architecture, which is definitely promising in this fast-evolving area of Web devel-
opment.

What’s Next?

Borland/Inprise introduced support for a true three-tier architecture for the first
time in Delphi 3 and has extended it in Delphi 4 and Delphi 5 to support TCP/IP
sockets, MTS, CORBA, HTTP support, and even Web browser MIDAS clients. The
company is continually extending this architecture to play a fundamental role in the
future of client/server computing. It is also focused on the CORBA support provided

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 21: Multitier Database Applications - 1059

by the Visigenic ORB, and we’ll hopefully have native IDL-to-Pascal mapping sup-
port very soon. At the same time, the agreement Inprise signed with Microsoft in
the spring of 1999 provides a solid foundation for one of the best development tools
for COM, DCOM, and MTS (and COM+ in the near future).

Of course, I don’t want to delve too much into these nontechnical issues, but I
thought it was worth mentioning them at the end of this book, as I try to give a few
hints providing a sort of “what’s next” for Delphi programmers. Delphi is indeed a
strong player both in the Windows market and in the client/server and enterprise
application markets, and it’s probably the best tool if you need power and control in
both directions. Now, with Delphi 5, it also becomes a complete platform for Web
development.

Just as Borland wants to provide the best tools to developers, I hope this book has
helped you master Delphi, the most successful tool Borland has brought to the mar-
ket in the last few years. If you want to delve further into the secrets of the VCL
library Delphi is based upon, try Delphi Developer’s Handbook (also from Sybex),
which I’ve co-authored with Tim Gooch and John Lam. Also check the reference,
foundations, and advanced material I’ve collected on my Web site
(www.marcocantu.com). This material could not be included in the book, simply
because of space constraints.

There is also a bonus chapter, discussing graphics in Delphi, which is Chapter 22467.

467 This was originally a bonus chapter available as an additional download, but I’ve now merged
back in the ebook of this “annotated edition”.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1060 - Chapter 22: Graphics in Delphi

Chapter 22:

Graphics In Delphi

In Chapter 6 of Mastering Delphi 5, I introduced the Canvas object, Windows paint-
ing process, and the OnPaint event. In this bonus chapter468, I’m going to start from
this point and continue covering graphics, following a number of different direc-
tions. (For all the code discussed here and in Mastering Delphi 5, check the Sybex
Web site.469)

I’ll start with the development of a complex program to demonstrate how the Win-
dows painting model works. Then I’ll focus on some graphical components, such as
graphical buttons and grids. During this part of the chapter we’ll also add some ani-
mation to the controls.

468 This chapter wasn’t in the printed book, but available as a separate download. I merged it in
the text, but it’s out of the logical order (it should have been Chapter 7 or 8). Moving it and
renumbering everything would have been a lot of change, so I kept it at the end.

469 The code is in the GitHub repository, at https://github.com/MarcoDelphiBooks/Master-
ingDelphi5/tree/master/WebBonus/22

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

https://github.com/MarcoDelphiBooks/MasteringDelphi5/tree/master/WebBonus/22
https://github.com/MarcoDelphiBooks/MasteringDelphi5/tree/master/WebBonus/22

Chapter 22: Graphics in Delphi - 1061

Finally, this chapter will discuss the use of bitmaps, covering some advanced fea-
tures for fast graphics rendering, metafiles, the TeeChart component (including its
use on the Web), and few more topics related to the overall issue of graphics.

Drawing on a Form

In Chapter 6, we saw that it is possible to paint directly on the surface of a form in
response to a mouse event. To see this behavior, simply create a new form with the
following OnMouseDown event handler:

procedure TForm1.FormMouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 Canvas.Ellipse (X-10, Y-10, X+10, Y+10);
end;

The program seems to work fairly well, but it doesn’t. Every click produces a new
circle, but if you minimize the form, they’ll all go away. Even if you cover a portion
of your form with another window, the shapes behind that other form will disap-
pear, and you might end up with partially painted circles.

As I detailed in Chapter 6, this direct drawing is not automatically supported by
Windows. The standard approach is to store the painting request in the
OnMouseDown event and then reproduce the output in the OnPaint event. This event,
in fact, is called by the system every time the form requires repainting. However,
you’ll need to force its activation by calling the Invalidate or Repaint methods in
the mouse-event handler. In other words, Windows knows when the form has to be
repainted because of a system operation (such as placing another window in front of
your form), but your program must notify the system when painting is required
because of user input or other program operations.

The Drawing Tools

All the output operations in Windows take place using objects of the TCanvas class.
The output operations usually don’t specify colors and similar elements but use the
current drawing tools of the canvas. Here is a list of these drawing tools (or GDI

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1062 - Chapter 22: Graphics in Delphi

objects, from the Graphics Device Interface, which is one of the Windows system
libraries470):

· The Brush property determines the color of the enclosed surfaces. The brush is
used to fill closed shapes, such as circles or rectangles. The properties of a brush
are Color, Style, and optionally, Bitmap.

· The Pen property determines the color and size of the lines and of the borders of
the shapes. The properties of a pen are Color, Width, and Style, which includes
several dotted and dashed lines (available only if the Width is 1 pixel). Another
relevant subproperty of the Pen is the Mode property, which indicates how the
color of the pen modifies the color of the drawing surface. The default is simply
to use the pen color (with the pmCopy style), but it is also possible to merge the
two colors in many different ways and to reverse the current color of the drawing
surface.

· The Font property determines the font used to write text in the form, using the
TextOut method of the canvas. A font has a Name, Size, Style, Color, and so on.

note Experienced Windows programmers should note that a Delphi canvas technically represents a
Windows device context. The methods of the TCanvas class are similar to the GDI functions of
the Windows API. You can call extra GDI methods by using the Handle property of the canvas,
which is a handle of an HDC type.

Colors

Brushes, pens, and fonts (as well as forms and most other components) have a
Color property. However, to change the color of an element properly, using non-
standard colors (such as the color constants in Delphi), you should know how
Windows treats the color. In theory, Windows uses 24-bit RGB colors. This means
you can use 256 different values for each of the three basic colors (red, green, and
blue), obtaining 16 million different shades.

However, you or your users might have a video adapter that cannot display such a
variety of colors, although this is increasingly less frequent. In this case, Windows
either uses a technique called dithering, which basically consists of using a number
of pixels of the available colors to simulate the requested one; or it approximates the

470 Notice that while the foundations of painting (via GDI) are still at the core of Delphi, the VCL
also offers some Direct2D painting support (with a specific, alternative canvas) and recently
also Skia-based painting.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1063

color, using the nearest available match. For the color of a brush (and the back-
ground color of a form, which is actually based on a brush), Windows uses the
dithering technique; for the color of a pen or font, it uses the nearest available
color471.

In terms of pens, you can read (but not change) the current pen position with the
PenPos property of the canvas. The pen position determines the starting point of the
next line the program will draw, using the LineTo method. To change it, you can use
the canvas’s MoveTo method. Other properties of the canvas affect lines and colors,
too. Interesting examples are CopyMode and ScaleMode. Another property you can
manipulate directly to change the output is the Pixels array, which you can use to
access (read) or change (write) the color of any individual point on the surface of the
form. As we’ll see in the BmpDraw example, per pixel operations are very slow in
GDI, compared to line access available through the ScanLines property.

Finally, keep in mind that Delphi’s TColor values do not always match plain RGB
values of the native Windows representation (COLORREF), because of Delphi color
constants. You can always convert a Delphi color to the RGB value using the
ColorToRGB function. You can find the details of Delphi’s representation in the
TColor type Help entry.

Drawing Shapes

Now I want to extend the Mouse1 example built at the end of Chapter 6 and turn it
into the Shapes application. In this new program I want to use the store-and-draw
approach with multiple shapes, handle color and pen attributes, and provide a foun-
dation for further extensions.

Because you have to remember the position and the attributes of each shape, you
can create an object for each shape you have to store, and you can keep the objects
in a list. (To be more precise, the list will store references to the objects, which are
allocated in separate memory areas.) I’ve defined a base class for the shapes and two
inherited classes that contain the painting code for the two types of shapes I want to
handle, rectangles and ellipses.

The base class has a few properties, which simply read the fields and write the cor-
responding values with simple methods. Notice that the coordinates can be read
using the Rect property but must be modified using the four positional properties.

471 Modern computers offer graphic cards and monitors capable of displaying the actual colors.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1064 - Chapter 22: Graphics in Delphi

The reason is that if you add a write portion to the Rect property, you can access
the rectangle as a whole but not its specific sub-properties. Here are the declara-
tions of the three classes:

type
 TBaseShape = class
 private
 FBrushColor: TColor;
 FPenColor: TColor;
 FPenSize: Integer;
 procedure SetBrushColor(const Value: TColor);
 procedure SetPenColor(const Value: TColor);
 procedure SetPenSize(const Value: Integer);
 procedure SetBottom(const Value: Integer);
 procedure SetLeft(const Value: Integer);
 procedure SetRight(const Value: Integer);
 procedure SetTop(const Value: Integer);
 protected
 FRect: TRect;
 public
 procedure Paint (Canvas: TCanvas); virtual;
 published
 property PenSize: Integer read FPenSize write SetPenSize;
 property PenColor: TColor read FPenColor write SetPenColor;
 property BrushColor: TColor read FBrushColor write SetBrushColor;
 property Left: Integer write SetLeft;
 property Right: Integer write SetRight;
 property Top: Integer write SetTop;
 property Bottom: Integer write SetBottom;
 property Rect: TRect read FRect;
 end;

type
 TEllShape = class (TBaseShape)
 procedure Paint (Canvas: TCanvas); override;
 end;

 TRectShape = class (TBaseShape)
 procedure Paint (Canvas: TCanvas); override;
 end;

Most of the code in the methods is very simple. The only relevant code is in the
three Paint procedures:

procedure TBaseShape.Paint (Canvas: TCanvas);
begin
 // set the attributes
 Canvas.Pen.Color := fPenColor;
 Canvas.Pen.Width := fPenSize;
 Canvas.Brush.Color := fBrushColor;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1065

procedure TEllShape.Paint(Canvas: TCanvas);
begin
 inherited Paint (Canvas);
 Canvas.Ellipse (fRect.Left, fRect.Top,
 fRect.Right, fRect.Bottom)
end;

procedure TRectShape.Paint(Canvas: TCanvas);
begin
 inherited Paint (Canvas);
 Canvas.Rectangle (fRect.Left, fRect.Top,
 fRect.Right, fRect.Bottom)
end;

All of this code is stored in the secondary ShapesH (Shapes Hierarchy) unit. To
store a list of shapes, the form has a TList object data member, named ShapesList,
which is initialized in the OnCreate event handler and destroyed at the end; the
destructor also frees all the objects in the list (in reverse order, to avoid refreshing
the internal list data too often):

procedure TShapesForm.FormCreate(Sender: TObject);
begin
 ShapesList := TList.Create;
end;

procedure TShapesForm.FormDestroy(Sender: TObject);
var
 I: Integer;
begin
 // delete each object
 for I := ShapesList.Count - 1 downto 0 do
 TBaseShape (ShapesList [I]).Free;
 ShapesList.Free;
end;

The program adds a new object to the list each time the user starts the dragging
operation. Since the object is not completely defined, the form keeps a reference to
it in the CurrShape field. Notice that the type of object created depends on the status
of the mouse keys:

procedure TShapesForm.FormMouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 if Button = mbLeft then
 begin
 // activate dragging
 fDragging := True;
 SetCapture (Handle);

 // create the proper object

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1066 - Chapter 22: Graphics in Delphi

 if ssShift in Shift then
 CurrShape := TEllShape.Create
 else
 CurrShape := TRectShape.Create;

 // set the style and colors
 CurrShape.PenSize := Canvas.Pen.Width;
 CurrShape.PenColor := Canvas.Pen.Color;
 CurrShape.BrushColor := Canvas.Brush.Color;

 // set the initial position
 CurrShape.Left := X;
 CurrShape.Top := Y;
 CurrShape.Right := X;
 CurrShape.Bottom := Y;
 Canvas.DrawFocusRect (CurrShape.Rect);

 // add to the list
 ShapesList.Add (CurrShape);
 end;
end;

During the dragging operation we draw the line corresponding to the shape, as I did
in the Mouse1 example:

procedure TShapesForm.FormMouseMove(Sender: TObject; Shift:
TShiftState;
 X, Y: Integer);
var
 ARect: TRect;
begin
 // copy the mouse coordinates to the title
 Caption := Format (‘Shapes (x=%d, y=%d)’, [X, Y]);

 // dragging code
 if fDragging then
 begin
 // remove and redraw the dragging rectangle
 ARect := NormalizeRect (CurrShape.Rect);
 Canvas.DrawFocusRect (ARect);
 CurrShape.Right := X;
 CurrShape.Bottom := Y;
 ARect := NormalizeRect (CurrShape.Rect);
 Canvas.DrawFocusRect (ARect);
 end;
end;

This time, however, I’ve also added a fix to the program. In the Mouse1 example, if
you move the mouse toward the upper-left corner of the form while dragging, the
DrawFocusRect call produces no effect. The reason is that the rectangle passed as a
parameter to DrawFocusRect must have a Top value that is less than the Bottom

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1067

value, and the same is true for the Left and Right values. In other words, a rectan-
gle that extends itself on the negative side doesn’t work properly. However, at the
end it paints correctly, because the Rectangle drawing function doesn’t have this
problem.

To fix this problem I’ve written a simple function that inverts the coordinates of a
rectangle to make it reflect the requests of the DrawFocusRect call:

function NormalizeRect (ARect: TRect): TRect;
var
 tmp: Integer;
begin
 if ARect.Bottom < ARect.Top then
 begin
 tmp := ARect.Bottom;
 ARect.Bottom := ARect.Top;
 ARect.Top := tmp;
 end;
 if ARect.Right < ARect.Left then
 begin
 tmp := ARect.Right;
 ARect.Right := ARect.Left;
 ARect.Left := tmp;
 end;
 Result := ARect;
end;

Finally, the OnMouseUp event handler sets the definitive image size and refreshes the
painting of the form. Instead of calling the Invalidate method, which would cause
all of the images to be repainted with a lot of flickering, the program uses the
InvalidateRect API function:

procedure InvalidateRect(Wnd: HWnd; Rect: PRect; Erase: Bool);

The three parameters represent the handle of the window (that is, the Handle prop-
erty of the form), the rectangle you want to repaint, and a flag indicating whether or
not you want to erase the area before repainting it. This function requires, once
more, a normalized rectangle. (You can try replacing this call with one to
Invalidate to see the difference, which is more obvious when you create many
forms.) Here is the complete code of the OnMouseUp handler:

procedure TShapesForm.FormMouseUp(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
var
 ARect: TRect;
begin
 if fDragging then
 begin
 // end dragging

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1068 - Chapter 22: Graphics in Delphi

 ReleaseCapture;
 fDragging := False;

 // set the final size
 ARect := NormalizeRect (CurrShape.Rect);
 Canvas.DrawFocusRect (ARect);
 CurrShape.Right := X;
 CurrShape.Bottom := Y;

 // optimized invalidate code
 ARect := NormalizeRect (CurrShape.Rect);
 InvalidateRect (Handle, @ARect, False);
 end;
end;

note When you select a large drawing pen (we’ll look at the code for that shortly), the border of the
frame is painted partially inside and partially outside the frame, to accommodate the large pen.
To allow for this, we should invalidate a frame rectangle that is inflated by half the size of the cur-
rent pen. You can do this by calling the InflateRect function. As an alternative, in the
FormCreate method I’ve set the Style of the Pen of the form Canvas to psInsideFrame.
This causes the drawing function to paint the pen completely inside the frame of the shape.

In the method corresponding to the OnPaint event, all the shapes currently stored in
the list are painted, as you can see in Figure 22.1. Since the painting code affects the
properties of the Canvas, we need to store the current values and reset them at the
end. The reason is that, as I’ll show you later in this chapter, the properties of the
form’s canvas are used to keep track of the attributes selected by the user, who
might have changed them since the last shape was created. Here is the code:

procedure TShapesForm.FormPaint(Sender: TObject);
var
 I, OldPenW: Integer;
 AShape: TBaseShape;
 OldPenCol, OldBrushCol: TColor;
begin
 // store the current Canvas attributes
 OldPenCol := Canvas.Pen.Color;
 OldPenW := Canvas.Pen.Width;
 OldBrushCol := Canvas.Brush.Color;

 // repaint each shape of the list
 for I := 0 to ShapesList.Count - 1 do
 begin
 AShape := ShapesList.Items [I];
 AShape.Paint (Canvas);
 end;

 // reset the current Canvas attributes
 Canvas.Pen.Color := OldPenCol;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1069

 Canvas.Pen.Width := OldPenW;
 Canvas.Brush.Color := OldBrushCol;
end;

Figure 22.1: The
Shapes example can be
used to draw multiple
shapes, which it stores
in a list. Image from
the original book.

The other methods of the form are simple. Three of the menu commands allow us to
change the colors of the background, the shape borders (the pen), and the internal
area (the brush). These methods use the ColorDialog component and store the
result in the properties of the form’s canvas. This is an example:

procedure TShapesForm.PenColor1Click(Sender: TObject);
begin
 // select a new color for the pen
 ColorDialog1.Color := Canvas.Pen.Color;
 if ColorDialog1.Execute then
 Canvas.Pen.Color := ColorDialog1.Color;
end;

The new colors will affect shapes created in the future but not the existing ones. The
same approach is used for the width of the lines (the pen), although this time the
program also checks to see whether the value has become too small, disabling the
menu item if it has:

procedure TShapesForm.DecreasePenSize1Click(Sender: TObject);

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1070 - Chapter 22: Graphics in Delphi

begin
 Canvas.Pen.Width := Canvas.Pen.Width - 2;
 if Canvas.Pen.Width < 3 then
 DecreasePenSize1.Enabled := False;
end;

To change the colors of the border (the pen) or the surface (the brush) of the shape,
I’ve used the standard Color dialog box. Here is one of the two methods:

procedure TShapesForm.PenColor1Click(Sender: TObject);
begin
 ColorDialog1.Color := Canvas.Pen.Color;
 if ColorDialog1.Execute then
 Canvas.Pen.Color := ColorDialog1.Color;
end;

In Figure 22.2 you can see another example of the output of the Shapes program,
this time using multiple colors for the shapes and their background. The program
asks the user to confirm some operations, such as exiting from the program or
removing all the shapes from the list (with the File New command):

procedure TShapesForm.New1Click(Sender: TObject);
begin
 if (ShapesList.Count > 0) and (MessageDlg (
 ‘Are you sure you want to delete all the shapes?’,
 mtConfirmation, [mbYes, mbNo], 0) = idYes) then
 begin
 // delete each object
 for I := ShapesList.Count - 1 downto 0 do
 TBaseShape (ShapesList [I]).Free;
 ShapesList.Clear;
 Refresh;
 end;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1071

Figure 22.2:
Changing the colors
and the line size of
shapes allows you to
use the Shapes
example to produce
any kind of result.
Image from the
original book.

Printing Shapes

Besides painting the shapes on a form canvas, we can paint them on a printer can-
vas, effectively printing them! Because it is possible to execute the same methods on
a printer canvas as on any other canvas, you might be tempted to add to the pro-
gram a new method for printing the shapes. This is certainly easy, but an even
better option is writing a single output method to use for both the screen and the
printer.

As an example of this approach, I’ve built a new version of the program, called
ShapesPr. The interesting point is that I’ve moved the code of the FormPaint exam-
ple into another method I’ve defined, called CommonPaint. This new method has two
parameters, the canvas and a scale factor (which defaults to 1):

procedure CommonPaint(Canvas: TCanvas; Scale: Integer = 1);

The CommonPaint method outputs the list of shapes to the canvas passed as parame-
ters, using the proper scale factor:

procedure TShapesForm.CommonPaint (
 Canvas: TCanvas; Scale: Integer);

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1072 - Chapter 22: Graphics in Delphi

var
 I, OldPenW: Integer;
 AShape: TBaseShape;
 OldPenCol, OldBrushCol: TColor;
begin
 // store the current Canvas attributes
 OldPenCol := Canvas.Pen.Color;
 OldPenW := Canvas.Pen.Width;
 OldBrushCol := Canvas.Brush.Color;

 // repaint each shape of the list
 for I := 0 to ShapesList.Count - 1 do
 begin
 AShape := ShapesList.Items [I];
 AShape.Paint (Canvas, Scale);
 end;

 // reset the current Canvas attributes
 Canvas.Pen.Color := OldPenCol;
 Canvas.Pen.Width := OldPenW;
 Canvas.Brush.Color := OldBrushCol;
end;

Once you’ve written this code, the FormPaint and Print1Click methods are simple
to implement. To paint the image on the screen, you can call CommonPaint without a
scaling factor (so that the default value 1 is used):

procedure TShapesForm.FormPaint(Sender: TObject);
begin
 CommonPaint (Canvas);
end;

To paint the contents of the form to the printer instead of the form, you can repro-
duce the output on the printer canvas, using a proper scaling factor. Instead of
choosing a scale, I decided to compute it automatically. The idea is to print the
shapes on the form as large as possible, by sizing the form’s client area so that it
takes up the whole page. The code is probably simpler than the description:

procedure TShapesForm.Print1Click(Sender: TObject);
var
 Scale, Scale1: Integer;
begin
 Scale := Printer.PageWidth div ClientWidth;
 Scale1 := Printer.PageHeight div ClientHeight;
 if Scale1 < Scale then
 Scale := Scale1;
 Printer.BeginDoc;
 try
 CommonPaint (Printer.Canvas, Scale);
 Printer.EndDoc;
 except

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1073

 Printer.Abort;
 raise;
 end;
end;

Of course, you need to remember to call the specific commands to start printing
(BeginDoc) and commit the output (EndDoc) before and after you call the
CommonPaint method. If an exception is raised, the program calls Abort to terminate
the printing process anyway.

Delphi Graphical Components

The Shapes example uses almost no components, aside from a standard color-selec-
tion dialog box. As an alternative, we could have used some Delphi components that
specifically support graphics:

· You use the PaintBox472 component when you need to paint on a certain area of a
form and that area might move on the form. For example, PaintBox is useful for
painting on a dialog box without the risk of mixing the area for the output with
the area for the controls. The PaintBox might fit within other controls of a form,
such as a toolbar or a status bar, and avoid any confusion or overlapping of the
output. In the Shapes example, using this component made no sense, because we
always worked on the whole surface of the form.

· You use the Shape component to paint shapes on the screen, exactly as we have
done up to now. You could indeed use the Shape component instead of the man-
ual output, but I really wanted to show you how to accomplish some direct
output operations. This approach was not much more complex than the one Del-
phi suggests. Using the Shape component would have been useful to extend the
example, allowing a user to drag shapes on the screen, remove them, and work
on them in a number of other ways.

· You can use the Image component to display an existing bitmap, possibly loading
it from a file, or even to paint on a bitmap, as I’ll demonstrate in the next two
examples and discuss in the next section.

472 There is now also a Skia-based PaintBox component.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1074 - Chapter 22: Graphics in Delphi

· If it is included in your version of Delphi, you can use the TeeChart control to
create business graphics output, as we’ll see toward the end of this chapter.

· You can use the graphical support provided by the bitmap buttons and speed
button controls, among others. We’ll see later in this chapter how to extend the
graphical capabilities of these controls.

· You can use the Animate component to make the graphics more—well, animated.
Besides using this component, you can manually create animations by displaying
bitmaps in sequence or scrolling them, as we’ll see other examples.

As you can see, we have a long way to go to cover Delphi’s graphics support from all
of its angles.

Drawing in a Bitmap

I’ve already mentioned that by using an Image component, you can draw images
directly in a bitmap. Instead of drawing on the surface of a window, you draw on a
bitmap in memory and then copy the bitmap to the surface of the window. The
advantage is that instead of having to repaint the image each time an OnPaint event
occurs, the component copies the bitmap back to video.

Technically, a TBitmap object has its own canvas. By drawing on this canvas, you can
change the contents of the bitmap. As an alternative, you can work on the canvas of
an Image component connected to the bitmap you want to change. You might con-
sider choosing this approach instead of the typical painting approach if any of the
following conditions are true:

· The program has to support freehand drawing or very complex graphics (such as
fractal images).

· The program should be very fast in drawing a number of images.

· RAM consumption is not an issue.

· You are a lazy programmer.

The last point is interesting because painting generally requires more code than
drawing, although it allows more flexibility. In a graphics program, for example, if
you use painting, you have to store the location and colors of each shape. On the
other hand, you can easily change the color of an existing shape or move it. These
operations are very difficult with the painting approach and may cause the area
behind an image to be lost. If you are working on a complex graphical application,

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1075

you should probably choose a mix of the two approaches. For casual graphics pro-
grammers, the choice between the two approaches involves a typical speed-versus-
memory decision: painting requires less memory; storing the bitmap is faster.

Drawing Shapes

Now let’s look at an Image component example that will paint on a bitmap. The idea
is simple. I’ve basically written a simplified version of the Shape example, by placing
an Image component on its form and redirecting all the output operations to the
canvas of this Image component.

In this example, ShapeBmp, I’ve also added some new menu items to save the
image to a file and to load an existing bitmap. To accomplish this, I’ve added to the
form a couple of default dialog components, OpenDialog and SaveDialog. One of the
properties I had to change was the background color of the form. In fact, when you
perform the first graphical operation on the image, it creates a bitmap, which has a
white background by default. If the form has a gray background, each time the win-
dow is repainted, some flickering occurs. For this reason, I’ve chosen a white
background for the form, too.

The code of this example is still quite simple, considering the number of operations
and menu commands. The drawing portion is linear and very close to Mouse1,
except that the mouse events now relate to the image instead of the form; I’ve used
the NormalizeRect function during the dragging; and the program uses the canvas
of the image. Here is the OnMouseMove event handler, which reintroduces the draw-
ing of points when moving the mouse with the Shift key pressed:

procedure TShapesForm.Image1MouseMove(Sender: TObject;
 Shift: TShiftState; X, Y: Integer);
var
 ARect: TRect;
begin
 // display the position of the mouse in the caption
 Caption := Format (‘ShapeBmp (x=%d, y=%d)’, [X, Y]);
 if fDragging then
 begin
 // remove and redraw the dragging rectangle
 ARect := NormalizeRect (fRect);
 Canvas.DrawFocusRect (ARect);
 fRect.Right := X;
 fRect.Bottom := Y;
 ARect := NormalizeRect (fRect);
 Canvas.DrawFocusRect (ARect);
 end
 else

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1076 - Chapter 22: Graphics in Delphi

 if ssShift in Shift then
 // mark point in red
 Image1.Canvas.Pixels [X, Y] := clRed;
end;

Notice that the temporary focus rectangle is painted directly on the form, over the
image (and thus not stored in the bitmap). What is different is that at the end of the
dragging operation, the program paints the rectangle on the image, storing it in the
bitmap. This time the program doesn’t call Invalidate and has no OnPaint event
handler:

procedure TShapesForm.Image1MouseUp(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 if fDragging then
 begin
 ReleaseCapture;
 fDragging := False;
 Image1.Canvas.Rectangle (fRect.Left, fRect.Top,
 fRect.Right, fRect.Bottom);
 end;
end;

To avoid overly complex file support, I decided to implement the File Load and
File Save As commands and not handle the Save command, which is generally
more complex. I’ve simply added an fChanged field to the form to know when an
image has changed, and I’ve included code that checks this value a number of times
(before asking the user to confirm).

The OnClick event handler of the File New menu item calls the FillArea method
to paint a big white rectangle over the whole bitmap. In this code you can also see
how the Changed field is used:

procedure TShapesForm.New1Click(Sender: TObject);
var
 Area: TRect;
 OldColor: TColor;
begin
 if not fChanged or (MessageDlg (
 ‘Are you sure you want to delete the current image?’,
 mtConfirmation, [mbYes, mbNo], 0) = idYes) then
 begin
 {repaint the surface, covering the whole area,
 and resetting the old brush}
 Area := Rect (0, 0, Image1.Picture.Width,
 Image1.Picture.Height);
 OldColor := Image1.Canvas.Brush.Color;
 Image1.Canvas.Brush.Color := clWhite;
 Image1.Canvas.FillRect (Area);
 Image1.Canvas.Brush.Color := OldColor;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1077

 fChanged := False;
 end;
end;

Of course, the code has to save the original color and restore it later on. A realign-
ment of the colors is also required by the File Load command-response method.
When you load a new bitmap, in fact, the Image component creates a new canvas
with the default attributes. For this reason, the program saves the pen’s colors and
size and copies them later to the new canvas:

procedure TShapesForm.Load1Click(Sender: TObject);
var
 PenCol, BrushCol: TColor;
 PenSize: Integer;
begin
 if not fChanged or (MessageDlg (
 ‘Are you sure you want to delete the current image?’,
 mtConfirmation, [mbYes, mbNo], 0) = idYes) then
 if OpenDialog1.Execute then
 begin
 PenCol := Image1.Canvas.Pen.Color;
 BrushCol := Image1.Canvas.Brush.Color;
 PenSize := Image1.Canvas.Pen.Width;
 Image1.Picture.LoadFromFile (OpenDialog1.Filename);
 Image1.Canvas.Pen.Color := PenCol;
 Image1.Canvas.Brush.Color := BrushCol;
 Image1.Canvas.Pen.Width := PenSize;
 fChanged := False;
 end;
end;

Saving the current image is much simpler:

procedure TShapesForm.Saveas1Click(Sender: TObject);
begin
 if SaveDialog1.Execute then
 begin
 Image1.Picture.SaveToFile (
 SaveDialog1.Filename);
 fChanged := False;
 end;
end;

Finally, here is the code of the OnCloseQuery event of the form, which uses the
Changed field:

procedure TShapesForm.FormCloseQuery(Sender: TObject;
 var CanClose: Boolean);
begin
 if not fChanged or (MessageDlg (
 ‘Are you sure you want to delete the current image?’,

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1078 - Chapter 22: Graphics in Delphi

 mtConfirmation, [mbYes, mbNo], 0) = idYes) then
 CanClose := True
 else
 CanClose := False;
end;

ShapeBmp is an interesting program (see Figure 22.3), with limited but working file
support. The real problem is that the Image component creates a bitmap of its own
size. When you increase the size of the window, the Image component is resized but
not the bitmap in memory. Therefore, you cannot draw on the right and bottom
areas of the window. There are a number of possible solutions: use the Constraints
property to set the maximum size of the form, use a fixed border, visually mark the
drawing area on the screen, and so on. However, I’ve decided to leave the program
as is because it does its job of demonstrating how to draw in a bitmap well enough.

Figure 22.3: The
ShapeBmp example
has limited but
working file support:
you can load an
existing bitmap, draw
shapes over it, and save
it to disk. Image from
the original edition of
the book.

An Image Viewer

The ShapeBmp program can be used as an image viewer, because you can load any
bitmap in it. In general, in the Image control you can load any graphic file type that
has been registered with the VCL TPicture class. The default file formats are bitmap
files (BMP), icon files (ICO), or Windows metafiles (WMF). Bitmap and icon files
are well-known formats. Windows metafiles, however, are not so common. They are
a collection of graphical commands, similar to a list of GDI function calls that need
to be executed to rebuild an image473. Metafiles are usually referred to as vector
graphics and are similar to the graphics file formats used for clip-art libraries. Del-
phi also ships with JPG support for TImage, and third parties have GIF and other file
formats covered.

473 The component now supports many more formats, thanks to the integration of the Windows
Imaging Component (WIC)

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1079

note To produce a Windows metafile, a program should call GDI functions, redirecting their output to
the file. In Delphi, you can use a TMetafileCanvas and the high-level TCanvas methods. Later
on, this metafile can be played or executed to call the corresponding functions, thus producing a
graphic. Metafiles have two main advantages: the limited amount of storage they require com-
pared to other graphical formats, and the device-independence of their output. I’ll cover Delphi
metafile support later in this chapter.

To build a full-blown image viewer program, ImageV, around the Image compo-
nent, we only need to create a form with an image that fills the whole client area, a
simple menu, and an OpenDialog component:

object ViewerForm: TViewerForm
 Caption = ‘Image Viewer’
 Menu = MainMenu1
 object Image1: TImage
 Align = alClient
 end
 object MainMenu1: TMainMenu
 object File1: TMenuItem...
 object Open1: TMenuItem...
 object Exit1: TMenuItem...
 object Options1: TMenuItem
 object Stretch1: TMenuItem
 object Center1: TMenuItem
 object Help1: TMenuItem
 object AboutImageViewer1: TMenuItem
 end
 object OpenDialog1: TOpenDialog
 FileEditStyle = fsEdit
 Filter = ‘Bitmap (*.bmp)|*.bmp|
 Icon (*.ico)|*.ico|Metafile (*.wmf)|*.wmf’
 Options = [ofHideReadOnly, ofPathMustExist,
 ofFileMustExist]
 end
end

Surprisingly, this application requires very little coding, at least in its first basic ver-
sion. The File Exit and Help About commands are trivial, and the File Open
command has the following code:

procedure TViewerForm.Open1Click(Sender: TObject);
begin
 if OpenDialog1.Execute then
 begin
 Image1.Picture.LoadFromFile (OpenDialog1.FileName);
 Caption := ‘Image Viewer - ‘ + OpenDialog1.FileName;
 end;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1080 - Chapter 22: Graphics in Delphi

The fourth and fifth menu commands, Options Stretch and Options Center,
simply toggle the component’s Stretch property (see Figure 22.4 for the result) or
Center property and add a check mark to themselves. Here is the OnClick event
handler of the Stretch1 menu item:

procedure TViewerForm.Stretch1Click(Sender: TObject);
begin
 Image1.Stretch := not Image1.Stretch;
 Stretch1.Checked := Image1.Stretch;
end;

Figure 22.4: Two
copies of the ImageV
program, which display
the regular and
stretched versions of
the same bitmap.
Image from the
original book.

Keep in mind that when stretching an image, you can change its width-to-height
ratio, possibly distorting the shape, and that not all images can be properly
stretched. Stretching black-and-white or 256-color bitmaps doesn’t always work
correctly.

Besides this problem, the application has some other drawbacks. If you select a file
without one of the standard extensions, the Image component will raise an excep-
tion. The exception handler provided by the system behaves as we would expect; the
wrong image file is not loaded, and the program can safely continue. Another prob-
lem is that if you load a large image, the viewer has no scroll bars. You can maximize
the viewer window, but this might not be enough. The Image components do not
handle scroll bars automatically, but the form can do it. I’ll further extend this
example to include scroll bars in the following paragraph.

Scrolling an Image

An advantage of the way automatic scrolling works in Delphi is that if the size of a
single big component contained in a form changes, scroll bars are added or removed
automatically. A good example is the use of the Image component. If the AutoSize
property of this component is set to True and you load a new picture into it, the

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1081

component automatically sizes itself, and the form adds or removes the scroll bars
as needed.

If you load a large bitmap in the ImageV example, you will notice that part of the
bitmap remains hidden. To fix this, you can set the AutoSize property of the Image
component to True and disable its alignment with the client area. You should also
set a small initial size for the image. You don’t need to make any adjustments when
you load a new bitmap, because the size of the Image component is automatically
set for you by the system. You can see in Figure 22.5 that scroll bars are actually
added to the form. The figure shows two different copies of the program. The differ-
ence between the copy of the program on the left and the one on the right is that the
first has an image smaller than its client area, so no scroll bars were added. When
you load a larger image in the program, two scroll bars will automatically appear, as
in the example on the right.

Figure 22.5: In the
ImageV2 example, the
scroll bars are added
automatically to the
form when the whole
bitmap cannot fit into
the client area of the
form displayed. Image
from the original book.

Some more coding is required to disable the scroll bars and change the alignment of
the image when the Stretch menu command is selected and to restore them when
this feature is disabled. Again, we don’t act directly on the scroll bars themselves but
simply change the alignment of the panel, using its Stretch property, and manually
calculate the new size, using the size of the picture currently loaded. This code mim-
ics the effect of the AutoSize property, which works only when loading new files.

procedure TViewerForm.Stretch1Click(Sender: TObject);
begin
 Image1.Stretch := not Image1.Stretch;
 Stretch1.Checked := Image1.Stretch;
 if Image1.Stretch then
 Image1.Align := alClient
 else
 begin
 Image1.Align := alNone;
 Image1.Height := Image1.Picture.Height;
 Image1.Width := Image1.Picture.Width;
 end;
end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1082 - Chapter 22: Graphics in Delphi

Bitmaps to the Max

When the Image control is connected to a bitmap, there are some additional opera-
tions you can do, but before we examine them, I have to introduce bitmap formats.
There are different types of bitmaps in Windows. Bitmaps can be device-indepen-
dent or not, a term used to indicate whether the bitmap has extra palette
management information. BMP files are usually device-independent bitmaps.

Another difference relates to the color depth—that is, the number of different colors
the bitmap can use or, in other words, the number of bits required for storing each
pixel. In a 1-bit bitmap, each point can be either black or white (to be more precise,
1-bit bitmaps can have a color palette, allowing the bitmap to represent any two col-
ors and not just black and white). An 8-bit bitmap usually has a companion palette
to indicate how the 256 different colors map to the actual system colors, a 24-bit bit-
map indicates the system color directly. To make things more complex, when the
system draws a bitmap on a computer with a different color capability, it has to per-
form some conversion.

Internally the bitmap format is very simple, whatever the color depth. All the values
that make up a line are stored sequentially in a memory block. This is efficient for
moving the data from memory to the screen, but it is not an effective way to store
information; BMP files are generally very large, and they perform no compression.

note The BMP format actually has a very limited form of compression, known as Run-Length Encoding
(RLE), in which subsequent pixels with the same color are replaced by the number of such pixels
followed by the color. This can reduce the size of the image, but in some cases it will make it grow.
For compressed images in Delphi, you can use the TJpegImage class and the support for the
JPEG format offered by the TPicture class. Actually, all TPicture does is to manage a regis-
tered list of graphic classes.

The BmpDraw example uses this information about the internal structure of a bit-
map and some other technical features to take direct handling of bitmaps to a new
level. First, it extends the ImageV example by adding a menu item you can use to
display the color depth of the current bitmap, by using the corresponding
PixelFormat property:

procedure TBitmapForm.ColorDepth1Click(Sender: TObject);
var
 strDepth: String;
begin
 case Image1.Picture.Bitmap.PixelFormat of
 pfDevice: strDepth := ‘Device’;
 pf1bit: strDepth := ‘1-bit’;
 pf4bit: strDepth := ‘4-bit’;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1083

 pf8bit: strDepth := ‘8-bit’;
 pf15bit: strDepth := ‘15-bit’;
 pf16bit: strDepth := ‘16-bit’;
 pf24bit: strDepth := ‘24-bit’;
 pf32bit: strDepth := ‘32-bit’;
 pfCustom: strDepth := ‘Custom’;
 end;
 MessageDlg (‘Bitmap color depth: ‘ + strDepth,
 mtInformation, [mbOK], 0);
end;

You can try loading different bitmaps and see the effect of this method, as shown in
Figure 22.6.

What is more interesting is to study how to access the memory image held by the
bitmap object. A simple solution is to use the Pixels property, as I’ve done in the
ShapeBmp example, to draw the red pixels during the dragging operation. In this
program I’ve added a menu item to create an entire new bitmap pixel by pixel, using
a simple mathematical calculation to determine the color. (The same approach can
be used, for example, to build fractal images.)

Figure 22.6: The
color depth of a
standard Windows
bitmap, as displayed by
the BmpDraw example.
Image from the
original book (the red
borders are incorrect, it
looks like the file got
corrupted)

Here is the code of the method, which simply scans the bitmap in both directions
and defines the color of each pixel. Because we are doing many operations on the
bitmap, I can store a reference to it in the local Bmp variable for simplicity:

procedure TBitmapForm.GenerateSlow1Click(Sender: TObject);
var
 Bmp: TBitmap;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1084 - Chapter 22: Graphics in Delphi

 I, J, T: Integer;
begin
 // get the image and modify it
 Bmp := Image1.Picture.Bitmap;
 Bmp.PixelFormat := pf24bit;
 Bmp.Width := 256;
 Bmp.Height := 256;

 T := GetTickCount;
 // change every pixel
 for I := 0 to Bmp.Height - 1 do
 for J := 0 to Bmp.Width - 1 do
 Bmp.Canvas.Pixels [I, J] := RGB (I*J mod 255, I, J);
 Caption := ‘Image Viewer - Memory Image (MSecs: ‘ +
 IntToStr (GetTickCount - T) + ‘)’;
end;

Notice that the program keeps track of the time required by this operation, which on
my computer takes about six seconds. As you see from the name of the function, this
is the slow version of the code.

We can speed it up considerably by accessing the bitmap one entire row at a time.
This little-known feature is available through the ScanLine property of the bitmap,
which returns a pointer to the memory area of the bitmap line. By taking this
pointer and accessing the memory directly, we make the program much faster. The
only problem is that we need to know the internal representation of the bitmap. In
the case of a 24-bit bitmap, every point is represented by three bytes defining the
amount of blue, green, and red (the reverse of the RGB sequence). Here is the alter-
native code, with a slightly different output (as I’ve deliberately modified the
calculation of the color):

procedure TBitmapForm.GenerateFast1Click(Sender: TObject);
var
 Bmp: TBitmap;
 I, J, T: Integer;
 Line: PByteArray;
begin
 // get the image and modify it
 Bmp := Image1.Picture.Bitmap;
 Bmp.PixelFormat := pf24bit;
 Bmp.Width := 256;
 Bmp.Height := 256;

 T := GetTickCount;
 // change every pixel, line by line
 for I := 0 to Bmp.Height - 1 do
 begin
 Line := PByteArray (Bmp.ScanLine [I]);
 for J := 0 to Bmp.Width - 1 do
 begin

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1085

 Line [J*3] := J;
 Line [J*3+1] := I*J mod 255;
 Line [J*3+2] := I;
 end;
 end;
 // refresh the video
 Image1.Invalidate;
 Caption := ‘Image Viewer - Memory Image (MSecs: ‘ +
 IntToStr (GetTickCount - T) + ‘)’;
end;

Simply moving a line in memory doesn’t cause a screen update, so the program calls
Invalidate at the end. The output produced by this second method (see Figure
22.7) is very similar, but the time it takes on my computer is about 60 milliseconds.
That’s about one hundredth the time of the other approach! This technique is so fast
that we can use it for scrolling the lines of the bitmap and still produce a fast and
smooth effect. The scrolling operation has a few options, so as you select the corre-
sponding menu items, the program simply shows a panel inside the form. This
panel has a trackbar you can use to adjust the speed of the scrolling operation
(reducing its smoothness as the speed increases). The position of the trackbar is
saved in a local field of the form:

procedure TBitmapForm.TrackBar1Change(Sender: TObject);
begin
 nLines := TrackBar1.Position;
 TrackBar1.Hint := IntToStr (TrackBar1.Position);
end;

Figure 22.7: The
drawing you see on the
screen is generated by
the BmpDraw example
in a fraction of a
second (as reported in
the caption). Image
from the original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1086 - Chapter 22: Graphics in Delphi

In the panel there are also two buttons used to start and stop the scrolling opera-
tion. The code of the Go button has two for loops. The external loop is used to
repeat the scrolling operation, as many times as there are lines in the bitmap. The
internal loop does the scrolling operation by copying each line of the bitmap to the
previous one. The first line is temporarily stored in a memory block and then copied
to the last line at the end. This temporary memory block is kept in a dynamically
allocated memory area (AllocMem) large enough to hold one line. This information is
obtained by computing the difference in the memory addresses of two consecutive
lines.

The core of the moving operation is accomplished using Delphi’s Move function. Its
parameters are the variable to be moved, not the memory addresses. For this rea-
son, you have to de-reference the pointers. (Well, this method is really a good
exercise on pointers!) Finally, notice that this time we cannot invalidate the entire
image after each scrolling operation, as this produces too much flickering in the out-
put. The opposite solution is to invalidate each line after it has been moved, but this
makes the program far too slow. As an in-between solution, I decided to invalidate a
block of lines at a time, as determined by the J mod nLines = 0 expression. When a
given number of lines has been moved, the program refreshes those lines:

Rect (0, PanelScroll.Height + H - nLines,
 W, PanelScroll.Height + H);

As you can see, the number of lines is determined by the position of the TrackBar
control.

A user can even change the speed by moving their thumb during the scrolling opera-
tion. We also allow the user to press the Cancel button during the operation. This is
made possible by the call to Application.ProcessMessages in the external for loop.
The Cancel button changes the fCancel flag, which is checked at each iteration of
the external for loop:

procedure TBitmapForm.BtnCancelClick(Sender: TObject);
begin
 fCancel := True;
end;

So, after all this description, here is the complete code of the Go button’s OnClick
event handler:

procedure TBitmapForm.BtnGoClick(Sender: TObject);
var
 W, H, I, J, LineBytes: Integer;
 Line: PByteArray;
 Bmp: TBitmap;
 R: TRect;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1087

begin
 // set the user interface
 fCancel := False;
 BtnGo.Enabled := False;
 BtnCancel.Enabled := True;

 // get the bitmap of the image and resize it
 Bmp := Image1.Picture.Bitmap;
 W := Bmp.Width;
 H := Bmp.Height;

 // allocate enough memory for one line
 LineBytes := Abs (Integer (Bmp.ScanLine [1]) -
 Integer (Bmp.ScanLine [0]));
 Line := AllocMem (LineBytes);

 // scroll as many items as there are lines
 for I := 0 to H - 1 do
 begin
 // exit the for loop if Cancel was pressed
 if fCancel then
 Break;

 // copy the first line
 Move ((Bmp.ScanLine [0])^, Line^, LineBytes);

 // for every line
 for J := 1 to H - 1 do
 begin
 // move line to the previous one
 Move ((Bmp.ScanLine [J])^, (Bmp.ScanLine [J-1])^, LineBytes);
 // every nLines update the output
 if (J mod nLines = 0) then
 begin
 R := Rect (0, PanelScroll.Height + J-nLines,
 W, PanelScroll.Height + J);
 InvalidateRect (Handle, @R, False);
 UpdateWindow (Handle);
 end;
 end;

 // move the first line back to the end
 Move (Line^, (Bmp.ScanLine [Bmp.Height - 1])^, LineBytes);
 // update the final portion of the bitmap
 R := Rect (0, PanelScroll.Height + H - nLines,
 W, PanelScroll.Height + H);
 InvalidateRect (Handle, @R, False);
 UpdateWindow (Handle);

 // let the program handle other messages
 Application.ProcessMessages;
 end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1088 - Chapter 22: Graphics in Delphi

 // reset the UI
 BtnGo.Enabled := True;
 BtnCancel.Enabled := False;
end;

You can see a bitmap during the scrolling operation in Figure 22.8. Notice that the
scrolling can take place on any type of bitmap, not just the 24-bit bitmaps generated
by this program. You can, in fact, load another bitmap into the program and then
scroll it, as I did to create the illustration.

Figure 22.8: The
BmpDraw example
allows fast scrolling of
a bitmap. Image from
the original book.

An Animated Bitmap in a Button

Bitmap buttons are easy to use and can produce better-looking applications than the
standard push buttons (the Button component). To further improve the visual effect
of a button, we can also think of animating the button. There are basically two kinds

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1089

of animated buttons—buttons that change their glyph slightly when they are pressed
and buttons having a moving image, regardless of the current operation. I’ll show
you a simple example of each kind, Fire and World. For each of these examples,
we’ll explore a couple of slightly different versions.

A Two-State Button

The first example, the Fire program, has a very simple form, containing only a bit-
map button. This button is connected to a Glyph representing a cannon. Imagine
such a button as part of a game program. As the button is pressed, the glyph
changes to show a firing cannon. As soon as the button is released, the default glyph
is loaded again. In between, the program displays a message if the user has actually
clicked the button.

To write this program, we need to handle three of the button’s events: OnMouseDown,
OnMouseUp, and OnClick. The code of the three methods is extremely simple:

procedure TForm1.BitBtnFireMouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 // load firing cannon bitmap
 if Button = mbLeft then
 BitBtnFire.Glyph.LoadFromFile (‘fire2.bmp’);
end;

procedure TForm1.BitBtnFireMouseUp(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 // load default cannon bitmap
 if Button = mbLeft then
 BitBtnFire.Glyph.LoadFromFile (‘fire.bmp’);
end;

procedure TForm1.BitBtnFireClick(Sender: TObject);
begin
 PlaySound (‘Boom.wav’, 0, snd_Async);
 MessageDlg (‘Boom!’, mtWarning, [mbOK], 0);
end;

I’ve added some sound capabilities, playing a WAV file when the button is pressed
with a call to the PlaySound function of the MmSystem unit. When you hold down
the left mouse button over the bitmap button, the bitmap button is pressed. If you
then move the mouse cursor away from the button while holding down the mouse
button, the bitmap button is released, but it doesn’t get an OnMouseUp event, so the
firing cannon remains there. If you later release the left mouse button outside the

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1090 - Chapter 22: Graphics in Delphi

surface of the bitmap button, it receives the OnMouseUp event anyway. The reason is
that all buttons in Windows capture the mouse input when they are pressed.

Many Images in a Bitmap

The Fire example used a manual approach. I loaded two bitmaps and changed the
value of the Glyph property when I wanted to change the image. The BitBtn compo-
nent, however, can also handle a number of bitmaps automatically. You can prepare
a single bitmap that contains a number of images (or glyphs) and set this number as
the value of the NumGlyphs property. All such “sub-bitmaps” must have the same
size because the overall bitmap is divided into equal parts.

If you provide more than one glyph in the bitmap, they are used according to the
following rules:

· The first bitmap is used for the released button, the default position.

· The second bitmap is used for the disabled button.

· The third bitmap is used when the button is clicked.

· The fourth bitmap is used when the button remains down, as in buttons behav-
ing as check boxes.

Usually you provide a single glyph and the others are automatically computed from
it, with simple graphical changes. However, it is easy to provide a second, a third,
and a fourth customized picture. If you do not provide all four bitmaps, the missing
ones will be computed automatically from the first one.

In our example, the new version of Fire (named Fire2), we only need the first and
third glyphs of the bitmap but are obliged to add the second bitmap. To see how this
glyph (the second of the bitmap) can be used, I’ve added a check box to disable the
bitmap button. To build the new version of the program, I’ve prepared a bitmap of
32 96 pixels (see Figure 22.9) and used it for the Glyph property of the bitmap.
Delphi automatically set the NumGlyphs property to 3, because the bitmap is three
times wider than it is high.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1091

Figure 22.9: The
bitmap with three
images of the Fire2
example, as seen in the
Delphi Image Editor.
Image from the
original book (as
mentioned the Image
Editor doesn’t exist any
more in Delphi).

The check box, used to enable and disable the button (so we can see the glyph corre-
sponding to the disabled status), has the following OnClick event:

procedure TForm1.CheckBox1Click(Sender: TObject);
begin
 BitBtnFire.Enabled := CheckBox1.Checked;
end;

When you run the program, there are two ways to change the bitmap in the button.
You can disable the bitmap button by using the check box (see Figure 22.10), or you
can press the button to see the cannon fire. In the first version (the Fire example),
the image with the firing cannon remained on the button until the message box was
closed. Now (in the Fire2 example) the image is shown only while the button is
pressed. As soon as you move outside the surface of the button, or release the but-
ton after having pressed it (activating the message box), the first glyph is displayed.

Figure 22.10: The
enabled and disabled
bitmap buttons of the
Fire2 example, in two
different copies of the
application. Image
from the original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1092 - Chapter 22: Graphics in Delphi

The Rotating World

The second example of animation, World, has a button featuring the earth, which
slowly rotates, showing the various continents. You can see some samples in Figure
22.11, but, of course, you should run the program to see its output. In the previous
example, the image changed when the button was pressed. Now the image changes
by itself, automatically. This occurs thanks to the presence of a Timer component,
which receives a message at fixed time intervals.

Here is a summary of the component properties:

object WorldForm: TWorldForm
 Caption = ‘World’
 OnCreate = FormCreate
 object Label1: TLabel...
 object WorldButton: TBitBtn
 Caption = ‘&Start’
 OnClick = WorldButtonClick
 Glyph.Data = {W1.bmp}
 Spacing = 15
 end
 object Timer1: TTimer
 Enabled = False
 Interval = 500
 OnTimer = Timer1Timer
 end
end

Figure 22.11: Some
examples of the
running World
program. Image from
the original book.

The timer component is started and stopped (enabled and disabled) when the user
presses the bitmap button with the world image:

procedure TWorldForm.WorldButtonClick(Sender: TObject);
begin
 if Timer1.Enabled then

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1093

 begin
 Timer1.Enabled := False;
 WorldButton.Caption := ‘&Start’;
 end
 else
 begin
 Timer1.Enabled := True;
 WorldButton.Caption := ‘&Stop’;
 end;
end;

As you can see in Figure 22.11, a label above the button indicates which of the
images is being displayed. Each time the timer message is received, the image and
label change:

procedure TWorldForm.Timer1Timer(Sender: TObject);
begin
 Count := (Count mod 16) + 1;
 Label1.Caption := ‘Displaying image ‘ +
 IntToStr (Count);
 WorldButton.Glyph.LoadFromFile (
 ‘w’ + IntToStr (Count) + ‘.bmp’);
end;

In this code, Count is a field of the form that is initialized to 1 in the FormCreate
method. At each timer interval, Count is increased modulus 16 and then converted
into a string (preceded by the letter w). The reason for this limit is simple—I had 16
bitmaps of the earth to display. Naming the bitmap files W1.BMP, W2.BMP, and so on
makes it easy for the program to access them, building the strings with the name at
run time.

note The modulus operation returns the remainder of the division between integers. This means that
Count mod 16 invariably returns a value in the range 0–15. Adding one to this return value, we
obtain the number of the bitmap, which is in the range 1–16.

A List of Bitmaps, the Use of Resources, and a
ControlCanvas

The World program works, but it is very slow, for a couple of reasons. First of all, at
each timer interval, it needs to read a file from the disk, and although a disk cache
can make this faster, it is certainly not the most efficient solution. Besides reading
the file from disk, the program has to create and destroy Windows bitmap objects,
and this takes some time. The second problem depends on how the image is
updated: When you change the button’s bitmap, the component is completely

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1094 - Chapter 22: Graphics in Delphi

erased and repainted. This causes some flickering, as you can see by running the
program.

To solve the first problem (and to show you a different approach to handling bit-
maps), I’ve created a second version of the example, World2. Here I’ve added a
TObjectList Delphi 5 container, storing a list of bitmaps, to the program’s form.
The form has also some more fields:

type
 TWorldForm = class(TForm)
 ...
 private
 Count, YPos, XPos: Integer;
 BitmapsList: TObjectList;
 ControlCanvas: TControlCanvas;
 end;

All the bitmaps are loaded when the program starts and destroyed when it termi-
nates. At each timer interval, the program shows one of the list’s bitmaps in the
bitmap button. By using a list, we avoid loading a file each time we need to display a
bitmap, but we still need to have all the files with the images in the directory with
the executable file. A solution to this problem is to move the bitmaps from indepen-
dent files to the application’s resource file. This is easier to do than to explain.

To use the resources instead of the bitmap files, we need to first create this file. The
best approach is to write a resource script (an RC file), listing the names of the bit-
map files and of the corresponding resources. Open a new text file (in any editor)
and write the following code:

W1 BITMAP “W1.BMP”
W2 BITMAP “W2.BMP”
W3 BITMAP “W3.BMP”
// ... and so on

Once you have prepared this RC file (I’ve named it WorldBmp.RC), you can compile it
into a RES file using the resource compiler included and the BRCC32 command-
line application you can find in the BIN directory of Delphi, and then include it in
the project by adding the {$R WORLDBMP.RES} directive in the project source code
file or in one of the units.

In Delphi 5, however, you can use a simpler approach. You can take the RC file and
simply add it to the project using the Project Manager Add command or simply
dragging the file to the project. Delphi 5 will automatically activate the resource
compiler, and it will then bind the resource file into the executable file. These opera-
tions are controlled by an extended resource inclusion directive added to the project
source code:

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1095

{$R ‘WORLDBMP.res’ WORLDBMP.RC’}

Once we have properly defined the resources of the application, we need to load the
bitmaps from the resources. For a TBitmap object we can use the
LoadFromResourceName method, if the resource has a string identifier, or the
LoadFromResourceID method, if it has a numeric identifier. The first parameter of
both methods is a handle to the application, known as HInstance, available in Del-
phi as a global variable.

note Delphi defines a second global variable, MainInstance, which refers to the HInstance of the
main executable file. Unless you are inside a DLL, you can use one or the other interchangeably.

This is the code of the FormCreate method:

procedure TWorldForm.FormCreate(Sender: TObject);
var
 I: Integer;
 Bmp: TBitmap;
begin
 Count := 1;
 // load the bitmaps and add them to the list
 BitmapsList := TList.Create;
 for I := 1 to 16 do
 begin
 Bmp := TBitmap.Create;
 Bmp.LoadFromResourceName (HInstance,
 ‘W’ + IntToStr (I));
 BitmapsList.Add (Bmp);
 end;
end;

note As an alternative, we could have used the ImageList component, but for this example I decided to
use a low-level approach to show you all the details involved.

One problem remains to be solved: obtaining a smooth transition from one image of
the world to the following one. The program should paint the bitmaps in a canvas
using the Draw method. Unfortunately, the bitmap button’s canvas is not directly
available (and not event protected), so I decided to use a TControlCanvas (usually
the internal canvas of a control, but one you can also associate to externally) To use
it to paint over a button, we can assign the button to the control canvas in the
FormCreate method:

 ControlCanvas := TControlCanvas.Create;
 ControlCanvas.Control := WorldButton;
 YPos := (WorldButton.Height - Bmp.Height) div 2;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1096 - Chapter 22: Graphics in Delphi

 XPos := WorldButton.Margin;

The horizontal position of the button where the image is located (and where we
should paint) depends on the Margin of the icon of the bitmap button and on the
height of the bitmap. Once the control canvas is properly set, the Timer1Timer
method simply paints over it—and over the button:

procedure TWorldForm.Timer1Timer(Sender: TObject);
begin
 Count := (Count mod 16) + 1;
 Label1.Caption := Format (‘Displaying image %d’, [Count]);
 // draw the current bitmap in the control canvas
 ControlCanvas.Draw (XPos, YPos,
 BitmapsList.Items[Count-1] as TBitmap);
end;

The last problem is to move the position of the image when the left mouse button is
pressed or released over it (that is, in the OnMouseDown and OnMouseUp events of the
button). Besides moving the image by few pixels, we should update the glyph of the
bitmap, because Delphi will automatically display it while redrawing the button.
Otherwise, a user would see the initial image until the timer interval elapsed and
the component fired the OnTimer event. (That might take a while if you’ve stopped
it!) Here is the code of the first of the two methods:

procedure TWorldForm.WorldButtonMouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 if Button = mbLeft then
 begin
 // paint the current image over the button
 WorldButton.Glyph.Assign (
 BitmapsList.Items[Count-1] as TBitmap);
 Inc (YPos, 2);
 Inc (XPos, 2);
 end;
end;

The Animate Control

There is a better way to obtain animation than displaying a series of bitmaps in
sequence. Use the Win32 Animate common control. The Animate control is based
on the use of AVI (Audio Video Interleaved) files, a series of bitmaps similar to a
movie.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1097

note Actually, the Animate control can display only those AVI files that have a single video stream, are
uncompressed or compressed with RLE8 compression, and have no palette changes; and if they
have sound, it is ignored. In practice, the files corresponding to this requirement are those made
of a series of computer bitmaps, not those based on an actual film.

The Animate control can have two possible sources for its animation:

· It can be based on any AVI file that meets the requirements indicated in the note
above; to use this type of source, set a proper value for the FileName property.

· It can use a special internal Windows animation, part of the common control
library; to use this type of source, choose one of the possible values of the
CommonAVI property (which is based on an enumeration).

If you simply place an Animate control on a form, choose an animation using one of
the methods just described, and finally, set its Active property to True, you’ll start
seeing the animation performed even at design time. By default, the animation runs
continuously, restarting it as soon as it is done. However, you can regulate this
effect by using the Repetitions property. The default value -1 causes infinite repe-
tition; use any other value to specify a number of repetitions.

You can also specify the initial and final frame of the sequence, with the StartFrame
and StopFrame properties. These three properties (initial position, final position,
and number of repetitions) correspond to the three parameters of the Play method,
which you’ll often use with an Animate control. As an alternative, you can set the
properties and then call the Start method. At run time, you can also access the total
number of frames using the FrameCount property: you can use this to execute the
animation from the beginning to the end. Finally, for finer control, you can use the
Seek method, which displays a specific frame.

I’ve used all of these methods in a simple demo program, which can use both files
and the Windows standard animations. The program allows you to choose a file or
one of the animations by using a ListBox. I’ve added an item to this ListBox for each
element of the TCommonAVI enumeration and used the same order:

object ListBox1: TListBox
 Items.Strings = (
 ‘[Use an AVI file]’
 ‘Find Folder’
 ‘Find File’
 ‘Find Computer’
 ‘Copy Files’
 ‘Copy File’
 ‘Recycle File’
 ‘Empty Recycle’
 ‘Delete File’)

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1098 - Chapter 22: Graphics in Delphi

 OnClick = ListBox1Click
end

Thanks to this structure, when the user clicks on the ListBox, simply casting the
number of the selected items to the enumerated data type will get the proper value
for the CommonAVI property.

procedure TForm1.ListBox1Click(Sender: TObject);
begin
 Animate1.CommonAVI := TCommonAVI (ListBox1.ItemIndex);
 if (ListBox1.ItemIndex = 0) and
 OpenDialog1.Execute then
 Animate1.FileName := OpenDialog1.FileName
end;

As you can see, when the first item is selected (the value is caNone), the program
automatically loads an AVI file, using an OpenDialog component. The most impor-
tant component of the form is the Animate control. Here is its textual description:

object Animate1: TAnimate
 AutoSize = False
 Align = alClient
 CommonAVI = aviFindFolder
 OnOpen = Animate1Open
end

It’s aligned to the client area, so that a user can easily resize it depending on the
actual size of the frames of the animation. As you can see, I’ve also defined a han-
dler for an event of this component, OnOpen:

procedure TForm1.Animate1Open(Sender: TObject);
begin
 LblFrames.Caption := ‘Frames ‘ +
 IntToStr (Animate1.FrameCount);
end;

When a new file (or common animation) is opened, the program simply outputs the
number of its frames in a label. This label is hosted together with several buttons
and a few SpinEdit controls into a big panel, acting as a toolbar. You can see them in
the design-time form of Figure 22.12.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1099

Figure 22.12: The
form of the AnimCtrl
example at design
time. The Animate
control is actually
showing an animation,
even before running
the program. Image
from the original book.

The Start and Stop buttons are completely trivial, but the Play Once button has
some simple code:

procedure TForm1.BtnOnceClick(Sender: TObject);
begin
 Animate1.Play (0, Animate1.FrameCount, 1);
end;

Things start getting more interesting with the code used to play the animation three
times or to play only a fragment of it. Both of these methods are based on the Play
method:

procedure TForm1.BtnTriceClick(Sender: TObject);
begin
 Animate1.Play (0, Animate1.FrameCount, 3);
end;

procedure TForm1.BtnFragmentClick(Sender: TObject);
begin
 Animate1.Play (SpinEdit1.Value, SpinEdit2.Value, -1);
end;

The last two button event handlers are based on the Seek method. The Goto button
simply moves to the frame indicated by the corresponding SpinEdit component,
while the Reverse buttons move to each frame in turn, starting with the last one and
pausing between each of them:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1100 - Chapter 22: Graphics in Delphi

procedure TForm1.BtnGotoClick(Sender: TObject);
begin
 Animate1.Seek (SpinEdit3.Value);
end;

procedure TForm1.BtnReverseClick(Sender: TObject);
var
 Init: TDateTime;
 I: Integer;
begin
 for I := Animate1.FrameCount downto 1 do
 begin
 Animate1.Seek (I);
 // wait 50 milliseconds
 Init := Now;
 while Now < Init + EncodeTime (0, 0, 0, 50) do
 Application.ProcessMessages;
 end;
end;

The Animate Control in a Button

Now that you know how the Animate control works, we can use it to build another
animated button. Simply place an Animate control and a large button (possibly with
a large font as well) in a form. Then write the following code to make the button the
parent window of the Animate control at run time and position it properly:

procedure TForm1.FormCreate(Sender: TObject);
var
 hDiff: Integer;
begin
 Animate1.Parent := Button1;
 hDiff := Button1.Height - Animate1.Height;
 Animate1.SetBounds (hDiff div 2, hDiff div 2,
 Animate1.Width, Animate1.Height);
 Animate1.Active := True;
end;

You can see an example of this effect in Figure 22.13. (The project has the name
AnimBtn.) This is indeed the simplest approach to producing an animated button,
but it also permits the least control.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1101

Figure 22.13: The
effect of the Animate
control inside a button,
as shown by the
AnimBtn program.
Image from the
original book.

Graphical Grids

Grids represent another interesting group of Delphi graphical components. The sys-
tem offers different grid components: a grid of strings, one of images, database-
related grids, and a sample grid of colors. The first two kinds of grids are particu-
larly useful because they allow you to represent a lot of information and let the user
navigate it. Of course, grids are extremely important in database programming, and
they can be customized with graphics as we’ve seen in Chapter 10 of Mastering Del-
phi 5.

The DrawGrid and StringGrid components are closely related. In fact, the
TStringGrid class is a subclass of TDrawGrid. What use are these grids? Basically,
you can store some values, either in the strings related to the StringGrid or in other
data structures, and then display selected values, using specific criteria. While grids
of strings can be used almost as they are (because they already provide editing capa-
bilities), the grids of generic objects usually require more coding.

Grids, in fact, define the way information is organized for display, not how it is
stored. The only grid that stores the data it displays is the StringGrid. All other grids
(including the DrawGrid and the DBGrid components) are just data viewers, not
data containers. The DBGrid doesn’t own the data it displays; it fetches the data
from the connected data source. This is sometimes a source of confusion.

The basic structure of a grid includes a number of fixed columns and rows, which
indicate the nonscrollable region of the grid (as you can see in Figure 22.14). Grids
are among the most complex components available in Delphi, as indicated by the
high number of properties and methods they contain. There are a great many

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1102 - Chapter 22: Graphics in Delphi

options and properties for grids, controlling both their appearance and their behav-
ior.

Figure 22.14: When
you place a new grid
component on a form,
it contains one fixed
row and one fixed
column by default.
Image from the
original book.

In its appearance, the grid can have lines of different sizes, or it can have no lines.
You can set the size of each column or row independently of the others because the
RowSize, ColWidth, and RowHeight properties are arrays. For the grid’s behavior,
you can let the user resize the columns and the rows (goColSizing and
goRowSizing), drag entire columns and rows to a new position (goRowMoving and
goColumnMoving), select automatic editing, and allow range selections. Because vari-
ous options allow users to perform a number of operations on grids, there are also a
number of events related to grids, such as OnColumnMoved, OnDrawCell, or
OnSetEditText.

The most important event is probably OnDrawCell. In response to this event, a pro-
gram has to paint a certain cell of the grid. Only string grids can automatically
display their contents. The DrawGrid, in fact, doesn’t have support for storing data.
It is simply a tool for arranging a portion of the screen to display information in a
regular format. It is a simple tool but also a powerful one. Methods such CellRect,
which returns the rectangle corresponding to the area of a cell, or MouseToCell,
which returns the cell in a specific location, are a joy to use. By handling resizable
rows and columns and scrollable grids, they simplify complex tasks and spare the
programmer from tedious calculations.

What can you use a grid for? Building a spreadsheet is probably the first idea that
comes to mind, but that’s probably a little too complex for an example. I’ve decided
to use the StringGrid control in a program that shows the fonts installed in the sys-
tem and the DrawGrid control in a program that emulates the MineSweeper game.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1103

A Grid of Fonts

If you place a StringGrid component on a form and set its options properly, you
have a full working editor of strings arranged in a grid, without doing any program-
ming at all. To make the example more interesting, I’ve decided to draw each cell of
the grid with a different font, varying both its size and its typeface. You can see the
result of the FontGrid program in Figure 22.15.

Figure 22.15: An
example of the output
of the FontGrid
application. Image
from the original book.

The form of this program is very simple. You need only place a grid component on a
form, align it with the client area, set a few properties and options, and let the pro-
gram do the rest. The number of columns and rows and their size, in fact, are
computed at run time. The important properties you need to set are
DefaultDrawing, which should be False to let us paint the grid as we like, and
Options:

object Form1: TForm1
 Caption = ‘Font Grid’
 OnCreate = FormCreate
 object StringGrid1: TStringGrid
 Align = alClient
 DefaultColWidth = 200
 DefaultDrawing = False
 Options = [goFixedVertLine, goFixedHorzLine,
 goVertLine, goHorzLine, goDrawFocusSelected,
 goColSizing, goColMoving, goEditing]
 OnDrawCell = StringGrid1DrawCell
 end
end

As usually happens in Delphi, the simpler the form is, the more complex the code.
This example follows that rule, although it has only two methods, one to initialize

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1104 - Chapter 22: Graphics in Delphi

the grid at start-up and the other to draw the items. The editing, in fact, has not
been customized and takes place using the system font. The first of the two methods
is FormCreate. At the beginning, this method uses the global Screen object to access
the fonts installed in the system.

The grid has a column for each font as well as a fixed column with numbers repre-
senting font sizes. The name of each column is copied from the Screen object to the
first row of each column (which has a zero index):

procedure TForm1.FormCreate(Sender: TObject);
var
 I, J: Integer;
begin
 {the number of columns equals the number of fonts plus
 1 for the first fixed column, which has a size of 20}
 StringGrid1.ColCount := Screen.Fonts.Count + 1;
 StringGrid1.ColWidths [0] := 50;

 for I := 1 to Screen.Fonts.Count do
 begin
 // write the name of the font in the first row
 StringGrid1.Cells [I, 0] :=
 Screen.Fonts.Strings [I-1];

 {compute maximum required size of column, getting the width
 of the text with the biggest size of the font in that column}
 StringGrid1.Canvas.Font.Name :=
 StringGrid1.Cells [I, 0];
 StringGrid1.Canvas.Font.Size := 32;
 StringGrid1.ColWidths [I] :=
 StringGrid1.Canvas.TextWidth (‘AaBbYyZz’);
 end;
 ...

In the last part of the code above, the program computes the width of each column.
This is accomplished by evaluating the space occupied by the custom string of text
AaBbYyZz, using the font of the column (written in the first row, Cells [I, 0]) and
the biggest font size used by the program (32). To compute the space required by the
text, you can apply the TextWidth and TextHeight methods to a canvas with the
proper font selected.

The rows, instead, are always 26 and have an increasing height, computed with the
approximate formula: 15 + I x 2. In fact, computing the highest text means check-
ing the height of the text in each column, certainly too complex an operation for this
example. The approximate formula works well enough, as you can see in Figure
22.15 and by running the program. In the first cell of each row, the program writes
the size of the font, which corresponds to the number of the line plus seven.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1105

The last operation is to store the string “AaBbYyZz” in each nonfixed cell of the grid.
To accomplish this, the program uses a nested for loop. Expect to use nested for
loops often when working with grids. Here is the second part of the FormCreate
method:

 // defines the number of columns
 StringGrid1.RowCount := 26;
 for I := 1 to 25 do
 begin
 // write the number in the first column
 StringGrid1.Cells [0, I] := IntToStr (I+7);
 // set an increasing height for the rows
 StringGrid1.RowHeights [I] := 15 + I*2;
 // insert default text in each column
 for J := 1 to StringGrid1.ColCount do
 StringGrid1.Cells [J, I] := ‘AaBbYyZz’
 end;
 StringGrid1.RowHeights [0] := 25;
end;

Now we can study the second method, StringGrid1DrawCell, which corresponds to
the grid’s OnDrawCell event. This method has a number of parameters:

· Col and Row refer to the cell we are currently painting.

· Rect is the area of the cell we are going to paint.

· State is the state of the cell, a set of three flags, which can be active at the same
time: gdSelected (the cell is selected), gdFocused (the cell has the input focus),
and gdFixed (the cell is in the fixed area, which usually has a different back-
ground color). It is important to know the state of the cell because this usually
affects its output.

The DrawCell method paints the text of the corresponding element of the grid, with
the font used by the column and the size used for the row. Here is the listing of this
method:

procedure TForm1.StringGrid1DrawCell (Sender: TObject;
 Col, Row: Integer; Rect: TRect; State: TGridDrawState);
begin
 // select a font, depending on the column
 if (Col = 0) or (Row = 0) then
 StringGrid1.Canvas.Font.Name := I
 else
 StringGrid1.Canvas.Font.Name :=
 StringGrid1.Cells [Col, 0];

 // select the size of the font, depending on the row
 if Row = 0 then
 StringGrid1.Canvas.Font.Size := 14

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1106 - Chapter 22: Graphics in Delphi

 else
 StringGrid1.Canvas.Font.Size := Row + 7;

 // select the background color
 if gdSelected in State then
 StringGrid1.Canvas.Brush.Color := clHighlight
 else if gdFixed in State then
 StringGrid1.Canvas.Brush.Color := clBtnFace
 else
 StringGrid1.Canvas.Brush.Color := clWindow;

 // output the text
 StringGrid1.Canvas.TextRect (
 Rect, Rect.Left, Rect.Top,
 StringGrid1.Cells [Col, Row]);

 // draw the focus
 if gdFocused in State then
 StringGrid1.Canvas.DrawFocusRect (Rect);
end;

The font’s name is retrieved by the row 0 of the same column. The font’s size is com-
puted by adding 7 to the number of the row. The fixed columns use some default
values. Having set the font and its size, the program selects a color for the back-
ground of the cell, depending on its possible states: selected, fixed, or normal (that
is, no special style). The value of the style’s gdFocused flag is used a few lines later to
draw the typical focus rectangle. When everything is set up, the program can per-
form some real output, drawing the text and if necessary the focus rectangle, with
the last two statements of the StringGrid1DrawCell method above.

note To draw the text in the grid’s cell, I’ve used the TextRect method of the canvas instead of the
more common TextOut method. The reason is that TextRect clips the output to the given rec-
tangle, preventing drawing outside this area. This is particularly important in the case of grids
because the output of a cell should not cross its borders. Since we are painting on the canvas of
the whole grid, when we are drawing a cell, we can end up corrupting the contents of neighboring
cells, too.

As a final observation, remember that when you decide to draw the contents of a
grid’s cell, you should not only draw the default image but also provide a different
output for the selected item, properly draw the focus, and so on.

Mines in a Grid

The StringGrid component uses the Cells array to store the values of the elements
and also has an Objects property to store custom data for each cell. The DrawGrid

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1107

component, instead, doesn’t have a predefined storage. For this reason, the next
example defines a two-dimensional array to store the value of the grid’s cells—that
is, of the playing field.

The Mines example is a clone of the MineSweeper game included with Windows. If
you have never played this game, I suggest you try it and read its rules in the Help
file since I’ll give only a basic description. When the program starts, it displays an
empty field (a grid) in which there are some hidden mines. By clicking the left
mouse button on a cell, you test whether or not there is a mine in that position. If
you find a mine, it explodes, and the game is over. You have lost.

If there is no mine in the cell, the program indicates the number of mines in the
eight cells surrounding it. Knowing the number of mines near the cell, you have a
good hint for the following turn. To help you further on, when a cell has zero mines
in the surrounding area, the number of mines for these cells is automatically dis-
played, and if one of them has zero surrounding mines, the process is repeated. So if
you are lucky, with a single click you might uncover a good number of clear cells
(see Figure 22.16).

When you think you have found a mine, simply right-click on the cell; this places a
flag there. The program does not say whether your inference is correct; the flag is
only a hint for your future attempts. If you later change your mind, you can again
right-click on the cell to remove the flag. When you have found all of the mines, you
have won, and the game terminates.

Those are the rules of the game. Now we have to implement them, using a DrawGrid
as starting point. In this example, the grid is fixed and cannot be resized or modified
in any way at run time. In fact, it has square cells of 30 30 pixels, which will be
used to display bitmaps of the same size.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1108 - Chapter 22: Graphics in Delphi

Figure 22.16: The
Mines program after a
single lucky click. A
group of cells with no
mines is displayed at
once. Image from the
original book.

The code of this program is complex, and it is not easy to find a starting point to
describe it. For this reason, I’ve added more comments than usual to the source
code (in the download files) so you can browse through it to understand what it
does. Nonetheless, I’ll describe its most important elements. First of all, the pro-
gram’s data is stored in two arrays (declared as private fields of the form):

Display: array [0 .. NItems - 1, 0 .. NItems -1] of Boolean;
Map: array [0 .. NItems - 1, 0 .. NItems -1] of Char;

The first is an array of Boolean values that indicate whether an item should be dis-
played or remain hidden. Notice that the number of rows and columns of this array
is NItems. You can freely change this constant, but you should resize the grid
accordingly. The second array, Map, holds the positions of the mines and flags and
the numbers of the surrounding mines. It uses character codes instead of a proper
enumeration data type, in order to use the digits 0–8 to indicate the number of
mines around the cell. Here is a list of the codes:

· M: Mine indicates the position of a mine that the user still has not found.

· K: Known mine indicates the position of a mine already found by the user and
having a flag.

· W: Wrong mine indicates a position where the user has set a flag but where
there is no mine.

· 0 to 8: Number of mines indicates the number of mines in the surrounding cells.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1109

The first method to explore is FormCreate, executed at start-up. This method initial-
izes a number of fields of the form class, fills the two arrays with default values
(using two nested for loops), and then sets the mines in the grid. For the number of
times defined in a constant (that is, the number of mines), the program adds a new
mine in a random position. However, if there was already a mine, the loop should be
executed once more because the final number of mines in the Map array should
equal the requested number. Otherwise the program will never terminate, because
it tests when the number of mines found equals the number of mines added to the
grid. Here is the code of the loop; it can be executed more than NMines times, thanks
to the use of the MinesToPlace integer variable, which is increased when we try to
place a mine over an existing one:

Randomize;
// place ‘NMines’ non-overlapping mines
MinesToPlace := NMines;
while MinesToPlace > 0 do
begin
 X := Random (NItems);
 Y := Random (NItems);
 // if there isn’t a mine
 if Map [X, Y] <> ‘M’ then
 begin
 // add a mine
 Map [X, Y] := ‘M’;
 Dec (MinesToPlace)
 end;
end;

The last portion of the initialization code computes the number of surrounding
mines for each cell that doesn’t have a mine. This is accomplished by calling the
ComputeMines procedure for each cell. The code of this function is fairly complex
because it has to consider the special cases of the mines near a border of the grid.
The effect of this call is to store, in the Map array, the character representing the
number of mines surrounding each cell.

The next logical procedure is DrawGrid1MouseDown. This method first computes the
cell on which the mouse has been clicked, with a call to the grid’s MouseToCell
method. Then there are three alternative portions of code: a small one when the
game has ended, and the other two for the two mouse buttons. When the left mouse
button is pressed, the program checks whether there is a mine (hidden or not), and
if there is, it displays a message and terminates the program with an explosion (see
Figure 22.17).

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1110 - Chapter 22: Graphics in Delphi

Figure 22.17: Ouch!
You have stepped on a
mine. Image from the
original book.

If there is no mine, the program sets the Display value for the cell to True, and if
there is a 0, it starts the FloodZeros procedure. This method displays the eight items
near a visible cell having a value of 0, repeating the operation over and over if one of
the surrounding cells also has a value of 0. This recursive call is complex because
you have to provide a way to terminate it. If there are two cells near each other, both
having a value of 0, each one is in the surrounding area of the other, so they might
continue forever to ask the other cell to display itself and its surrounding cells.
Again, the code is complex, and the best way to study it may be to step through it in
the debugger.

When the user presses the right mouse button, the program changes the status of
the cell. The right mouse button action is to toggle the flag on the screen, so a user
can always remove an existing flag, if he or she thinks the earlier decision was
wrong. For this reason the status of a cell that contains a mine can change from M
(hidden Mine) to K (Known mine) and vice versa; and the status of a cell with no
mine can change from a number to W (Wrong mine) and vice versa. When all the
mines have been found, the program terminates with a congratulation message.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1111

A very important piece of code is at the end of the OnMouseDown event response
method. Each time the user clicks on a cell and its contents change, that cell should
be repainted. If you repaint the whole grid, the program will be slower. For this rea-
son, I’ve used the Windows API function InvalidateRect:

MyRect := DrawGrid1.CellRect (Col, Row);
InvalidateRect (DrawGrid1.Handle, @MyRect, False);

The last important method is DrawGrid1DrawCell. We already used this painting
procedure in the last example, so you should remember that it is called for each cell
that needs repainting. Fundamentally, this method extracts the code corresponding
to the cell, which shows a corresponding bitmap, loaded from a file. Once again, I’ve
prepared a bitmap for each of the images in a new resource file, which is included in
the project thanks to Delphi 5’s improved Project Manager.

Recall that when using resources, the code tends to be faster than when using sepa-
rate files, and again, we end up with a single executable file to distribute. The
bitmaps have names corresponding to the code in the grid, with a character (‘M’) in
front since the name ’0’ would have been invalid. The bitmaps can be loaded and
drawn in the cell with this code:

Bmp.LoadFromResourceName (HInstance, ‘M’ + Code);
DrawGrid1.Canvas.Draw (Rect.Left, Rect.Top, Bmp);

Of course, this takes place only if the cell is visible—that is, if Display is True. Oth-
erwise, a default undefined bitmap is displayed. (The bitmap name is ‘UNDEF’.)
Loading the bitmaps from the resources each time seems slow, so the program
could have stored all the bitmaps in a list in memory, as the World2 example earlier
in this chapter did. However, this time, I decided to use a different, although
slightly less efficient, approach: a cache. This makes sense because we already use
resources instead of files to speed up things.

The bitmap cache of Mines is small since it has just one element, but its presence
speeds up the program considerably. The program stores the last bitmap it has used
and its code; then, each time it has to draw a new item, if the code is the same, it
uses the cached bitmap. Here is the new version of the code above:

if not (Code = LastBmp) then
begin
 Bmp.LoadFromResourceName (HInstance, ‘M’ + Code);
 LastBmp := Code;
end;
DrawGrid1.Canvas.Draw (Rect.Left, Rect.Top, Bmp);

Increasing the size of this cache will certainly improve its speed. You can consider a
list of bitmaps as a big cache, but this is probably useless because some bitmaps

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1112 - Chapter 22: Graphics in Delphi

(those with high numbers) are seldom used. As you can see, some improvements
can be made to speed up the program, and much can also be done to improve its
user interface. If you have understood this version of the program, I think you’ll be
able to improve it considerably.

Using TeeChart

TeeChart is a VCL-based charting component built by David Berneda and licensed
to Borland for inclusion in the Developer and Client/Server versions of Delphi474.
The TeeChart component is very complex: Delphi includes a Help file and other ref-
erence material for this component, so I won’t spend time listing all of its features.
I’ll just build a couple of examples. TeeChart comes in three versions: the stand-
alone component (in the Additional page of the Component Palette), the data-aware
version (in the Data Controls page), and the Report version (in the QuickReport
page). Delphi Client/Server also includes a DecisionChart control in the Decision
Cube page of the palette. The data-aware version of TeeChart is presented in Chap-
ter 9 of Mastering Delphi 5, and I’ll use it again later in a Web-oriented example.

note Of course, it would be simpler to build an example using the TeeChart Wizard, but seeing all the
steps will give you a better understanding of this component’s structure.

The TeeChart component provides the basic structure for charting, through a com-
plex framework of charting and series classes and the visual container for charts
(the actual control). The actual charts are objects of class TChartSeries or derived
classes. Once you’ve placed the TeeChart component on a form, you should create
one or more series. To accomplish this, you can open the Chart Component Editor:
select the component, right-click to show the local menu of the form designer, and
choose the Edit Chart command. Now press the Add button, and choose the graph
(or series) you want to add from the many available (as you can see in Figure 22.18).

474 The TeeChart component is still available and installed in Delphi today, as an optional feature.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1113

Figure 22.18: The
TeeChart Gallery
allows you to choose
the type of graph, or
series. Image from the
original book.

As soon as you create a new series, a new object of a TChartSeries subclass is added
to your form. This is the same behavior as the MainMenu component, which adds
objects of the TMenuItem class to the form. You can then edit the properties of the
TSeries object in the Chart Component Editor, or you can select the TChartSeries
object in the Object Inspector (with the Object Selector combo box) and edit its
many properties.

The different TChartSeries subclasses—that is, the different kinds of graph—have
different properties and methods (although some of them are common to more than
one subclass). Keep in mind that a graph can have multiple series: if they are all of
the same type they will probably integrate better, as in the case of multiple bars.
Anyway, you can also have a complex layout with graphs of different types visible at
the same time. At times, this is an extremely powerful option.

Building a First Example

To build this example I placed a TeeChart component in a form and then simply
added four 3D Bar series—that is, four objects of the TBarSeries class. Then I set up
some global properties, such as the title of the chart, and so on. Here is a summary
of this information, taken from the textual description of the form:

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1114 - Chapter 22: Graphics in Delphi

object Chart1: TChart
 AnimatedZoom = True
 Title.Text.Strings = (
 ‘Simple TeeChart Demo for Mastering Delphi’)
 BevelOuter = bvLowered
 object Series1: TBarSeries
 SeriesColor = clRed
 Marks.Visible = False
 end
 object Series2: TBarSeries
 SeriesColor = clGreen
 Marks.Visible = False
 end
 object Series3: TBarSeries
 SeriesColor = clYellow
 Marks.Visible = False
 end
 object Series4: TBarSeries
 SeriesColor = clBlue
 Marks.Visible = False
 end
end

Next I added to the form a string grid and a push button labeled Update. This but-
ton is used to copy the numeric values of the string grid to the chart. The grid is
based on a 5 4 matrix as well as a line and a column for the titles. Here is its tex-
tual description:

object StringGrid1: TStringGrid
 ColCount = 6
 DefaultColWidth = 50
 Options = [goFixedVertLine, goFixedHorzLine,
 goVertLine, goHorzLine, goEditing]
 ScrollBars = ssNone
 OnGetEditMask = StringGrid1GetEditMask
end

The value 5 for the RowCount property is a default, and it doesn’t show up in the tex-
tual description. (The same holds for the value of 1 for the FixedCols and FixedRows
properties.) An important element of this string grid is the edit mask used by all of
its cells. This is set using the OnGetEditMask event:

procedure TForm1.StringGrid1GetEditMask(Sender: TObject;
 ACol, ARow: Longint; var Value: string);
begin
 // edit mask for the grid cells
 Value := ‘09;0’;
end;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1115

There is actually one more component, a check box used to toggle the visibility of
the marks of the series. (The marks are small yellow tags describing each value;
you’ll need to run the program to see them.) You can see the form at design time in
Figure 22.19. In this case the series are populated with random values; this is a nice
feature of the component, as it allows you to preview the output without entering
real data.

Figure 22.19: The
Graph1 example, based
on the TeeChart
component, at design
time. Image from the
original book.

Adding Data to the Chart

Now we simply initialize the data of the string grid and copy it to the series of the
chart. This takes place in the handler of the OnCreate event of the form. This
method fills the fixed items of the grid and the series names, then fills the data por-
tion of the string grid, and finally calls the handler of the OnClick event of the
Update button, to update the chart:

procedure TForm1.FormCreate(Sender: TObject);
var
 I, J: Integer;
begin
 with StringGrid1 do

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1116 - Chapter 22: Graphics in Delphi

 begin
 {fills the fixed column and row,
 and the chart series names}
 for I := 1 to 5 do
 Cells [I, 0] := Format (‘Group%d’, [I]);
 for J := 1 to 4 do
 begin
 Cells [0, J] := Format (‘Series%d’, [J]);
 Chart1.Series [J-1].Title := Format (‘Series%d’, [J]);
 end;

 // fills the grid with random values
 Randomize;
 for I := 1 to 5 do
 for J := 1 to 4 do
 Cells [I, J] := IntToStr (Random (100));
 end; // with

 // update the chart
 UpdateButtonClick (Self);
end;

We can access the series using the component name (as Series1) or using the
Series array property of the chart, as in Chart1.Series[J-1]. In this expression,
notice that the actual data in the string grid starts at row and column one—the first
line and column, indicated by the zero index, are used for the fixed elements—while
the chart Series array is zero-based.

Another example of updating each series is present in the OnClick event handler for
the check box; this method toggles the visibility of the marks:

procedure TForm1.ChBoxMarksClick(Sender: TObject);
var
 I: Integer;
begin
 for I := 1 to 4 do
 Chart1.Series [I-1].Marks.Visible :=
 ChBoxMarks.Checked;
end;

But the really interesting code is in the UpdateButtonClick method, which updates
the chart. To accomplish this, the program first removes the existing data of each
chart, and then it adds new data (or data points, to use a jargon term):

procedure TForm1.UpdateButtonClick(Sender: TObject);
var
 I, J: Integer;
begin
 for I := 1 to 4 do
 begin
 Chart1.Series [I-1].Clear;

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1117

 for J := 1 to 5 do
 Chart1.Series [I-1].Add (
 StrToInt (StringGrid1.Cells [J, I]),
 ‘’, Chart1.Series [I-1].SeriesColor);
 end;
end;

The parameters of the Add method (used when you don’t want to specify an X value,
but only an Y value) are the actual value, the label, and the color. In this example the
label is not used, so I’ve simply omitted it. I could have used the default value,
clTeeColor, to get the proper color of the series. You might use specific colors to
indicate different ranges of data.

Once you’ve built the graph, TeeChart allows you a lot of viewing options. You can
easily zoom into the view (simply indicate the area with the left mouse button),
zoom out (using the mouse in the opposite way, dragging towards the top left cor-
ner), and use the right mouse button to pan the view. You can see an example of
zooming in Figure 22.20.

Figure 22.20: The
form of the Graph1
example at run time.
Notice that I’ve
zoomed into the graph.
Image from the
original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1118 - Chapter 22: Graphics in Delphi

Creating Series Dynamically

The Graph1 example shows some of the capabilities of the TeeChart component, but
it is based on a single, fixed type of graph. I could have improved it by allowing
some customization of the shape of the vertical bars; instead I chose a more general
approach, allowing the user to choose different kinds of series (graphs).

The TeeChart component initially has the same attributes as in the previous exam-
ple. But the form now has four combo boxes, one for each row of the string grid.
Each combo box has four values (Line, Bar, Area, and Point), corresponding to the
four types of series I want to handle. To handle these combo boxes in a more flexible
way in the code, I’ve added an array of these controls to the private fields of the
form:

private
 Combos: array [0..3] of TComboBox;

This array is filled with the actual component in the FormCreate method, which also
selects the initial item of each of them. Here is the new code of FormCreate:

 // fill the Combos array
 Combos [0] := ComboBox1;
 Combos [1] := ComboBox2;
 Combos [2] := ComboBox3;
 Combos [3] := ComboBox4;
 // show the initial chart type
 for I := 0 to 3 do
 Combos [I].ItemIndex := 1;

note This example demonstrates a common way to create an array of controls in Delphi, something
Visual Basic programmers often long for. Actually Delphi is so flexible that arrays of controls are
not built-in; you can create them as you like. This approach relies on the fact that you can gener-
ally associate the same event handler with different events, something that VB doesn’t allow you
to do.

All these combo boxes share the same OnClick event handler, which destroys each
of the current series of the chart, creates the new ones as requested, and then
updates their properties and data:

procedure TForm1.ComboChange(Sender: TObject);
var
 I: Integer;
 SeriesClass: TChartSeriesClass;
 NewSeries: TChartSeries;
begin
 // destroy the existing series (in reverse order)

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1119

 for I := 3 downto 0 do
 Chart1.Series [I].Free;
 // create the new series
 for I := 0 to 3 do
 begin
 case Combos [I].ItemIndex of
 0: SeriesClass := TLineSeries;
 1: SeriesClass := TBarSeries;
 2: SeriesClass := TAreaSeries;
 else // 3: and default
 SeriesClass := TPointSeries;
 end;
 NewSeries := SeriesClass.Create (self);
 NewSeries.ParentChart := Chart1;
 NewSeries.Title :=
 Format (‘Series %d’, [I + 1]);
 end;
 // update the marks and update the data
 ChBoxMarksClick (self);
 UpdateButtonClick (self);
 Modified := True;
end;

The central part of this code is the case statement, which stores a new class in the
SeriesClass class reference variable, used to create the new series objects and set
each one’s ParentChart and Title. I could have also used a call to the AddSeries
method of the chart in each case branch and then set the Title with another for
loop. In fact, a call such as

Chart1.AddSeries (TBarSeries.Create (self));

creates the series objects and sets its parent chart at the same time.

Notice that this new version of the program allows you to change the type of graph
for each series independently. You can see an example of the resulting effect in Fig-
ure 22.21.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1120 - Chapter 22: Graphics in Delphi

Figure 22.21: Various
kinds of graphs, or
chart series, displayed
by the Graph2
example. Image from
the original book.

Finally, the Graph2 example has support for saving the current data it is displaying
on a file and loads existing files. The program has a Modified Boolean variable, used
to track whether the user has changed any of the data, and it prompts the user to
confirm closing the form when the data has changed. The file support is based on
streams and is not particularly complex, because the number of elements to save is
fixed (all the files have the same size). Here are the two methods connected with the
Open and Save menu items:

procedure TForm1.Open1Click(Sender: TObject);
var
 LoadStream: TFileStream;
 I, J, Value: Integer;
begin
 if OpenDialog1.Execute thenbegin
 CurrentFile := OpenDialog1.Filename;
 Caption := ‘Graph [‘ + CurrentFile + ‘]’;
 // load from the current file
 LoadStream := TFileStream.Create (
 CurrentFile, fmOpenRead);
 try
 // read the value of each grid element
 for I := 1 to 5 do
 for J := 1 to 4 do

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1121

 begin
 LoadStream.Read (Value, sizeof (Integer));
 StringGrid1.Cells [I, J] := IntToStr(Value);
 end;
 // load the status of the checkbox and the combo boxes
 LoadStream.Read (Value, sizeof (Integer));
 ChBoxMarks.Checked := Boolean(Value);
 for I := 0 to 3 do
 begin
 LoadStream.Read (Value, sizeof (Integer));
 Combos [I].ItemIndex := Value;
 end;
 finally
 LoadStream.Free;
 end;
 // fire udpate events
 ChBoxMarksClick (Self);
 ComboChange (Self);
 UpdateButtonClick (Self);
 Modified := False;
 end;
end;

procedure TForm1.Save1Click(Sender: TObject);
var
 SaveStream: TFileStream;
 I, J, Value: Integer;
begin
 if Modified then
 if CurrentFile = ‘’ then // call save as
 SaveAs1Click (Self)
 else
 begin
 // save to the current file
 SaveStream := TFileStream.Create (
 CurrentFile, fmOpenWrite or fmCreate);
 try
 // write the value of each grid element
 for I := 1 to 5 do
 for J := 1 to 4 do
 begin
 Value := StrToIntDef (Trim (
 StringGrid1.Cells [I, J]), 0);
 SaveStream.Write (Value, sizeof (Integer));
 end;
 // save check box and combo boxes
 Value := Integer (ChBoxMarks.Checked);
 SaveStream.Write (Value, sizeof (Integer));
 for I := 0 to 3 do
 begin
 Value := Combos [I].ItemIndex;
 SaveStream.Write (Value, sizeof (Integer));
 end;

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1122 - Chapter 22: Graphics in Delphi

 Modified := False;
 finally
 SaveStream.Free;
 end;
 end;
end;

A Database Chart on the Web

In Chapter 20 of Mastering Delphi 5, we saw how to create a simple graphic image
and return it from a CGI application. We can apply the same approach in returning
a complex and dynamic graph built with the TDBChart component. Using this com-
ponent in memory is a little more complex than setting all of its properties at design
time, as you’ll have to set the properties in the Pascal code. (You cannot use a visual
component, such as a DBChart, in a Web Module or any other data module).

In the WebChart ISAPI application I’ve used the Country.DB table to produce a pie
chart with the area and population of the American countries, as in the ChartDb
example of Chapter 9 in Mastering Delphi 5. The two graphs are generated by two
different actions, indicated by the paths /population and /area. As most of the code
is used more than once, I’ve collected it in the OnCreate and OnAfterDispatch
events of the WebModule.

note As written, this program doesn’t support concurrent users. You’ll need to add some threading or
synchronization code to this ISAPI DLL to make it work with multiple users at the same time. An
alternative is to place all the code in the Action event handlers, so that no global object is shared
among multiple requests. Or you can turn it into a CGI application.

The data module has a table object, which is properly initialized at design time, and
three private fields:

private
 Chart: TDBChart;
 Series: TPieSeries;
 Image: TImage;

The objects corresponding to these fields are created along with the Web module
(and used by subsequent calls):

procedure TWebModule1.WebModule1Create(Sender: TObject);
begin
 // open the database table
 Table1.Open;
 // create the chart

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1123

 Chart := TDBChart.Create (nil);
 Chart.Width := 600;
 Chart.Height := 400;
 Chart.AxisVisible := False;
 Chart.Legend.Visible := False;
 Chart.BottomAxis.Title.Caption := ‘Name’;
 // create the pie series
 Series := TPieSeries.Create (Chart);
 Series.ParentChart := Chart;
 Series.DataSource := Table1;
 Series.XLabelsSource := ‘Name’;
 Series.OtherSlice.Style := poBelowPercent;
 Series.OtherSlice.Text := ‘Others’;
 Series.OtherSlice.Value := 2;
 Chart.AddSeries (Series);
 // create the memory bitmap
 Image := TImage.Create (nil);
 Image.Width := Chart.Width;
 Image.Height := Chart.Height;
end;

The next step is to execute the handler of the specific action, which sets the pie chart
series to the specific data field and updates a few captions:

procedure TWebModule1.WebModule1ActionPopulationAction(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
begin
 // set specific values
 Chart.Title.Text.Clear;
 Chart.Title.Text.Add (‘Population of Countries’);
 Chart.LeftAxis.Title.Caption := ‘Population’;
 Series.Title := ‘Population’;
 Series.PieValues.ValueSource := ‘Population’;
end;

This creates the proper DBChart in memory. The final step, again common to the
two actions, is to save the chart in a bitmap image, and then format it as a JPEG on
a stream, to be later returned from the server-side application. The code is actually
similar to that of the previous example:

procedure TWebModule1.WebModule1AfterDispatch(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
var
 Jpeg: TJpegImage;
 MemStr: TMemoryStream;
begin
 // paint the chart on the memory bitmap
 Chart.Draw (Image.Canvas, Image.BoundsRect);
 // create the jpeg and copy the image to it

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1124 - Chapter 22: Graphics in Delphi

 Jpeg := TJpegImage.Create;
 try
 Jpeg.Assign (Image.Picture.Bitmap);
 MemStr := TMemoryStream.Create;
 // save to a stream and return it
 Jpeg.SaveToStream (MemStr);
 MemStr.Position := 0;
 Response.ContentType := ‘image/jpeg’;
 Response.ContentStream := MemStr;
 Response.SendResponse;
 finally
 Jpeg.Free;
 end;
end;

The result, visible in Figure 22.22, is certainly interesting. Optionally, you can
extend this application by hooking it to an HTML table showing the database data.
Simply write a program with a main action returning the HTML table and a refer-
ence to the embedded graphics, which will be returned by a second activation of the
ISAPI DLL with a different path.

Figure 22.22: The
JPEG with the
population chart
generated by the
WebChart application.
Image from the
original book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1125

Using Metafiles

The bitmap formats covered earlier in this chapter store the status of each pixel of a
bitmap, although they usually compress the information. A totally different type of
graphic format is represented by vector-oriented formats. In this case the file stores
the information required to re-create the picture, such as the initial and final point
of each line or the mathematics that define a curve. There are many different vector-
oriented file formats, but the only one supported by the Windows operating system
is the Windows Metafile Format (WMF). This format has been extended in Win32
into the Extended Metafile Format (EMF), which stores extra information related to
the mapping modes and the coordinate system.

A Windows metafile is basically a series of calls to the GDI primitive functions. After
you’ve stored the sequence of calls, you can replay them, reproducing the graphics.
Delphi supports Windows metafiles through the TMetafile and TMetaFileCanvas
classes, so it’s very simple to build an example.

The TMetafile class is used to handle the file itself, with methods for loading and
saving the files, and properties determining the key features of the file. One of them
is the Enhanced property, which determines the type of metafile format. Note that
when Windows is reading a file, the Enhanced property is set depending on the file
extension—WMF for Windows 3.1 metafiles and EMF for the Win32 enhanced
metafiles.

To generate a metafile, you can use an object of the TMetafileCanvas class, con-
nected to the file through its constructors, as shown by the following code fragment:

Wmf := TMetafile.Create;
WmfCanvas := TMetafileCanvas.CreateWithComment(
 Wmf, 0, ‘Marco’, ‘Demo metafile’);

Once you’ve created the two objects, you can paint over the canvas object with regu-
lar calls and, at the end, save the connected metafile to a physical file.

Once you have the metafile (either a brand-new one you’ve just created or one
you’ve built with another program) you can show it in an Image component, or you
can simply call the Draw or StretchDraw methods of any canvas.

In the WmfDemo example I’ve written some simple code, just to show you the
basics of this approach. The OnCreate event handler of the form creates the
enhanced metafile, a single object that is used both for reading and writing opera-
tions:

procedure TForm1.FormCreate(Sender: TObject);

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1126 - Chapter 22: Graphics in Delphi

begin
 Wmf := TMetafile.Create;
 Wmf.Enhanced := True;
 Randomize;
end;

The form of the program has two buttons and the PaintBox components, plus a
check box. The first button creates a metafile by generating a series of partially ran-
dom lines. The result is both shown in the first PaintBox and saved to a fixed file:

procedure TForm1.BtnCreateClick(Sender: TObject);
var
 WmfCanvas: TMetafileCanvas;
 X, Y: Integer;
begin
 // create the virtual canvas
 WmfCanvas := TMetafileCanvas.CreateWithComment(
 Wmf, 0, ‘Marco’, ‘Demo metafile’);

 try
 // clear the background
 WmfCanvas.Brush.Color := clWhite;
 WmfCanvas.FillRect (WmfCanvas.ClipRect);

 // draws 400 lines
 for X := 1 to 20 do
 for Y := 1 to 20 do
 begin
 WmfCanvas.MoveTo (15 * (X + Random (3)),
 15 * (Y + Random (3)));
 WmfCanvas.LineTo (45 * Y, 45 * X);
 end;
 finally
 // end the drawing operation
 WmfCanvas.Free;
 end;

 // show the current drawing and save it
 PaintBox1.Canvas.Draw (0, 0, Wmf);
 Wmf.SaveToFile (ExtractFilePath (Application.ExeName) + ‘test.emf’);
end;

note If you draw or save the metafile before the connected metafile canvas is closed or destroyed, these
operations will produce no effect at all! This is the reason I call the Free method before calling
Draw and SaveToFile.

Reloading and repainting the metafile is even simpler:

procedure TForm1.BtnLoadClick(Sender: TObject);
begin

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1127

 // load the metafile
 Wmf.LoadFromFile (ExtractFilePath (
 Application.ExeName) + ‘test.emf’);

 // draw or stretch it
 if cbStretched.Checked then
 PaintBox2.Canvas.StretchDraw (PaintBox2.Canvas.ClipRect, Wmf)
 else
 PaintBox2.Canvas.Draw (0, 0, Wmf);
end;

Notice that you can reproduce exactly the same drawing but also modify it with the
StretchDraw call. (The result of this operation is visible in Figure 22.23.) This oper-
ation is different from stretching a bitmap, which usually degrades or modifies the
image, because here we are scaling by changing the coordinate mapping. This
means that while printing a metafile, you can enlarge it to fill an entire page with a
rather good effect, something very hard to do with a bitmap.

Figure 22.23: The
output of the
WmfDemo with a
stretched metafile.
Image from the
original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1128 - Chapter 22: Graphics in Delphi

Rotating Text

In this chapter, we’ve covered a lot different examples of the use of bitmaps, and
we’ve created graphics of many types. However, the most important type of graphics
we usually deal with in Delphi applications is text. In fact, even when showing a
label or the text of an Edit box, Windows still paints it in the same was as any other
graphical element. I’ve actually presented an example of font painting earlier in this
chapter in the FontGrid example. Now I’m getting back to this topic with a slightly
more unusual approach.

When you paint text in Windows, there is no way to indicate the direction of the
font: Windows seems to draw the text only horizontally. However, to be precise,
Windows draws the text in the direction supported by its font, which is horizontal
by default. For example, we can change the text displayed by the components on a
form by modifying the font of the form itself, as I’ve done in the SideText example.
Actually you cannot modify a font, but you can create a new one similar to an exist-
ing font:

procedure TForm1.FormCreate(Sender: TObject);
var
 ALogFont: TLogFont;
 hFont: THandle;
begin
 ALogFont.lfHeight := Font.Height;
 ALogFont.lfWidth := 0;
 ALogFont.lfEscapement := -450;
 ALogFont.lfOrientation := -450;
 ALogFont.lfWeight := fw_DemiBold;
 ALogFont.lfItalic := 0; // false
 ALogFont.lfUnderline := 0; // false
 ALogFont.lfStrikeOut := 0; // false
 ALogFont.lfCharSet := Ansi_CharSet;
 ALogFont.lfOutPrecision := Out_Default_Precis;
 ALogFont.lfClipPrecision := Clip_Default_Precis;
 ALogFont.lfQuality := Default_Quality;
 ALogFont.lfPitchAndFamily := Default_Pitch;
 StrCopy (ALogFont.lfFaceName, PChar (Font.Name));
 hFont := CreateFontIndirect (ALogFont);
 Font.Handle := hFont;
end;

This code produced the desired effect on the label of the example’s form, but if you
add other components to it, the text will generally be printed outside the visible por-
tion of the component. In other words, you’ll need to provide this type of support
within components, if you want everything to show up properly. For labels, how-
ever, you can avoid writing a new component; instead, simply change the font

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1129

associated with the form’s Canvas (not the entire form) and use the standard text
drawing methods. The SideText example changes the font of the Canvas in the
OnPaint method, which is similar to OnCreate:

procedure TForm1.FormPaint(Sender: TObject);
var
 ALogFont: TLogFont;
 hFont: THandle;
begin
 ALogFont.lfHeight := Font.Height;
 ALogFont.lfEscapement := 900;
 ALogFont.lfOrientation := 900;
 ...
 hFont := CreateFontIndirect (ALogFont);
 Canvas.Font.Handle := hFont;
 Canvas.TextOut (0, ClientHeight, ‘Hello’);
end;

The font orientation is modified also by a third event handler, associated with a
timer. Its effect is to rotate the form over time, and its code is very similar to the
procedure above, with the exception of the code to determine the font escapement
(the angle of the font rotation):

 ALogFont.lfEscapement := - (GetTickCount div 10) mod 3600;

With these three different font rotating techniques (label caption, painted text, text
rotating over time) the form of the SideText program at runtime looks like Figure
22.24.

Figure 22.24: The
effects of the SideText
example, with some
text actually rotating.
Image from the
original book.

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1130 - Chapter 22: Graphics in Delphi

Where Do You Go from Here?

In this chapter, we have explored a number of different techniques you can use in
Delphi to produce graphical output. We’ve used the Canvas of the form, bitmaps,
metafiles, graphical components, grids, and other techniques. There are certainly
many more techniques related with graphics programming in Delphi and in Win-
dows in general, including the large area of high-speed games programming.

Allowing you to hook directly with the Windows API, Delphi support for graphics is
certainly extensive. However, most Delphi programmers never make direct calls to
the GDI system but rely instead on the support offered by existing Delphi compo-
nents. This topic was introduced in Chapter 13 of Mastering Delphi 5.

If you’ve already read Mastering Delphi 5, I hope you’ve also enjoyed this extra
bonus chapter. If you’ve started by this chapter, the rest of the book has plenty to
offer, even in the context of graphics but certainly not only limited to that. Refer to
www.sybex.com and www.marcocantu.com for more information about the book and
to download the free source code of this chapter and of the entire book.

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1131

Mastering™ Delphi™ 5

Praise for the Previous Edition

Delphi Informant

Of all the Delphi books available, only a handful have achieved special status. Mas-
tering Delphi 4 is clearly among that handful of books that set the standard. This
latest edition of Mastering continues the tradition established by its previous three
versions.…

Throughout the book, Cantù highlights the many new features of Delphi 4, and does
a remarkably good job of it....As in previous editions, Marco provides strong cover-
age of database topics, as well as graphics and user-interface programming issues.
The book is filled with excellent code examples illustrating many new and powerful
techniques. The vast majority of these [are] small and elegant pieces of code....

Marco has gone to considerable effort to keep the material in Mastering fresh and
current....Another thing I enjoy about Marco’s Mastering books is that they’re not
just technical reference books. I find them excellent just for reading. And—believe
me—that doesn’t apply to many computer books!

There is definitely something here for everyone....I highly recommend it.

—Robert Vivrette

Developers Review

Marco has done it again with Mastering Delphi 4. This book will indeed help you
master Delphi 4 programming….Compared to previous editions, I’m pleased to see
more in-depth database and Internet coverage….Every topic or component is
demonstrated with a small working example, showing how it can be used. The
examples are small and to the point….

Mastering Delphi is for “advanced beginners” and up, covering just about any topic
related to Delphi programming. I can recommend it to anyone.

—Bob Swart (“Dr. Bob”), co-winner of Borland’s 1999 Spirit of Delphi award

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1132 - Chapter 22: Graphics in Delphi

Readers on Amazon.com Praise the
Previous Edition

If you only buy one Delphi 4 book, this is the one! This is the most comprehensive
and useful book on Delphi 4 programming that I have come across (and I’ve
browsed ALL the books on Delphi 4 that Amazon lists).

A reader from Sydney, Australia

Excellent work. Cantù has an excellent summary of the new language features
added to Delphi 4, and notes pitfalls that may occur when compiling old code. I gen-
erally only refer to books when I’m stuck and need help beyond the online docs. I
can sit down and just read this one; there’s so much useful information in it that I
always find something helpful.

A reader from Fort Wayne, Indiana

Excellent intermediate-level book. This book does an excellent job of walking the
user through all the basics of Delphi and Object Pascal. It does assume some famil-
iarity with Pascal, but if the reader has that, this is an extremely easy to follow book.
The examples are useful, and are explained well enough that the reader can easily
expand them to meet his own needs.

A reader from California

The literary equivalent of Delphi 4. Unmatched by any other. Marco’s treatment of
each Delphi topic is concise, well thought out, and succinctly written. I cannot
praise his book more than this. It’s his best yet!

A reader from San Francisco

Don’t miss this one. For Bob Swart to review a book highly should be enough for any
aspiring Delphi programmer, but I’ll add my voice in saying this is another great
book from Marco. Unlike other version books, Marco uses tons of new examples
and avoids simply providing an updated version of his previous work....

Great book.

A reader from Atlanta, Georgia

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Chapter 22: Graphics in Delphi - 1133

Visit Marco’s Delphi Developer Web
Site

The book’s author, Marco Cantù, has created a site specifically for Delphi develop-
ers, at www.marcocantu.com. It’s a great resource for all of your Delphi programming
needs.

The site includes:

· The source code of the book (also available on the Sybex site)

· Extra examples and tips

· A number of Delphi components, wizards, and tools built by the author.

· The online book Essential Pascal

· Delphi reference material not found in the Help file

· Some papers the author has written about Delphi, C++, and Java

· Extensive links to Delphi-related Web sites and documents

· Other material related to the author’s books, the conferences he speaks at, and
his training seminars

The site also hosts a newsgroup475, which has a specific section devoted to the
author’s books, so that readers can discuss the book content with him and among
themselves. There are also other sections of the newsgroup for discussing Delphi
programming and general topics.

475 This isn’t the case any more

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1134 - Table of Contents

Table Of Contents

Table of Contents

Preface to the 2025 Commented Edition..5

Acknowledgments...7

Introduction..10
Five Versions and Counting..11
The Structure of the Book... 12
Free Source Code on the Web... 14
How to Reach the Author.. 14

Chapter 1: Delphi and Object Pascal...16
Editions of Delphi 5... 17
The Delphi 5 IDE... 18
The AppBrowser Editor..25
The Form Designer...37
Secrets of the Component Palette..46
Managing Projects... 51
Additional and External Delphi Tools..58
The Files Produced by the System...60
The Object Repository.. 66
What’s Next?... 69

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Table of Contents - 1135

Chapter 2: Object-Oriented Programming in Delphi..70
Introducing Classes and Objects...71
Constructors... 80
Inheriting from Existing Types..86
Protected Fields and Encapsulation..88
Late Binding and Polymorphism..93
Run-Time Type Information..100
Visual Form Inheritance... 102
What’s Next?.. 112

Chapter 3: Advanced Object Pascal...113
Class Methods and Class Data... 114
Class References.. 122
Objects and Memory... 126
Handling Exceptions... 131
The published Access Specifier... 139
Defining Properties... 139
Events in Delphi.. 146
Creating a TDate Component... 149
Using Interfaces... 151
What’s Next?.. 161

Chapter 4: VCL Programming Techniques...162
The TObject Class.. 163
The VCL Hierarchy.. 167
Common VCL Properties.. 172
Common VCL Methods... 186
Common VCL Events.. 189
Understanding Frames... 190
Lists and Container Classes.. 195
What’s Next?... 202

Chapter 5: Advanced Use of the Standard Components.......................................203
Opening the Component Tool Box...204
Working with Menus... 219
The ActionList Component...231
Owner-Draw Controls..239
ListView and TreeView...245
What’s Next?... 255

Chapter 6: Forms, Windows, and Applications..256
Forms versus Windows...257
The Application Is a Window...260
Setting Form and Border Styles...266
Scaling Forms... 274
Setting the Form’s Position and Size..278
Creating Forms... 281

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1136 - Table of Contents

Form Input... 289
Painting in Windows.. 299
What’s Next?... 301

Chapter 7: Building a User Interface..302
The Toolbar Control... 303
Customizing the Hints..310
Toolbar Containers..313
Creating a Status Bar.. 320
Scrolling a Form... 324
Form-Splitting Techniques..330
Control Anchors.. 335
What’s Next?... 342

Chapter 8: Using Multiple Forms..344
Dialog Boxes versus Forms..344
Creating a Dialog Box... 349
About Boxes and Splash Screens..362
Multiple-Page Forms.. 369
Creating MDI Applications...385
Frame and Child Windows in Delphi...387
MDI Applications with Different Child Windows..394
What’s Next?... 399

Chapter 9: Writing Database Applications...401
Accessing Data with and without the BDE..402
Delphi Database Components..405
Customizing a Database Grid..411
Field-Oriented Data-Aware Controls...414
Accessing the Data Fields...420
Searching and Adding the Fields of a Table...431
Database Application with Standard Controls...438
Editing Dates with a Calendar..449
Exploring the Tables of a Database...451
A Multi-Record Grid...457
Database Charts.. 460
What’s Next?... 462

Chapter 10: Advanced Database Access...463
The Delphi 5 Data Module Designer..464
A Data Module for Multiple Views...469
Using a Query... 478
Using Multiple Tables... 485
Advanced Use of the DBGrid Control..492
A Grid Allowing Multiple Selection..498
The Data Dictionary... 499
Handling Database Errors..504

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Table of Contents - 1137

Multi User Paradox Applications...507
Database Transactions.. 517
What’s Next?... 523

Chapter 11: Client/Server Programming..525
An Overview of Client/Server Programming...526
Client/Server and Delphi..529
From Local to Client/Server...532
Getting Started with Local InterBase...537
SQL: The Data Definition Language...541
SQL: The Data Manipulation Language...547
Server-Side Programming..557
Live Queries and Cached Updates..560
InterBase Express... 569
Client/Server Optimization..576
What’s Next?... 582

Chapter 12: Using ADO..583
Microsoft’s Way to the Data...585
Delphi 5 ADO Components..588
A Practical ADO Primer..589
From Paradox to Access...593
More ADO Features.. 602
What’s Next?.. 611

Chapter 13: Creating Components..612
Extending the VCL.. 613
Building Your First Component..617
Creating Compound Components..627
A Complex Graphical Component..633
Customizing Windows Controls...644
A Non-Visual Dialog Component...648
Defining Custom Actions..653
Writing Property Editors..655
Writing a Component Editor..662
What’s Next.. 666

Chapter 14: Dynamic Link Libraries and Packages..668
The Role of DLLs in Windows..669
Creating a DLL in Delphi..681
A Delphi Form in a DLL...687
A DLL in Memory: Code and Data...697
Using Delphi Packages.. 701
Exploring the Structure of a Package...706
What’s Next... 710

Chapter 15: COM Programming..711
What Is OLE? And What Is COM?..712

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

1138 - Table of Contents

Implementing IUnknown.. 713
A First COM Server... 720
Using a Shell Interface.. 730
What’s Next?... 744

Chapter 16: Automation and ActiveX...745
OLE Automation... 746
Writing an OLE Automation Server...750
OLE Data Types.. 764
Using Office Programs.. 768
Using Compound Documents...773
Using the Internal Object...778
Introducing ActiveX Controls..780
Using ActiveX Controls in Delphi...783
Writing ActiveX Controls...786
ActiveForms.. 794
What’s Next?... 798

Chapter 17: Multitasking, Multithreading, and Synchronization..........................799
Events, Messages, and Multitasking in Windows...800
Checking for a Previous Instance of an Application..804
Multithreading in Delphi...808
Synchronizing Threads...817
What’s Next?... 832

Chapter 18: Debugging Delphi Programs...833
Using the Integrated Debugger..834
Using Breakpoints.. 838
Debugger Views.. 845
Other Debugging Techniques...855
Memory Problems... 861
What’s Next?... 867

Chapter 19:More Delphi Techniques...868
Managing Windows Resources..868
The Integrated Translation Environment..881
Printing... 885
Manipulating Files.. 893
The Clipboard... 898
Saving the Status: INI and Registry...901
Accessing Properties by Name...909
Building Online Help... 911
InstallShield Express... 917
Managing Source Code...924
What’s Next?... 928

Chapter 20: Internet Programming...929
HyperText Markup Language (HTML)..930

 Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

Table of Contents - 1139

ActiveForms in Web Pages...943
Socket Programming with Delphi..950
Internet Protocols... 965
Dynamic Web Pages.. 971
Delphi’s WebBroker Technology..976
Handling Mail Feedback...991
Active Server Pages... 995
What’s Next?... 999

Chapter 21: Multitier Database Applications...1000
One, Two, Three Levels... 1001
Building a Sample Application... 1010
Adding Constraints to the Server..1014
Adding Features to the Client.. 1017
Advanced MIDAS Features.. 1026
The Hidden Power of the ClientDataSet Component..1033
High-End Distributed Services (MTS and CORBA)...1040
ActiveForm Thin Clients... 1046
Internet Express... 1049
What’s Next?... 1058

Chapter 22: Graphics in Delphi..1060
Drawing on a Form... 1061
Drawing Shapes.. 1063
Delphi Graphical Components.. 1073
Drawing in a Bitmap... 1074
An Animated Bitmap in a Button...1088
The Animate Control.. 1096
Graphical Grids.. 1101
Using TeeChart.. 1112
Using Metafiles.. 1125
Rotating Text... 1128
Where Do You Go from Here?.. 1130
Mastering™ Delphi™ 5.. 1131
Readers on Amazon.com Praise the Previous Edition..1132
Visit Marco’s Delphi Developer Web Site...1133

Table of Contents...1134

Marco Cantù, Mastering Delphi 5 (2025 Annotated Edition)

	Preface to the 2025 Commented Edition
	Acknowledgments
	Introduction
	Five Versions and Counting
	The Structure of the Book
	Free Source Code on the Web
	How to Reach the Author

	Chapter 1: Delphi and Object Pascal
	Editions of Delphi 5
	The Delphi 5 IDE
	Command-Line Options
	Saving the Desktop Settings
	The To-Do List

	The AppBrowser Editor
	The Code Explorer
	Browsing in the Editor
	Class Completion
	Code Insight
	More Editor Shortcut Keys

	The Form Designer
	The Object Inspector in Delphi 5

	Secrets of the Component Palette
	Defining Event Handlers
	Copying and Pasting Components
	From Component Templates to Frames

	Managing Projects
	Project Options
	Compiling and Building Projects
	Exploring a Project

	Additional and External Delphi Tools
	The Files Produced by the System
	Looking at Source Code Files

	The Object Repository
	What’s Next?

	Chapter 2: Object-Oriented Programming in Delphi
	Introducing Classes and Objects
	Delphi’s Object Reference Model
	Private, Protected, and Public
	Encapsulation and Forms
	The Self Keyword
	Creating Components Dynamically

	Constructors
	Overloaded Methods and Constructors
	The Complete TDate Class

	Inheriting from Existing Types
	Protected Fields and Encapsulation
	Accessing Protected Data of Other Classes
	Inheritance and Type Compatibility

	Late Binding and Polymorphism
	Overriding, Redefining, and Reintroducing Methods
	Virtual versus Dynamic Methods
	Message Handlers
	Abstract Methods

	Run-Time Type Information
	Visual Form Inheritance
	Inheriting from a Base Form
	Polymorphic Forms

	What’s Next?

	Chapter 3: Advanced Object Pascal
	Class Methods and Class Data
	A Class with an Object Counter
	Method Pointers

	Class References
	Creating Components Using Class References

	Objects and Memory
	Destroying Objects Only Once
	Passing and Copying Objects

	Handling Exceptions
	Exceptions and the Stack
	The Finally Block
	Logging Errors

	The published Access Specifier
	Defining Properties
	Adding Properties to Forms
	Adding Properties to the TDate Class

	Events in Delphi
	Events Are Properties
	Adding an Event to the TDate Class

	Creating a TDate Component
	Using Interfaces
	Declaring an Interface
	Interface Properties, Delegation, Redefinitions
	An Example of Multiple Inheritance
	Interface Polymorphism
	Is This Multiple Inheritance?

	What’s Next?

	Chapter 4: VCL Programming Techniques
	The TObject Class
	Showing Class Information

	The VCL Hierarchy
	Components
	Windows Components
	Objects

	Common VCL Properties
	The Name Property
	The Components Array
	The Owner Property
	Removing Form Fields
	Hiding Form Fields
	Properties Related to Control Size and Position
	Activation and Visibility Properties
	The Customizable Tag Property
	The User Interface: Color and Font

	Common VCL Methods
	Common VCL Events
	Understanding Frames
	Lists and Container Classes
	Using Lists of Objects
	Delphi 5 Container Classes
	Type-Safe Containers and Lists

	What’s Next?

	Chapter 5: Advanced Use of the Standard Components
	Opening the Component Tool Box
	The Text Input Component
	Selecting Options
	Lists
	Ranges
	Dragging from One Component to Another
	Handling the Input Focus

	Working with Menus
	Accelerator Keys in Delphi 5
	Pop-Up Menus and the OnContextPopup Event
	Creating Menu Items Dynamically
	Using Menu Images
	Customizing the System Menu

	The ActionList Component
	Actions in Practice

	Owner-Draw Controls
	Owner-Draw Menu Items
	A ListBox of Colors

	ListView and TreeView
	A Graphical Reference List
	A Tree of Data

	What’s Next?

	Chapter 6: Forms, Windows, and Applications
	Forms versus Windows
	The Application Is a Window
	Displaying the Application Window
	The Application System Menu
	Activating Applications and Forms

	Setting Form and Border Styles
	The Border Style
	The Border Icons
	Setting More Window Styles

	Scaling Forms
	Manual Form Scaling
	Automatic Form Scaling

	Setting the Form’s Position and Size
	The Size of a Form and Its Client Area
	Form Constraints

	Creating Forms
	Delphi Form Creation Order
	Tracking Forms with the Screen Object
	Closing a Form

	Form Input
	Supervising Keyboard Input
	Getting Mouse Input
	Dragging and Drawing with the Mouse

	Painting in Windows
	What’s Next?

	Chapter 7: Building a User Interface
	The Toolbar Control
	The Toolbar and the ActionList of an Editor
	A Combo Box in a Toolbar
	Toolbar Hints

	Customizing the Hints
	Toolbar Containers
	A Really Cool Toolbar
	The ControlBar
	A Menu in a Control Bar

	Creating a Status Bar
	Menu Hints in the Status Bar

	Scrolling a Form
	The Scroll Testing Example
	Automatic Scrolling
	Scrolling and Form Coordinates

	Form-Splitting Techniques
	Horizontal Splitting
	Splitting with a Header

	Control Anchors
	Docking Toolbars and Controls
	Docking Toolbars in ControlBars

	What’s Next?

	Chapter 8: Using Multiple Forms
	Dialog Boxes versus Forms
	Adding a Second Form to a Program
	Creating Secondary Forms at Run Time

	Creating a Dialog Box
	The Dialog Box of the RefList Example
	A Modeless Dialog Box
	Windows Common Dialogs
	A Parade of Message Boxes
	Expandable Dialog Boxes

	About Boxes and Splash Screens
	Building a Custom Hidden Screen
	Building a Splash Screen

	Multiple-Page Forms
	PageControls and TabSheets
	Frames and Pages
	Multiple Frames with No Pages
	An Image Viewer with Owner-Draw Tabs
	The User Interface of a Wizard
	Docking to a PageControl

	Creating MDI Applications
	MDI in Windows: A Technical Overview

	Frame and Child Windows in Delphi
	Building a Complete Window Menu
	The MdiDemo Example

	MDI Applications with Different Child Windows
	Child Forms and Menus
	Changing the Main Form
	Subclassing the MdiClient Window

	What’s Next?

	Chapter 9: Writing Database Applications
	Accessing Data with and without the BDE
	Delphi Database Components
	Tables and Queries
	The Status of a Data Set
	Other Database Related Components
	Delphi Data-Aware Controls

	Customizing a Database Grid
	The Table State

	Field-Oriented Data-Aware Controls
	Using DBEdit Controls
	Creating a Database Table
	Listing Alternative Values

	Accessing the Data Fields
	The Hierarchy of Field Classes
	Adding a Calculated Field

	Searching and Adding the Fields of a Table
	Looking for Records in a Table
	The Total of a Table Column
	Editing a Table Column

	Database Application with Standard Controls
	Mimicking Delphi Data-Aware Controls
	Sending Requests to the Database
	Database Events
	Field Events

	Editing Dates with a Calendar
	Exploring the Tables of a Database
	Choosing a Database and a Table at Run Time
	Viewing Multiple Tables

	A Multi-Record Grid
	Moving Control Grid Panels

	Database Charts
	What’s Next?

	Chapter 10: Advanced Database Access
	The Delphi 5 Data Module Designer
	The Tree View
	The Data Diagram View

	A Data Module for Multiple Views
	Setting Field Properties and Initial Values
	Standard Table Filtering
	Custom Table Filtering
	An MDI Application with Independent Views

	Using a Query
	A Query with Parameters

	Using Multiple Tables
	Master/Detail with Tables
	A Master/Detail Structure with Queries
	Using a Lookup Combo Box
	A Lookup in a Grid

	Advanced Use of the DBGrid Control
	Painting a DBGrid
	A Check Box Cell

	A Grid Allowing Multiple Selection
	The Data Dictionary
	The Data Dictionary and the Fields Editor
	What’s in an Attribute Set?
	Exploring the Data Dictionary

	Handling Database Errors
	Multi User Paradox Applications
	Low-Level BDE
	Packing a Local Table
	Using Paradox Files on a Network
	Concurrency Control

	Database Transactions
	A Simple Example of Transactions
	Using Cached Updates as Transactions

	What’s Next?

	Chapter 11: Client/Server Programming
	An Overview of Client/Server Programming
	Client/Server and Delphi
	The Database Component
	The Role of the BDE

	From Local to Client/Server
	Unidirectional Cursors
	Table and Query Components in Client/Server
	Using Table and Query Filters

	Getting Started with Local InterBase
	SQL: The Data Definition Language
	Data Types
	Domains
	Creating Tables
	Indexes
	Views

	SQL: The Data Manipulation Language
	Select
	Insert
	Update
	Delete
	Using SQL Builder

	Server-Side Programming
	Stored Procedures
	Triggers (and Generators)

	Live Queries and Cached Updates
	The UpdateSQL Component
	Update Conflicts
	Using Transactions

	InterBase Express
	Up and Running
	Building a Live Query

	Client/Server Optimization
	Using SQL Monitor
	Performance Tuning

	What’s Next?

	Chapter 12: Using ADO
	Microsoft’s Way to the Data
	ADO and OLE DB
	ADO Objects

	Delphi 5 ADO Components
	A Practical ADO Primer
	From Paradox to Access
	Using ADOTable
	Copying Tables
	Master/Detail Structures

	More ADO Features
	Cursors and Optimization
	Indexes and Sorting
	Filtering
	A Snapshot of the Data
	Finding, Summing, and Locking Records
	Handling Transactions in ADO
	Custom Events

	What’s Next?

	Chapter 13: Creating Components
	Extending the VCL
	Component Packages
	Rules for Writing Components
	The Base Component Classes

	Building Your First Component
	The Fonts Combo Box
	Creating a Package
	What’s Behind a Package?
	Installing the Components of This Chapter

	Using the Fonts Combo Box

	Creating Compound Components
	The Component Palette Bitmaps
	An Active Button

	A Complex Graphical Component
	Defining an Enumerated Property
	Writing the Paint Method
	Adding TPersistent Properties
	Defining a New Custom Event
	Registering Property Categories

	Customizing Windows Controls
	Overriding Message Handlers: The Numeric Edit Box
	Overriding Dynamic Methods: The Sound Button

	A Non-Visual Dialog Component
	Using the Non-Visual Component

	Defining Custom Actions
	Writing Property Editors
	An Editor for the Sound Properties
	Installing the Property Editor

	Writing a Component Editor
	Sub-Classing the TComponentEditor Class
	A Component Editor for the ListDialog
	Registering the Component Editor

	What’s Next

	Chapter 14: Dynamic Link Libraries and Packages
	The Role of DLLs in Windows
	What Is Dynamic Linking?
	What Are DLLs For?
	Understanding System DLLs
	Differences between DLLs and EXEs
	Rules for Delphi DLL Writers
	Win16 and Win32 DLLs
	Using Existing DLLs
	Using a C++ DLL

	Creating a DLL in Delphi
	A First Simple Delphi DLL
	Overloaded Functions in Delphi DLLs
	Exporting Strings from a DLL
	Calling the Delphi DLL

	A Delphi Form in a DLL
	Using the DLL Form as Modal
	A Modeless Form in a DLL
	Calling a Delphi DLL from Visual Basic for Applications
	Calling a DLL Function at Run Time

	A DLL in Memory: Code and Data
	Sharing Data with Memory-Mapped Files

	Using Delphi Packages
	Packages for Versioning of Applications
	Executable Files and DLLs Sharing the VCL Packages
	Dynamically Loading the DLL with Packages
	Fixing the Initialization Code

	Exploring the Structure of a Package
	What’s Next

	Chapter 15: COM Programming
	What Is OLE? And What Is COM?
	Implementing IUnknown
	Globally Unique IDentifiers
	The Role of Class Factories
	Class Factories and Other Delphi COM Classes

	A First COM Server
	COM Interfaces and Objects
	Initializing the COM Object
	Testing the COM Server
	Using Interface Properties
	Calling Virtual Methods

	Using a Shell Interface
	Creating Shortcuts
	The “To-Do File” Application
	Creating a Context-Menu Handler

	What’s Next?

	Chapter 16: Automation and ActiveX
	OLE Automation
	Introducing Type Libraries

	Writing an OLE Automation Server
	The Type Library Editor
	The Code of the Server
	Registering the Automation Server
	Writing a Client for Our Server
	Interfaces, Variants, and Dispatch Interfaces: Testing the Speed Difference
	The Server in a Component

	OLE Data Types
	Exposing Strings Lists and Fonts

	Using Office Programs
	Sending Data to Microsoft Word
	Building an Excel Table

	Using Compound Documents
	The OLE Container Component

	Using the Internal Object
	Introducing ActiveX Controls
	ActiveX Controls versus Delphi Components

	Using ActiveX Controls in Delphi
	Using the WebBrowser Control

	Writing ActiveX Controls
	Building an ActiveX Arrow
	Adding New Properties
	Adding a Property Page

	ActiveForms
	ActiveForm Internals
	The XClock ActiveX Control

	What’s Next?

	Chapter 17: Multitasking, Multithreading, and Synchronization
	Events, Messages, and Multitasking in Windows
	Event-Driven Programming
	Windows Message Delivery
	Background Processing and Multitasking

	Checking for a Previous Instance of an Application
	Looking for a Copy of the Main Window
	Using a Mutex
	Searching the Window List
	Handling User-Defined Window Messages

	Multithreading in Delphi
	The TThread Class
	A First Example
	A Locking Example
	Synchronization Alternatives
	Thread Priorities

	Synchronizing Threads
	Waiting for a Thread
	Windows Synchronization Techniques
	Using Critical Sections
	Threaded Database Access

	What’s Next?

	Chapter 18: Debugging Delphi Programs
	Using the Integrated Debugger
	Debugging Libraries (and ActiveX Controls)
	Debug Information
	Remote Debugging
	Attach to Process

	Using Breakpoints
	Breakpoint Actions
	Data Breakpoints

	Debugger Views
	The Call Stack
	Inspecting Values
	Exploring Modules and Threads
	The Event Log
	Down to the Metal: CPU and FPU views

	Other Debugging Techniques
	Using Conditional Compilation for Debug and Release Versions
	Using Assertions
	Exploring the Message Flow

	Memory Problems
	Processes and Memory
	Global Data, Stack, and Heap
	Tracking Memory
	Third-Party Tools

	What’s Next?

	Chapter 19:More Delphi Techniques
	Managing Windows Resources
	Using Resource Editors
	Loading Resources
	The Icons for Applications and Forms
	Using the Icon Tray of the Taskbar
	Using the Cursor in Delphi
	Using String Table Resources
	Version Information

	The Integrated Translation Environment
	Printing
	A Print Preview of Graphics
	Printing Text
	The QuickReport Components

	Manipulating Files
	File Support in Delphi Components
	File System Components
	Streaming Data

	The Clipboard
	Copying and Pasting Text
	Copying and Pasting Bitmaps

	Saving the Status: INI and Registry
	Using Windows INI Files
	Using the Registry

	Accessing Properties by Name
	Building Online Help
	InstallShield Express
	Managing Source Code
	What’s Next?

	Chapter 20: Internet Programming
	HyperText Markup Language (HTML)
	Delphi’s HTML Producer Components
	Producing HTML Pages
	Producing Pages of Data
	Producing HTML Tables
	Using Style Sheets
	Publishing Static Databases on the Web

	ActiveForms in Web Pages
	The Role of an ActiveX Form on a Web Page
	A Multipage ActiveForm
	Setting Properties for the XArrow

	Socket Programming with Delphi
	Foundations of Socket Programming
	Delphi Socket Components
	Using Sockets
	Using Sockets with a Custom Protocol
	Blocking, Nonblocking, and Multithreaded Connections
	Sending Database Data over a Socket Connection

	Internet Protocols
	Sending and Receiving Mail
	Sending Messages to the Mail Program
	The WinInet API

	Dynamic Web Pages
	An Overview of CGI
	An Overview of ISAPI/NSAPI

	Delphi’s WebBroker Technology
	Building a Multipurpose WebModule
	Dynamic Database Reporting
	Of Queries and Forms
	A Web Hit Counter

	Handling Mail Feedback
	A CGI Mail Server
	Retrieving Mail-Based Requests

	Active Server Pages
	What’s Next?

	Chapter 21: Multitier Database Applications
	One, Two, Three Levels
	The Technical Foundation: MIDAS
	The IAppServer Interface
	The Connection Protocol
	Providing Data Packets
	Delphi Support Components (Client-Side)
	Delphi Support Components (Server-Side)

	Building a Sample Application
	The First Application Server
	The First Thin Client

	Adding Constraints to the Server
	Field and Table Constraints
	Including Field Properties
	Field and Table Events

	Adding Features to the Client
	The Status of the Records
	Accessing the Delta
	Updating the Data
	The Update Sequence
	Refreshing Data
	Adding an Undo Feature
	Supporting the Briefcase Model

	Advanced MIDAS Features
	Parametric Queries
	Custom Method Calls
	Master/Detail Relationships
	More Provider Options
	The Simple Object Broker
	Object Pooling
	Customizing the Data Packets

	The Hidden Power of the ClientDataSet Component
	Defining Abstract Data Types
	On-the-Fly Indexing
	Grouping
	Defining Aggregates

	High-End Distributed Services (MTS and CORBA)
	Microsoft Transaction Server
	Creating an MTS Data Module
	CORBA
	A Simple CORBA Server
	A Simple CORBA Client

	ActiveForm Thin Clients
	Internet Express
	Building a First Example
	Master/Detail on the Web

	What’s Next?

	Chapter 22: Graphics in Delphi
	Drawing on a Form
	The Drawing Tools
	Colors

	Drawing Shapes
	Printing Shapes

	Delphi Graphical Components
	Drawing in a Bitmap
	Drawing Shapes
	An Image Viewer
	Scrolling an Image
	Bitmaps to the Max

	An Animated Bitmap in a Button
	A Two-State Button
	Many Images in a Bitmap
	The Rotating World
	A List of Bitmaps, the Use of Resources, and a ControlCanvas

	The Animate Control
	The Animate Control in a Button

	Graphical Grids
	A Grid of Fonts
	Mines in a Grid

	Using TeeChart
	Building a First Example
	Adding Data to the Chart
	Creating Series Dynamically
	A Database Chart on the Web

	Using Metafiles
	Rotating Text
	Where Do You Go from Here?
	Mastering™ Delphi™ 5
	Praise for the Previous Edition

	Readers on Amazon.com Praise the Previous Edition
	Visit Marco’s Delphi Developer Web Site

	Table of Contents

